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1. “STYLIZED FACTS”

e Consider log-returns

X; = log(P;/P;—,) = log P; — log P;_,
P, — P,
— log (1_|_ t t 1)

P4
P, — P;_,4
P4

S
~y/

: t=0,1,2...,

where (F;) is a speculative price series (share price, stock
index, foreign exchange (FX) rate,...) with time scale: days,
weeks, hours, ..., high frequency data.

e Why log-returns? (X;) is unit free.
Common belief: prices P; “increase” exponentially on average,

(X}) is “stationary”.
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1.1. Marginal distribution.
e sample mean close to zero
e sample variance of order 107°,1079,...
e distribution is roughly symmetric in the center
e density is sharply peaked at zero (leptokurtic)

e data are non-Gaussian

e heavy tails on both sides,

P(X;>x)~x™® asx — 00, a € (3,5)
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Ficure 1. Hill estimation (based on up to 50% of the order statistics) for 5 minute foreign exchange
rate log-returns, USD-DEM (top) and USD-FRF (bottom). Left: gains. Right: losses.
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1.2. Dependence: autocorrelations, clustering of extremes.

e Classical time series analysis: main goal is second order
structure of (Gaussian) stationary time series (X;)
e This structure is determined by

autocovariance function (ACVF)
vx(h) = cov(Xo, Xp), hE€ELZL.

autocorrelation function (ACF)

vx (h)

h e Z.
vx(0)

px(h) =

e ACF determines dependence structure of stationary Gaussian

(Xt)-



o ACF used for parameter estimation, model testing, prediction

of Gaussian/non-Gaussian time series (ARMA, FARIMA,...)

Brockwell and Davis (1991,1996)

e Since one does not know the ACF/ACVF of real-life data one

needs to estimate them: sample ACVFE and sample ACF

n—|h|
'Yn,X(h) — E Z (Xt - Yn) (Xt+h - Yn)
t=1
Tn,X h
pn,X(h) — ( )7 hGZ-
Yn,x(0)

o If (X;) is stationary ergodic, var(X;) < oo,

'Yn,X(h) fﬁ; 7X(h) ’ pn,X(h) ﬂ pX(h) .



THE ACF STYLIZED FACT

e Sample ACF p, x of returns are negligible (possible exception:

1st lag)

e Sample ACFs p, x|, p, x2 are positive and decay very slowly

(typical for “long” time series)

e This is often interpreted as long memory or long-range

dependence (LRD), see Samorodnitsky and Taqqu (1994), Doukhan et al. (2003)
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Ficure 2. Sample ACFs for the log-returns (top) and absolute log-returns (bottom) of the SEP500.
Here and in what follows, the horizontal lines in graphs displaying sample ACF's are set as the 95%
confidence bands (£1.96/4/n) corresponding to the ACF of iid Gaussian noise.
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THE EXTREMAL STYLIZED FACT

e Covariances and correlations are not good tools for describing

the dependence of extremes.

e High /low level exceedances of returns tend to appear in

clusters.

e Extremal serial dependence can be measured by the extremal

index or the extremogram; see Talk III.
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Ficure 3. Top: Absolute returns | X;| of the SE&P500 series for which both | X;| and | X41| exceed
the 87% quantile of the data. The latter is indicated by the bottom line. Bottom: The same kind
of plot for an iid sequence from a student distribution with 4 degrees of freedom. In the former case
pairwise exceedances occur in clusters, in the latter case exceedances appear uniformly scattered

through time.
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STYLIZED FACT: AGGREGATIONAL (GAUSSIANITY
® The center of the distribution of
(Xt—l—l + oo+ Xpgn — Xt,t—l—h) /\/E

becomes close to the normal distribution.

e This is an indication of CLT behavior and points at the fact

that var(X;) < oo (no infinite variance stable distributions).

e This is difficult to establish by statistical means since

aggregation means that one uses less data.



2. CAN CLASSICAL TIME SERIES ANALYSIS MODEL RETURNS?

e Classical time series analysis is about linear processes’

Xe =) ¥ Zij, (Z)iid
§=0
in particular ARMA (p. g) processes:
P(B)X: = Xy —p1Xp1— o —pp Xy p =
0(B)Zy = Z;+601Z; 1+ -+ 0,Z;_,
where
p . q .
f)=1- Y s, 0 =143 0,
i=1 j=1

and B¥A, = A,_; is the backshift operator.

2Brockwell, Davis (1991,1996)

13
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Examples. AR(2) process
(1 — 1B — p2B) Xy = Xt — 1 X1-1 — 92 X102 = Z;.
MA (2) process

Xy =2Zi+61Z 1+ 0:Z;_ 5= (1+6,B+ 60,B*)Z;.
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Ficure 4. Simulation of AR(1) process X; = 0.5X;_1 + Z; with iid standard normal noise (left) and
student noise with 3 degrees of freedom (right).
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WHICH STYLIZED FACTS CAN BE EXPLAINED BY LINEAR PROCESSES?

e Heavy tails of X; are only possible if the noise Z; has heavy

tails.

e ACF behavior. (X;) must be iid or MA(1) (or an “all pass”

process).

Example. If (X;) were iid or an MA(1) process, the ACFs of (X}),
(|X:) and (X}?) would vanish at lags h > 2.
e A linear process cannot explain the complicated dependence
structure of the sequences (| X;|) and (X}?).

e Conclusion: We need a “non-linear” model !



2.1. Multiplicative models.
Xt — O¢ Zt ) t € Z .

We assume
e (Z;) iid mean zero (or symmetric) noise, EZ? =1
e 0; > 0 and Z; independent for every ¢
e (o) volatility sequence (unobservable) strictly stationary

e (X;) strictly stationary

17
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Why this model?

e Conditional forecast of X; given o, = f(past). Then
L(X; | past) is known, e.g. Z; ~ N(0,1) and X; | past
~ N (0,07) (Conditional VaR)

e px(h) = corr(Xy, X)) = 0, h # 0, in agreement with stylized
facts.

e To some extent, it can explain that p|x|(h) and px:(h) are
different from zero and decay “slowly”.

e Although the whole time series (X;) is stationary one can
model changing conditional variance over time quite flexibly.

(“volatility clusters”, “conditional heteroscedasticity”)
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Ficure 5. One day 95% distributional forecasts of log-returns of the S&P500 composite stock index
(from top left, top right, bottom left to bottom right: 30, 15, 5, 1 years of data) based on a
GARCH(1,1) model with iid standard normal noise and parameters ag = 107%, a; = 0.07,
B1 = 0.96. The extreme values of the log-returns are not correctly captured by the model.
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2.2. The ARCH family. Engle (1982)

Xt — O¢ Zt ) (Zt) iid, EF7Z = O, V&I’(Z) =1

for a9y > 0, certain o; > 0, o, > 0.

ARCH(p) autoregressive conditionally heteroscedastic process of

order p
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WHY " AUTOREGRESSIVE” PROCESS?

o, = X! — o =07 (Z? — 1) is white noise (zero correlations,

constant variance) if (o7) strictly stationary and EX; < oco.

e o(B) X =ap+v:, tE€TZ,where

p
p(z) =1— Zaizi.
i=1

e Problem: ARCH(p) does not fit returns well unless p is large.
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2.3. The GARCH model. Bollerslev (1986), Taylor (1986)
o
e(B) X} =ao+8(B)v,, teZ,

where v; = X? — 02 and

t t
p q q

p(z) = 1—Zaizi—z,8jzj , B(z) = 1—|—Z,8jzj,
i=1 j=1 j=1

for certain «;, 3; > 0, a3, > 0.

e Generalized ARCH(p, q) (GARCH(p, q))

X = oy Zt7

~

p q
o’ ao—I—Zaith_i—l—Zﬂjaf_j, t e ’Z.
i=1 j=1
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Ficure 6. Simulation of a GARCH(1,1) process with Gaussian noise.
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2.4. An easier model: The stochastic volatility model.
X =0 Zy, (Z) iid centered or symmetric
e (o) strictly stationary
e (Z;) and (o) independent

e We always assume that (logo;) is a Gaussian linear process:

log oy = Z cjm—j, m; ~ N(0,1) iid
=0

e No feedback between (o) and (Z;)

e Dependence modeled via (o}), tails via (Z;)
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Ficure 7. Top: 1000 simulated values from the GARCH(1, 1) model X; = (0.0001 4+ 0.1X?2 |, +
0.90?7 ,)%°Z, for iid standard normal (Z;). Bottom: 1000 simulated values from the stochastic
volatility model X; = e¥* Z; for iid student noise (Z) with 4 degrees of freedom, Y; = 0.5Y;_; +
0.31¢—1 + m¢ is an ARMA(1,1) process with iid standard normal noise (7).

25



26

2.5. The stationarity problem.
The SV model.

Xy =01 Zy, (4;) iid, (o:) and (Z;) independent.
The log-volatility sequence

0
log oy = chl Mi—i, iid 1; ~ N (0, 1)
i=1
is strictly stationary if and only if >, ¢? < co.

(X;) is stationary if and only if (o;) is stationary.



The GARCH model.

b q
2 __ § : .Y 2 E ( i
i=1 j=1

e The sequence X; = 0:Z; is stationary if (o;) is stationary.

e Example GARCH(1,1). Write
At=a123_1+51, B; = o9 and Y}:of.

Then
2 2 2 _ 2 2
Ut — "I_ 841 Xt—l —I_ /31 Ut—l = &y —I_ (alzt_l —I_ 161) Ut—l
or
(1) Y, =AY 1+ By,

e A; and Y;_; are independent and ((A;, B;)) is iid.

e (1) is a stochastic recurrence equation (SRE).

27
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e Iterate back and notice that B; = B,

'
Yi = Ao A Yo 1+ Z A A1 By

1=t—r

t
Z Ap--- A By, tez,

1=—0C0

Hence, if —oo < Elog A; < 0, (2) converges a.s. for every fixed

(2)

t and (Y;) is the a.s. unique strictly stationary solution to SRE.
® Theorem. (Nelson (1990), Bougerol and Picard (1992a,b)) There exists an a.s.

unique non-vanishing strictly stationary causal (i.e., depending

only on past and present values of the Z’s) solution of SRE

with B; = o if and only if ayg > 0 and Elog((Jqu2 + B1) < 0.
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Ficure 8. The (aq,31)-areas below the two curves guarantee the existence of a stationary
GARCH(1, 1) process. Solid line: 11D student noise with 4 degrees of freedom with variance 1.
Dotted line: 1ID standard normal noise.
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Then

The general GARCH case

X2

2
(atH,...,a't 42
{alzt2‘|‘/31 Ba -+~
1 0
0 1
0 0
z2 0
0 0
K 0 0
(CVO’ 0, 30),7

Y: =AY 1+ By,

2
Xt —p+2
/Bq—l /Bq Oy g3 ° -

0 0 O
0 0 O
1 0O O
0 0O O
0 0 1
0 0 O

te .

/
),
0
0

)




e This is a multivariate stochastic recurrence equation.

e Existence of stationary solution depends on top Lyapunov

exponent

v =inf {n"! Elog||A,--- A4} <0,

| - || operator norm corresponding to norm | - |.

e In general, v cannot be calculated explicitly.

e For GARCH(1,1), A, --- A1 =[[}_,(cnZ} + B1) , and so
v = Elog(a1Z; + 34).

31
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® Theorem. (Bougerol and Picard (1992a,b)) The GARCH(p, Q) SRE has

the a.s. unique strictly stationary non-vanishing causal solution

' t—1
Y; = Z A¢--- A1 B, =By + Z Ag--- A By,

if and only if ap > 0 and v < 0.
e > 1 1Bj <1is anecessary condition for v < 0.

o> " o+ > 5 B; <1 is sufficient for v < 0 if EZ} =1 and
EZ, = 0, and ensures that EX? < oo.

e Example: The integrated GARCH process (IGARCH) Engle and

Bollerslev (1986)



IGARCH process has infinite variance; see p. 46. This is not
desirable (e.g. ACF would not make sense) and is in contrast

to statistical evidence.
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Ficure 9. The estimated values of ay + 31 for an increasing sample of the S€&P500 log-returns.
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2.6. The tails and extremes of return models.

SV models. Davis and M. (2001a,b, 2009a,c)

Xy =014y, logoy—= Zci"?t—z'-
i=0
n; ~ N (0,1) iid, independent of iid (Z;) regularly varying with

index a > 0 such that P(Z; > «)/P(|Z1| > ) — p > 0.
e Then o; is log-normal, hence Eo! < oo for all p > 0.

® One-dimensional Breiman lemma implies (see Breiman (1965))
P(X, < —x) ~ Eo} P(Z, < —x).

The one-dimensional marginals of an SV model are regularly

varying with index a.’

SBreidt and Davis (1998) consider the case of a light-tailed SV model with normal Z.
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e Multivariate Breiman implies (see Basrak, Davis, M. (2002a))
(Xl, ooy Xn), = diag(al, c ooy O'n) (Zl oo e Zn),

is regularly varying since Z = (Z4; ..., Z,)’ is regularly varying,
independent of diag(oi,...,0,).
e Regular variation of a vector X € R™ means that |X| is

regularly varying with some index a > 0 and
P(X/IX| €-||X|>2) = P(©€:)=Po(), z— 00,

where the distribution Pg is the spectral measure of X on the
unit sphere S~ ! of R".
e For a SV model, the spectral measure of the lagged vector

(X1,...,X,,) is concentrated at the axes as in the iid case. (It
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is very unlikely that two values X; and X, 2 # 7, are large at
the same time.)

e We have for 7+ # 3, as * — oo,

PX;>xz,X; >x) EP(oiZ; > x,0;Z; > x| (01))]
P(Xj > CIZ) P(Xj > ac)
E[P(0iZ1 > x| 0;) P(o; Z1 > z | ;)]
P(o1Z; > x)
E(0i0;)*[P(Z1 > x))?

~J > 0.
Ec®P(Z, > z)

e Similar calculations for left /right tails.

e Tail dependence coefficient for 72 # j is zero:

r—0o0

as in the 11d case.
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e For an iid sequence ()A(/t) with the same marginal distribution as

X, with (a,) such that P(X; > a,) ~ n™ 1,

lim P(a ‘M, < z) = lim P(a 'M, < x)

n—aoo n—oo

—

= Py(x) =" , x>0.

e The extremal behavior of a regularly varying SV process is
very much like the extremal behavior of an iid sequence with
the same marginal distribution.

e On the other hand, the ACFs of (| X;|) and (X/) can decay to

zero arbitrarily slowly, i.e., extremal dependence is not related

to the ACF.
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The tails of a solution to a SRE. Kesten (1973)

e Recall from p. 30 that squares of a GARCH process can be
embedded in the SRE:

(3) Y, =AY 1+B., nez,

e Assumptions. ((A,,B;)) is an iid sequence of d X d matrices
A,, with non-negative entries and d-dimensional

non-negative-valued random vectors B,,.

— For some € > 0, E||A4]|¢ < 1.
— The set

{log ||a,---ai||: » >1,a,:---a; > 0 and a,,...,a; € the support of P, }

generates a dense group in R.
— There exists a kK9 > 0 such that E(minizl,_._,d Z;’Zl Aij) ° > dfo/2 and

E([|As]|® 1og™ [|A1]]) < oo.
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e Then the following statements hold:

a) There exists a unique solution k; € (0, k¢] to the equation

1
0= lim —log E||A, -+ A||"".

n—oo n,
b) If E|B;|"1 < oo, there exists a unique strictly stationary causal
solution (Y,) to the stochastic recurrence equation (3).

c) If E|B1|" < oo, then Y; satisfies the following regular variation

condition: for all x € R?\ {0}

lim v P((x,Y1) > u) = w(x)

uU—o
exists and is positive for all non-negative-valued vectors x # 0.
In particular, all components of Y; are regularly varying with

index K.
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@ The case d = 1. Kk, is the solution to

.1 : K
0= lim —log E[(A, -+ A1)"] ie.,, EA]' =1.

n—oo

e For GARCH(1,1).
a? = g + (061Zt2_1 + 51)0}2—1

implies that EAT' = E[(a1Z% + (31)"] = 1.

e Hence with a = 2k,
Ploy>x)~cx™™, x— oo,
and by Breiman,

P(Xy>=x) = P(oyZy > x) ~ E[ZT]| P(oc > x) ~ E[Z{]cx™“.
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e Moreover, the finite-dimensional distributions of a
GARCH(1,1) (and of any GARCH(p, q)) process are regularly

varying.*

e Due to regular variation of (X;), for ¢ # j, the tail dependence

coeflicient

A(Xi, X;) = lim P(X; >z | X; > ) = lim PX, ’> ;)

exists and is positive.

41t takes some efforts to prove that regular variation of all linear combinations of a random vector implies
multivariate regular variation; see Basrak, Davis, M. (2002a,b).
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e For an iid sequence ()A(/t) with the same marginal distribution as

X;, with (a,) such that P(X; > a,) ~ n7}, i.e., a, ~ (cn)'/<,

(83

lim P(a'M, < z) = ®y(x) = °,
lim P(a,'M, < z) = ®°%(z) =e =", x>0,

n—aoo

for some Ox € (0,1).

e Ox is the extremal index of the sequence (X;). It is the
reciprocal of the expected cluster size above high thresholds.

e Recall. The extremal behavior of a regularly varying SV model
is similar to the extremal behavior of an iid sequence with the

same marginal distribution, e.g. Ox = 1.



e The extremal behavior of a GARCH process is characterized
by clusters of extremes above high thresholds: there is
dependence in the tails.

e Note: There is a crucial difference between the GARCH and
SV models:

Regular variation of the SV model is a consequence of the
regular variation of the noise (Z;), while regular variation of a
GARCH model is due to regular variation of the volatility

sequence (o).

43
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e For the GARCH(1, 1) case the tail index a@ = 2k, of X? and o7

is determined through the equation

EATl —_ E(alZf —|— ,61 M= 1.

e This equation can be solved numerically or by Monte Carlo

methods.
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Examles. a; = 0.1, o« = 2k,

Table 2.1. Results for a, standard normal noise.

B 09 08 07 06 05 04 03 0.2 0.1 0.0
a 2.0 12.5 16.2 18.5 20.2 21.7 23.0 24.2 25.4 26.5
B31 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89
o 11.9 11.3 10.7 9.9 9.1 81 7.0 5.6 4.0

Table 2.2. Results for a, student noise with 4 degrees of freedom

and variance 1.

4 09 08 0.7 0.6 0.5 04 0.3 0.2 0.1 0.0
o 2.0 3.68 3.83 3.88 3.91 3.92 3.93 3.93 3.94 3.94
B3 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89
a 3.65 3.61 3.56 3.49 3.41 3.29 3.13 2.90 2.54
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TueE IGARCH(1,1) CASE oy + 1 =1
® Since EZ12 =1,
EAT* = E(wZ? 4+ B1)" =1
has the unique solution k1 = 1.

e Kesten’s result yields regular variation with index 2 for
Xqg = (X1y...,X4):
P(|X4| > x) ~ cz™?,
P(X4/|Xal €| X4l >x) > P(O€-) asz— oco.

e In particular, X; has infinite variance.
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3. ASYMPTOTIC THEORY FOR THE SAMPLE ACVF OF FINANCIAL TIME

SERIES MODELS

e The SV and GARCH model satisfy the strong mixing condition
under mild extra conditions.

oIf E| X, X, 1|*"° < o for h =0,1,...,m, some § > 0 and
EX* < oo for the GARCH(p, q) process, then the central limit

theorem holds:
d
(n2(yn,x (R) = vx(h))) (Vi) ht,m

h=0,....m
d _
(n1/2(pn,X(h) — PX(h))h:1 = x (0) (Vi — px(h) VO)p—y,.m

where (V1,...,V,,) is multivariate normal with mean zero and
covariance matrix

[ > cov(XoXi,Xkaﬂ-)] and V, = E(X32).
t,3=1,....m

k=—o0



48

e For the | X|, X?- sequences the same theory applies with the

corresponding moments, covariances and correlations adjusted.

e For example, if EX? < oo and (X;) is GARCH, the CLT

applies to the sample ACF p,, x2.

e Since EX;3 — 00 Or even EX;l — 0o are not unusual for return

data, the question arises as to the weak limits of the sample

ACF 1in this case.
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o If (X;) GARCH and EX; = oo or (X;) SV and EX} = oc:
standard central limit theory for the sample ACF's p, x and
Pn, x| breaks down.

¢ (X;) GARCH and EX? = oo or (X;) SV and EX} = oc:
standard central limit theory for the sample ACF p,, x> breaks
down.

e Then regular variation of the sequence (X;) leads to unfamiliar
limits of the sample ACFs involving infinite variance stable
distributions.

e For the GARCH process, these asymptotic results yield

confidence bands for the sample ACFs much wider than
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prescribed by the normal central limit theorem. Davis, M. (1998), M.,
Stirici (2000), Basrak, Davis, M. (2002b).

e For the SV model, the sample ACF approaches zero at a rate
much faster than 1/ \/T. Davis, M. (2001a,b) This is same as for an

iid regularly varying sequence with infinite variance.
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Ficure 10. Boxplot comparison of the asymptotic behavior of the sample ACF for a GARCH (left)

and a stochastic volatility model (right). The parameters and noise distributions are chosen in such

a way that both time series have tail index 3 which is not untypical for return series.
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(a) GARCH(1,1) Model, Nn=10000
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(c) GARCH(1,1) Model, N=100000
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(b)) SV Model, Nn=10000

(d) SV Model, Nn=100000
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Ficure 11. Boxplot comparison of the asymptotic behavior of sample ACF for the squares of the
GARCH and the stochastic volatility models. Since the tail index of the model is 3 in both cases, it
is 1.5 for the squared time series.
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