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Abstract I

Abstract

Regular variation is a convenient description for asymptotic
behaviour of functions, allowing a connection to be made between
input and output in Abelian or Tauberian contexts. However in some
areas regular variation is more than convenient, it is essential,
characterising all possible asymptotics for the problem. Examples from
probability, complex analysis and number theory will be presented.
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1. Regular variation I

Definition 1.1.
A function f : (a,∞)→ (0,∞) (where a ≥ 0) is called regularly varying

of index α ∈ R, notation f ∈ Rα, if it is measurable and

for all λ > 0, lim
x→∞

f (λx)
f (x) = λα.

The slowly varying functions are the regularly varying functions of index
0, forming the class R0.

• Examples of slowly varying functions are all eventually positive
rational functions of ln = loge and its iterates.

• ` denotes a generic slowly varying function.

Proposition 1.2.
f ∈ Rα if and only if `(x) := x−αf (x) ∈ R0.
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2. Abelian theorems I

A typical Abelian theorem gives conditions under which

f (x) ∼ cxρ`(x) as x →∞ (I)

implies
k

M
∗ f (x) ∼ cǩ(ρ)xρ`(x) as x →∞. (II)

Here the Mellin transform of k : (0,∞)→ R is given for z ∈ C, where it
exists, by

ǩ(z) :=
∫ ∞

0
t−zk(t) dtt ,

and the Mellin convolution of two such functions k and f is given, for
x ∈ R, by

k
M
∗ f (x) :=

∫ ∞
0

k
(x
t

)
f (t) dtt =

∫ ∞
0

f
(x
t

)
k(t) dtt .
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2. Abelian theorems I

Theorem 2.1 ([Arandelović, 1976]).
Let ǩ(z) exist in the strip σ ≤ <z ≤ τ , where σ < ρ < τ , and let

f : (0,∞)→ R be measurable, with f (x)/xσ bounded on every interval (0, a]
for a > 0. Then (I) implies (II).

Proof.
[Bingham, Goldie & Teugels, 1989, pp. 201–2].

In (I) and (II) the constant c can be any real number. All cases c > 0
are equivalent, as are all cases c < 0. When c = 0 the result says that
f (x) = o(xρ`(x)) implies k

M
∗ f (x) = o(ǩ(ρ)xρ`(x)), both as x →∞.
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2. Abelian theorems: Cesàro means I

For α > 0 the Cesàro mean of order α of f is given by

Cα(f )(x) = 1
Γ(α)xα

∫ x

0
(x − t)α−1f (t) dt for x > 0.

Set
k(x) :=

1[1,∞)(x)
xΓ(α)

(
1− 1

x

)α−1
;

then k
M
∗ f = Cα(f ). This k has Mellin transform

ǩ(z) = Γ(z + 1)
Γ(z + α+ 1) for <z > −1.

Theorem 2.1 thus gives that for all c ∈ R and ρ > −1, f (x) ∼ cxρ`(x)
implies

Cα(f )(x) ∼ c Γ(ρ+ 1)
Γ(ρ+ α+ 1)x

ρ`(x) as x →∞.
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2. Abelian theorems: Cesàro means I

The case α = 1 is the familiar ‘Cesàro average’:

C1(f )(x) = x−1
∫ x

0
f (t) dt.

For this case the result is that, again for all c ∈ R and ρ > −1,
f (x) ∼ cxρ`(x) implies

C1(f )(x) ∼ cxρ`(x)
(ρ+ 1) as x →∞.
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2. Abelian theorems: Laplace transform I
Define the Laplace transform f̂ by

f̂ (s) := s
∫ ∞

0
e−stf (t) dt,

i.e. with an extra factor s. If f ∈ BVloc[0,∞) and f (0−) = 0 then

f̂ (s) =
∫

[0,∞)
e−st df (t),

so we have defined the Laplace-Stieltjes transform of f . The integral then
converges in <s > σ, where possibly σ =∞. Set

k(x) := x−1e−1/x ,

then k
M
∗ f (x) = f̂ (1/x). And

ǩ(z) = Γ(1 + z) for <z > −1.

The Theorem thus gives that for all c ∈ R and ρ > −1, f (x) ∼ cxρ`(x)
implies

f̂ (s) ∼ cΓ(1 + ρ)
sρ `

(1
s

)
as s ↓ 0.



1.
Regular
variation

2.
Abelian
theorems
Cesàro
means

Laplace
transform

Power
series

3.
Tauberian
theorems
Entire
functions

Lambert
kernel

4.
Question
pause

5.
Intrinsic
roles
Central
attraction

Extremal
attraction

Mercerian
theorems

6.
Converse
Abelian
theorems

References

2. Abelian theorems: power series I
Given coefficients (an)∞n=0, let

f (x) :=
bxc∑
n=0

an

where bxc denotes the largest integer not exceeding x. Set u := e−1/x in
the latter example; then

f̂
(1
x

)
=
∞∑

n=0

anun .

The Theorem thus says that if
n∑

k=0

ak ∼ cnρ`(n) as n →∞,

where c ∈ R and ρ > −1, then
∞∑

n=0

anun ∼ cΓ(1 + ρ)
(− ln u)ρ `

( 1
− ln u

)
as u ↑ 1.
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2. Abelian theorems: power series II

Because − ln u ∼ 1− u as u ↑ 1 we may replace − ln u by 1− u in the
right-hand side; replacing the argument of ` by an asymptotic equivalent
involves the Uniform Convergence Theorem for slowly varying functions
[Bingham, Goldie & Teugels, 1989, Theorem 1.2.1]. We thus gain the
neater conclusion that

∞∑
n=0

anun ∼ cΓ(1 + ρ) `(1/(1− u))
(1− u)ρ as u ↑ 1.
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3. Tauberian theorems I
We want (II) =⇒ (I).

Exercise 3.1.
(k

M
∗ f )∨(z) = ǩ(z)f̌ (z) for <z = ρ.

So to get information about f from k
M
∗ f , need

ǩ(z) 6= 0 for <z = ρ, (W)

that is, k is a Wiener kernel.
We also need a condition on f . To see this, consider for example the

Cesàro mean: if f (x) = (−1)bxc then x−1 ∫ x
0 f → 0 as x →∞, but

f (x) 6→ 0.
So impose one of

lim
λ↓1

lim inf
x→∞

inf
y∈[x,λx]

y−ρf (y)− x−ρf (x)
`(x) ≥ 0 (so = 0), (SD)

lim
λ↓1

lim sup
x→∞

sup
y∈[x,λx]

|y−ρf (y)− x−ρf (x)|
`(x) = 0. (SO)

These are extended versions of slow decrease (SD) and slow oscillation
(SO).
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3. Tauberian theorems I

Theorem 3.2 ([Bingham & Teugels, 1979]).
Assume the conditions of Theorem 2.1, plus (W), plus
• either (SO)
• or k ≥ 0 and (SD).

Then (II) =⇒ (I).

The case ` ≡ 1 is:

Theorem 3.3 (Wiener-Pitt Theorem).
Assume (W). If f is bounded and measurable, and of slow decrease:

lim
λ↓1

lim inf
x→∞

inf
t∈[1,λ]

(
f (tx)− f (x)

)
≥ 0 (hence = 0),

then
k

M
∗ f (x)→ cǩ(0) implies f (x)→ c.
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3. Tauberian theorems I

Example 3.4 (Cesàro means).
An Abel-Tauber theorem: for ρ > −1, f (x) ∼ cxρ`(x) as x →∞ if and

only if

Cα(f )(x) = 1
Γ(α)xα

∫ x

0
(x − t)α−1f (t) dt ∼ c Γ(ρ+ 1)

Γ(ρ+ α+ 1)x
ρ`(x).

Example 3.5 (Laplace transforms).
An Abel-Tauber theorem: for ρ > −1, f (x) ∼ cxρ`(x) as x →∞ if and

only if

f̂ (s) := s
∫ ∞

0
e−stf (t) dt ∼ cΓ(1 + ρ)

sρ `
(1
s

)
as s ↓ 0.
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3. Tauberian theorems: entire functions I

Example 3.6 (Entire functions).

Let f be entire, with maximal function

M (r) := sup
|z|≤r
|f (z)| = sup

|z|=r
|f (z)|.

Definition 3.7.
The order of f is

ρ := lim sup
r→∞

ln lnM (r)
ln r .

Theorem 3.8 (Proximate Order Theorem [Valiron, 1913]).
If f is entire with order ρ <∞ then there exists ` ∈ R0 with

lim sup
r→∞

lnM (r)
rρ`(r) = 1.
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3. Tauberian theorems: entire functions I

Definition 3.9.
f has completely regular growth if

lim∗
r→∞

ln|f (reiθ)|
rρ`(r) = h(θ) for all θ,

where lim∗ means limit as r →∞ avoiding an exceptional set of density 0.
The zeros of f have angular density if∑

n 1{|zn | ≤ r , θ ≤ arg zn ≤ θ′}
rρ`(r) → D(θ, θ′) as r →∞.

Levin-Pfluger theory connects these two notions.
The simplest case is when 0 < ρ < 1. Then

f (z) = czm
n∏
1

(
1− z

zn

)
where c 6= 0, 0 < |z1| ≤ |z2| ≤ · · · .
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3. Tauberian theorems: entire functions II

Without loss of generality, take m = 0, c = 1. Consider the case when
the zeros z1, z2, . . . are negative reals. Then

ln f (z) =
∫ ∞

0

z/t
1 + z/t n(t) dtt for arg z 6= π,

where n(t) :=
∑∞

0 1{|zn | ≤ t} is the zero-counting function. Then

ln f (reiθ) = eiθkθ
M
∗ n(r),

where kθ(x) = x/(1 + xeiθ), so that

ǩθ(s) = πeiθ(s−1)

sinπs for 0 < <s < 1 and θ 6= π.

Theorems 2.1 and 3.2 thus give the Levin-Pfluger result that for each
θ ∈ (−π, π), n(r) ∼ crρ`(r) as r →∞ if and only if

ln f (reiθ) ∼ cπrρeiθρ`(r)
sinπρ .
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3. Tauberian theorems: Lambert kernel I

Example 3.10 (Lambert kernel).

Here
k(t) = t d

dt
1

t(e1/t − 1)
.

This has ǩ(z) = zΓ(1 + z)ζ(1 + z), non-zero on <z = 0. Its use is to get a
proof of the Prime Number Theorem, as follows.

Definition 3.11.
von Mangoldt’s function is

Λ(x) :=
{
ln p if n = pk for some k = 1, 2, . . . ,
0 if not.

One can prove (see for example [Widder, 1941]) that
∞∑

n=1

Λ(n)− 1
x(en/x − 1)

→ −2γ as x →∞.
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3. Tauberian theorems: Lambert kernel II

The left-hand side is k
M
∗ f (x) where

f (x) :=
bxc∑
n=1

Λ(n)− 1
n .

Theorem 3.2 then gives that f (x)→ −2γ as x →∞. This is equivalent
(see for example [Hardy & Wright, 1979]) to

Theorem 3.12 (Prime Number Theorem).∑
p≤x

1 ∼ x
ln x as x →∞.
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4. Question pause I

Let us ask the following questions:
• Why regular variation?
• Are the conditions right?
We have partly answered the first of these above by giving instances

where regular variation plays an important role, necessary for full
understanding. We complete our answer in the next Section by giving
results from probability theory and analysis where regular variation plays
an intrinsic role: it can’t be avoided.

We answer the second question in Section 6 by discussing Converse
Abelian Theorems.
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5. Intrinsic roles: central attraction I

Definition 5.1.
A probability law G is stable if there exists a law F such that with X1,

X2, . . . independent ∼ F , and Sn := X1 + · · ·+ Sn , there exist an > 0 and
bn with

Sn

an
− bn

L−−→ G,

where L−−→ denotes convergence in law. Then we say that F is attracted to
G.

Theorem 5.2 (Domain of Attraction Theorem).
F is attracted to Gaussian laws if and only if the truncated variance

V (x) :=
∫ x
−x t

2 dF(t) is slowly varying.
F is attracted to a non-Gaussian law G if and only if

1− F(x) + F(−x) ∈ R−α for some 0 < α < 2, and there exists

lim
x→∞

1− F(x)
1− F(x) + F(−x) .
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5. Intrinsic roles: extremal attraction I

Definition 5.3.
A probability law G is extreme-stable (extremal) if there exists a

law F such that with X1, X2, . . . independent ∼ F , and
Mn = max(X1, . . . ,Xn), there exist an > 0 and bn with

Mn

an
− bn

L−−→ G.

Then we say that F ∈ D(G).

Theorem 5.4 (Fisher-Tippett-Gnedenko Theorem).
For some a > 0, b, G(ax + b) is one of

Φα(x) :=
{
0 (x < 0),
exp(−x−α) (x ≥ 0),

where α > 0;

Ψα(x) :=
{
exp(−(1− x)α) (x < 0),
1 (x ≥ 0),

where α > 0;

Λ(x) := exp(−e−x).
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5. Intrinsic roles: extremal attraction II

Theorem 5.5 (Extremal Attraction Theorem
[Gnedenko, 1943, de Haan, 1970]).

f ∈ D(Φα) if and only if 1− F ∈ R−α.
f ∈ D(Ψα) if and only if F(x+) = 1 and 1− F(x+ − x−1) ∈ R−α.
F ∈ D(Λ) if and only if H (x) := − ln(1− F(x)) has inverse H← with

lim
x→∞

H←(x + u)−H←(x)
`(ex) = u for all u > 0,

for some slowly varying `.
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5. Intrinsic roles: Mercerian theorems I
If c 6= 0, (I) and (II) imply

k
M
∗ f (x)
f (x) → a as x →∞, (III)

where a = ǩ(ρ). Here is a converse:

Theorem 5.6 (Drasin-Shea-Jordan Theorem
[Drasin & Shea, 1976, Jordan, 1974]).

Let k be a real kernel and let (a, b) be the maximal open interval such
that ǩ(z) converges absolutely in a < <z < b. Assume that ǩ′(ρ) and ǩ′′(ρ)
are not both 0, that k is monotone on [ρ, b) and zero on (0, 1), and that

ǩ(z) 6= ǩ(ρ) for <z = ρ and z 6= ρ.

Let f ≥ 0 be locally bounded on [0,∞), have finite order ρ ∈ (a, b), and
have bounded decrease:

lim inf
x→∞

inf
µ∈[1,λ]

f (µx)
f (x) > 0

for some (equivalently all) λ > 1. Then (III) implies a = ǩ(ρ) and f ∈ Rρ.
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6. Converse Abelian theorems I
The Wiener-Pitt Theorem needs the Wiener condition (W) on k, and

for f to be locally bounded and of slow decrease. The extra condition for
Theorem 3.2 is

ǩ(z) exists for σ ≤ <z ≤ τ , for some σ < ρ < τ.

This cannot be omitted:
Theorem 6.1 (Converse Abelian Theorem

[Arandelović, 1976]).
Let Ro

ρ := {f ∈ Rρ : f locally bounded on (0,∞), O(xρ) as x ↓ 0}. The
following are equivalent:

k
M
∗ f (x) = O

(
f (x)

)
as x →∞, for all f ∈ Ro

ρ;

ǩ(z) exists for ρ− δ ≤ <z ≤ ρ+ δ, for some δ > 0.

The proof needs:

Proposition 6.2 ([Vuilleumier, 1963]).
If f is such that f (x)`(x) = O(1) as x →∞, for every non-decreasing

slowly varying `, then xαf (x) = O(1) as x →∞, for some α > 0.
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6. Converse Abelian theorems II

Proof.
Let us show that if lim supx→∞ xα|f (x)| =∞ for each α > 0, then also

lim supx→∞ `(x)|f (x)| =∞ for some non-decreasing ` ∈ R0.
Set a0 := 1.
Because lim sup x1/k |f (x)| =∞ for each k = 1, 2, . . . , we may

successively find a1, a2, . . . such that ak ≥ ak−1 + 1 and a1/k
k |f (ak)| ≥ k for

k = 1, 2, . . . .
Define ε(ak) := 1/k, and complete ε(x) so as to be continuous and

piecewise-linear.
Then ε(x) ↓ 0 as x →∞, while lim supx→∞ xε(x)|f (x)| =∞.
Set `(x) := exp

∫ x
1 ε(y)y−1 dy, then ` is slowly varying, and

`(x)|f (x)| = |f (x)| exp
∫ x

1
ε(y) dyy ≥ xε(x)|f (x)|

is unbounded as x →∞.
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