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Abstract I

Abstract

This talk is based on the first half of [Bunge & Goldie, 2001], plus
some more recent material. Its view of the subject, Records, is almost
disjoint from that of other treatments such as
[Arnold, Balakrishnan & Nagaraja, 1998] or [Nevzorov, 2000].
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1. Record values: Basics I

Notation & basic setup

• F is the distribution function (d.f.) of a random variable (r.v.) X on R.
• F(x) := P(X ≤ x), right-continuous.
• x+ := sup{x : F(x) < 1}.
• F̄(x) := 1− F(x).
• The probability space is assumed to support X , X1, X2, . . . , which are
i.i.d. (independent and identically distributed) ∼ F .

• The order statistics X1
n ≥ X2

n ≥ · · · ≥ Xn
n are X1, . . . , Xn in order.
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1. Record values: Basics I

Definition 1.1.
The initial rank of Xn is ρn :=

∑n
i=1 1Xi≥Xn .

Definition 1.2.
Xn is a k-record if ρn = k.
The record values are the 1-records.

• X1 is a record value.
• For k > 1 the first k-record occurs at or after time k.
• These are upper records: one can alternatively work with lower
records.

Definition 1.3.
Let Rk

1 < Rk
2 < · · · denote the successive k-records (note the strict

inequalities). The whole sequence is denoted Rk = (Rk
1,Rk

2, . . . ).
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1. Record values: Structure I
We determine the structure of R1. Later this will yield the structure of

Rk for every k.
If x+ <∞ and P(X = x+) > 0 there will be a final k-record; otherwise

not.
Because the (finite or infinite) sequence R1 is strictly increasing we may

regard it as a (random) set.

Lemma 1.4.
Let E be any finite union of (disjoint) intervals (u, v] in (−∞, x+]. Then

P(R1 ∩ E = ∅) = e−η(E) (1)

where η is the measure on (−∞, x+] defined by

η(−∞, x] := − ln F̄(x).

If x+ <∞ and P(X = x+) > 0 then η(−∞, x+) <∞ and η{x+} =∞.
Otherwise, and in particular if x+ =∞, η(−∞, x+) =∞ and η{x+} = 0.
Always, η(−∞, x] <∞ for all x < x+.

Definition 1.5.
η is the avoidance measure of R1.
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1. Record values: Structure II

Theorem 1.6.
The law of R1 is the unique law of a simple1 point process such that (1)

holds for all finite unions E of intervals.

Proof.
From point-process theory.
Let D be the set of points where F is discontinuous.
D is also the set of atoms of η, i.e. the set of points where η(−∞, x] is

discontinuous.
Because F̄(x) = F(x,∞) = e−η(−∞,x],

∴ F [x,∞) = e−η(−∞,x);

∴
F(x,∞)
F [x,∞) = e−η{x} = P(R1 ∩ {x} = ∅).

Definition 1.7.
The discrete part of η is the measure ηd(E) :=

∑
x∈D∩E η{x}.

The continuous part of η is the measure ηc := η − ηd .

1simple: no multiple points
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1. Record values: Structure I

Theorem 1.8 ([Shorrock, 1972], [Shorrock, 1974]).
R1 is composed of
• a Poisson process R1

c of characteristic measure ηc,

and, independently of R1
c and of each other,

• at each x ∈ D, a demon who
• with probability 1 − e−η{x} gives R1 a point at x,
• or with probability e−η{x} does not.

Also R1 is completely random (= independent increments) and satisfies
(1) for all Borel sets E.

Note
A Poisson process as referred to above is more precisely an

inhomogeneous Poisson process of continuous characteristic measure
ν = ηc.

This is a simple, completely random point process N with, for any Borel
set B, N (B) ∼ Pois(ν(B)).
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1. Record values: Ignatov’s Theorem I

Theorem 1.9 (‘Ignatov’).
R1, R2, . . . are i.i.d.

Proof history

• [Ignatov, 1976/77], submitted 1978, appeared 1986; continuous case
• [Deheuvels, 1983], continuous case; incomplete
• [Goldie, 1983]
• [Goldie & Rogers, 1984]
• [Stam, 1985], continuous case
• [Engelen, Tommassen & Vervaat, 1988]
• [Samuels, 1992]
• [Yao, 1997]
• [Gnedin, 2008], continuous case
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2. Record times: Sojourns I

Assume P(X = x+) = 0, so each Rk is an infinite sequence.
Fix k ∈ N.
Arrange Qk := R1 ∪ · · · ∪Rk in a sequence in increasing order:

Qk = {Qk
1 ≤ Qk

2 ≤ · · · }.

If F is not continuous this sequence can contain repeats.
Let Lk

1 := k and

Lk
j+1 := min{n : n > Lk

j , ρn ≤ k}.

These are the times when Xk
· steps to the next point of Qk :

Xk
n = Qk

j for all n with Lk
j ≤ n < Lk

j+1.

Definition 2.1.
The sojourn of the kth order statistic at Qk

j , the time it spends there, is

∆k
j := Lk

j+1 − Lk
j (j = 1, 2, . . . ).



1.
Record
values
Basics

Structure

Ignatov

2.
Record
times
Sojourns

Times

3.
Limits
Limit laws

4. Ex-
tensions
Poset
records

Multivariate

Chain
records

Longest
sequences

References

2. Record times: Sojourns I

Theorem 2.2.
The sojourns ∆k

1, ∆k
2, . . . are conditionally independent given Qk, with

geometric distributions

P(∆k
j = l|Qk) =

(
F(Qk

j )
)l−1F̄(Qk

j ) (l = 1, 2, . . . ).

Definition 2.3.
Let Xm←(·) be the left-continuous inverse of Xm

· :

Xm←(x) := inf{n ≥ m : Xm
n ≥ x} (x ≤ x+).

Left-continuity yields the convenient relationship

Xm←(x) ≤ n iff x ≤ Xm
n .

Then

Xm←[x, y) := Xm←(y)−Xm←(x)
= #{n : Xm

n ∈ [x, y)}.
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2. Record times: Sojourns II

Theorem 2.4.
Fix m ∈ N. The process Xm← has independent increments: for any

disjoint intervals I1, . . . , Ik in (−∞, x+],

P(Xm←I1 = n1, . . . ,Xm←Ik = nk) =
k∏

l=1

P(Xm←Il = nl),

and

P(Xm←[x, y) = n)

=


(F[y,∞)

F[x,∞)

)m for n = 0,(F[y,∞)
F[x,∞)

)m∑m∧n
k=1

(m
k

)(n−1
k−1

)
F [x, y)kF(−∞, y)n−k

for n = 1, 2, . . . .
(2)
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2. Record times: Times I

Theorem 2.5 (Dwass-Rényi Lemma: [Dwass, 1960],
[Rényi, 1962]).

Assume F continuous. Then ρ1, ρ2, . . . are independent and
ρn ∼ Unif{1, . . . ,n}.

The uniform distribution here is discrete uniform.

Proof.
Exercise!

Aside: number of records
Let Nn be the number of records among X1, . . . , Xn :

Nn :=
n∑

k=1

Ik where Ik := 1{ρk = 1}.

By the Dwass-Rényi Lemma the Ik are independent with P(Ik = 1) = k−1,
P(Ik = 0) = 1− k−1.
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2. Record times: Times I

So, with γ = 0·57721 · · · the Euler-Mascheroni constant,

ENn =
k∑
1

1
k = ln n + γ + O

( 1
n

)
;

varNn =
n∑
1

(1
k −

1
k2

)
= ln n + γ − π2

6 + O
( 1
n

)
.

One may prove

Nn

ln n
a.s.−−−→ 1, Nn − ln n√

ln n
=⇒ N(0, 1),

etc.
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2. Record times: Times I

Definition 2.6.
The values of n when ρn = 1 are the record times 1 = L1 < L2 < · · · .
If P(X = x+) = 0 this is an infinite sequence.
We restrict attention to record times but all that follows has versions

for k-record times, suitably defined.

Theorem 2.7.
Assume F continuous. Then (Ln)n≥1 is a Markov chain with L1 = 1

and stationary transition laws

P(Ln+1 = l|Ln = j) = j
(l − 1)l (l = j + 1, j + 2, . . . )

= j
l − 1 −

j
l .

(3)
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2. Record times: Times I

Lemma 2.8.
Assume F continuous. Let W1, W2, . . . be i.i.d. Unif(0, 1), independent

of (Lj)j≥1. Define

Yn := − ln
(

(1−Wn) Ln

Ln+1
+ Wn

Ln

Ln+1 − 1

)
, (n = 1, 2, . . . ).

Then Y1, Y2, . . . are i.i.d. Expon(1) r.v.s.

Theorem 2.9 (Williams-Pfeifer Strong Approximation for
Record Times, [Williams, 1973], [Pfeifer, 1987]).

Assume F continuous. Use the probability space extended by the Wn as
above. Then

Ln+1 = dLneYne for n = 1, 2, . . . ,

where
dxe := min{n integer, n ≥ x}.
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2. Record times: Times I

Theorem 2.10 ([Pfeifer, 1987]).
Assume F continuous. Use the probability space extended by the Wn as

in Lemma 2.8. Set Sn :=
∑n

1 Yj. Then there exists Z > 0 with E(Z k) <∞
for all k, such that Z and (Sn −n)/

√
n are asymptotically independent, and

lnLn = Z + Sn−1 + o(e−n/2) a.s. (n →∞).
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3. Limits: Limit laws for record values I

Notation
L−−→ denotes convergence in law (in distribution), and L= denotes

equality of probability laws (distributions).

Definition 3.1.
R.v.s X , Y , or equivalently their laws F , G, are of the same type if

there exist a ∈ (0,∞) and b ∈ R so that

Y L= aX + b, equivalently G(y) = F
(y − b

a

)
∀y.

This is an equivalence relation on laws on R (exercise). The equivalence
classes are the types.
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3. Limits: Limit laws for record values I

Theorem 3.2 (Convergence of Types).
Let X, Xn be r.v.s, an > 0, bn ∈ R (norming and centring constants, or

scale and location constants), such that

Xn − bn

an

L−−→ X (n →∞),

with X non-degenerate. Let Y be a r.v., αn > 0, βn ∈ R constants. Then

(i) Xn − βn

αn

L−−→ Y

iff

(ii) an

αn
→ α ∈ [0,∞), bn − βn

αn
→ β ∈ R (n →∞).

In that case Y L= αX + β, and α ≥ 0, β are the unique constants for which
this holds.

When (i) or (ii) holds, Y is non-degenerate iff α > 0, and X and Y are
then of the same type.
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3. Limits: Limit laws for record values I

Theorem 3.3 ([Resnick, 1973]).
Assume F continuous. Then the possible limit laws for (Rn − bn)/an are

those in the type of one of

(i) Φ̃α(x) :=
{
0 if x ≤ 0,
Φ(ln xα) if x > 0;

(ii) Ψ̃α(x) :=
{

Φ
(
ln(−xα)

)
if x < 0,

1 if x ≥ 0;
(iii) Φ,
where Φ is the N(0, 1) d.f. and α > 0 is constant.

Resnick also characterises of the domain of attraction for record values
for each of these limit types. That is, for G each of Φ̃α, Ψ̃α, Φ, he finds
those F for which there exist an > 0 and bn such that (R1

n − bn)/an
L−−→ G.
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4. Extensions I

Definition 4.1.
H (x) := H (−∞, x] where H is the hazard measure corresponding to F ,

defined by

H (A) :=
∫

A

dF(x)
F [x,∞)

for Borel sets A in R.

Proposition 4.2.
H is the intensity measure of the point process R1:

H (A) = E#(R1 ∩A).

Proposition 4.3.
Assume F continuous. Then(

H (Rn)
)

n≥1
L=
( n∑

1

Ei

)
n≥1

,

where E1, E2, . . . are independent Expon(1) r.v.s.
These results suggest how one might generalise records to

multidimensional and other general settings.
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4. Extensions: Records in a poset I

Let S be a set with a partial order <.
That is, the graph G< := {(x, y) ∈ S × S : x < y} has properties
(i) antisymmetry: x < x for no x ∈ S ,

(ii) transitivity: x < y, y < z L−−→ x < z.
Let S be a σ-algebra of subsets of S . Assume

G< ∈ S × S (the graph is product-measurable).

Let µ be a probability law on (S ,S).
Let X1, X2, . . . be i.i.d. ∼ µ.
Adjoin extra points −∞, ∞ with the properties

−∞ < x <∞ ∀ x ∈ S .

Let S∗ := S ∪ {−∞,∞}.
Define intervals (x, y) := {z ∈ S : x < z < y} for x, y ∈ S∗.
Let

Sµ := {y ∈ S : µ(−∞, y) < 1}.
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4. Extensions: Records in a poset I

Proposition 4.4.
µ(Sµ) = 1.

Proof.
Fubini!
So Sµ functions as the ‘support’ of µ.

Definition 4.5.
Hazard measure H on (S ,S):

H (A) :=
∫

A∩Sµ

1
µ
(
(−∞, x)c

) dµ(x).

Definition 4.6.
Xn is a record if Xk < Xn for k = 1, . . . , n − 1.
Let R denote the set of records.
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4. Extensions: Records in a poset I

Theorem 4.7 ([Goldie & Resnick, 1989]).
Let A ∈ S and define events An := {Xn ∈ A ∩ R}. Then∑∞
n=1 P(An) = H (A). Further, P(#(R ∩A) =∞) = 1 or 0 according as∑∞
n=1 P(An) = H (A) =∞ or <∞.
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4. Extensions: Strict multivariate records I

Continue with the setup and notation of the last section, but now
specialise to Rd with d > 1, define x < y component-wise, and take
A := Rd .

Theorem 4.8 ([Gnedin, 1998]).
If F is a non-singular Gaussian law on Rd, with correlation matrix Λ,

then there exist α > 1 and β ∈ {2, . . . , d}, both depending on Λ, so that

P(An) � n−α(ln n)(α−β)/2.

Consequently P(#R <∞) = 1 for all non-singular Gaussian laws. The
same holds for singular Gaussian laws unless all correlation coefficients
are +1.

For d = 2 and correlation coefficient ρ ∈ (−1, 1), more precisely,

P(An) � n−2/(1+ρ)(ln n)−ρ/(1+ρ).
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4. Extensions: Chain records I

Let X , X1, X2, . . . be i.i.d. in Rd . Define x < y component-wise. Define
a form of lower record as follows:

• Xn is a chain record if it is below the previous chain record.

Definition 4.9.
Set T1 := 1, and for k = 2, 3, . . . ,

Tk := min{n > Tk−1 : Xn < XTk−1}.

The chain records are Rk := XTk .
Let Nn :=

∑n
j=1 1{Xj is a chain record}.
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4. Extensions: Chain records I

Theorem 4.10 ([Gnedin, 2007]).
Suppose X has a continuous product distribution. Let W be the product

of d independent Unif(0, 1) r.v.s, so that m := E(− lnW ) = d and
σ2 := var(− lnW ) = d. Then Nn ∼ m−1 ln n a.s. and

Nn −m−1 ln n√
σ2m−3 ln n

L−−→ N(0, 1).

Note
The d = 1 case is included! For d = 1, W ∼ Unif(0, 1) so

− lnW ∼ Expon(1), so m = 1 = σ2. As in §2,

Nn ∼ ln n a.s., Nn − ln n√
ln n

L−−→ N(0, 1).
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4. Extensions: Longest sequences I

In R2 use the notation x = (x1, x2), define x < y component-wise, take
X1, X2, . . . i.i.d. ∼ F , and as above define hazard measure H by

H (dx) := F(dx)
1− F(x−) = P(X1 ∈ dx)

P({X1 < x}c) .

Let A be an interval [a,b] in R2. Considering strict records (in both
coordinates simultaneously) we know from Theorem 4.7 that the number
NA of records falling in A is finite a.s. if and only if H (A) <∞. In this
section we will find out about the r.v. NA, when it is finite.

Given points x1 < · · · < xn in A, join a < x1 < · · · < xn < b by straight
lines to form a path.
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4. Extensions: Longest sequences I

Theorem 4.11 ([Goldie & Resnick, 1995]).
Assume H (A) <∞, that H has a bounded density on A and that the

distribution G on A given by

G(x) := H (x)
H (A) (x ∈ A)

satisfies the conditions of either Theorem 4.13 or Theorem 4.21 below.
Then, given NA = n, as n →∞ the path joining the records converges in
probability to a non-random limit curve which maximises the
Deuschel-Zeitouni functional J(φ) or the Goldie-Resnick functional T(f)
respectively.
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4. Extensions: Longest sequences I

Definition 4.12.
Let B↑ be the set of non-decreasing right-continuous functions

φ : [a1, a2]→ [b1, b2]. For φ ∈ B↑, φ(x) =
∫ x

0 φ̇(t) dt + φs(x) where φs is
singular. Assuming G has a density g, define J : B↑ → R by

J(φ) :=
∫ a2

a1

√
φ̇(x)g

(
x, φ(x)

)
dx.

Theorem 4.13 ([Deuschel & Zeitouni, 1995]).
Let Z1, . . . , Zn be i.i.d. ∼ G on an interval A in R2. Assume that G

has a density g that is C1
b and such that ln g is bounded. Assume also that

J(φ) is maximised on a finite set {φ̄1, . . . , φ̄k}. (4)

On the event Z1 < · · · < Zn let φn denote the element of B↑ formed by
joining a < Z1 < · · · < Zn < b by straight-line segments. Then for each
ε > 0,

P(min{‖φn − φ̄1‖∞, . . . , ‖φn − φ̄k‖∞} > ε|Z1 < · · · < Zn)→ 0 (n →∞).
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4. Extensions: Longest sequences II

Set J̄ := supφ∈B↑ J(φ). When G is a product distribution the diagonal
is the unique maximising curve φ̄, and then obviously J̄ = J(φ̄) = 1.

Definition 4.14.
For y1, . . . , yn ∈ R an increasing subsequence is yi1 < yi2 < · · · < yik

where i1 < i2 < · · · < ik .
(That is, in selecting the y you can miss indices out: the y selected

don’t have to be a run.)

Theorem 4.15 ([Deuschel & Zeitouni, 1995]).
Let Z1, . . . , Zn be i.i.d. ∼ G in [0, 1]2. Order them by their x

components and let Ln be the length of the longest increasing subsequence
(of the y components). Assume that G has a density g that is C 1

b and such
that ln g is bounded. Then Ln/

√
n P−−→ 2J̄ .
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4. Extensions: Longest sequences I

This builds on, and extends, the celebrated solution to Ulam’s problem:

Theorem 4.16 ([Vershik & Kerov, 1977],
[Logan & Shepp, 1977], [Aldous & Diaconis, 1995],
[Seppäläinen, 1996],).

Let ln be the length of the longest increasing subsequence in a random
permutation of order n. Then ln/

√
n P−−→ 2.

Proof.
See the cited references, or for a survey [Aldous & Diaconis, 1999].
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4. Extensions: Longest sequences I

To avoid the rather unsatisfactory condition (4), different assumptions
seem to be needed, and will lead to further conclusions. First, an
important concept from information theory.

Definition 4.17.
For probability measures µ, ν on a common measurable space the

I-divergence (Kullback-Leibler information number, relative entropy) is

D(µ‖ν) :=
{∫ (

ln dµ
dν

)
dµ if µ� ν,

∞ if not.

For probability densities p, q on R this reduces to

D(p‖q) :=

{∫∞
−∞

(
ln p(x)

q(x)

)
p(x) dx if p(x) = 0 whenever q(x) = 0,

∞ if not.

Fact 4.18.
0 ≤ D(µ‖ν) ≤ ∞.
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4. Extensions: Longest sequences I

Aside: Statistics
Theorem 4.19 (Stein’s Lemma or the ‘Chernoff-Stein

Lemma’).
For testing

H0 : the density is p,

against

H1 : the density is q,

the most powerful level-α test, based on a random sample of size n, has
Type II error probability

βn(α) = e−D(p‖q)n(1+o(1)) as n →∞.

Proof.
See e.g. [Cover & Thomas, 2006].
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4. Extensions: Longest sequences II

Definition 4.20.
A parametrised curve f = (f1, f2) on A = [a,b] ⊂ R2 is an element of DL,

the space of non-decreasing functions f : [0, 1]→ R2 that are
left-continuous on (0, 1] and have f(0) = a and f(1) ≤ b. Assuming G has
a density g, define T : DL → R by

T(f) :=
∫ 1

0
ln g
(
f(p)

)
dp −D

(
f1(U )

∥∥U)−D
(
f2(V )

∥∥V) (5)

where U ∼ Unif(a1, a2) and V ∼ Unif(b1, b2).
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4. Extensions: Longest sequences I

Theorem 4.21 ([Goldie & Resnick, 1995]).
Assume that G has a density g that is continuous and has ln g bounded

on A, and further is such that ln g is L-superadditive on A◦:

∂2 ln g(x, y)
∂x∂y ≥ 0 ((x, y) ∈ A◦) (6)

(g is ‘humped’). Then there is a unique f̄ ∈ DL that maximises T(f).
Let Z1, . . . , Zn be i.i.d. ∼ G on A. On the event Z1 < · · · < Zn let fn

denote the element of DL formed by joining a < Z1 < · · · < Zn < b by
straight-line segments. Then

‖fn − f̄‖∞
P−−→ 0 (n →∞)

(where ‖f‖∞ := supp∈[0,1]‖f(p)‖ for f : [0, 1]→ R2, and ‖·‖ is any norm on
R2).



1.
Record
values
Basics

Structure

Ignatov

2.
Record
times
Sojourns

Times

3.
Limits
Limit laws

4. Ex-
tensions
Poset
records

Multivariate

Chain
records

Longest
sequences

References

4. Extensions: Longest sequences I

Fact 4.22.
T(f̄) = 2 ln J̄ .

Theorem 4.23 ([Goldie & Resnick, 1995]).
Under the conditions of Theorem 4.21,

P(Z1 < · · · < Zn) = e−n(2 ln n−2−ln|A|−T(f̄)+o(1)) (n →∞)

and

P(Z1, . . . ,Zn can be ordered) = e−n(ln n−1−ln|A|−T(f̄)+o(1)) (n →∞),

where |A| = Leb(A) = (b1 − a1)(b2 − a2).
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4. Extensions: Longest sequences I

Theorem 4.24 ([Goldie & Resnick, 1995]).
Let A = [a,b] be an interval in R2. Let X1, X2, . . . be i.i.d. ∼ F where

F has continuous density f . Set h(x) := f (x)/
(
1− F(x)

)
,

H (A) :=
∫

A h(x) dx, g(x) := h(x)/H (A) for x ∈ A, and hence define T(·)
by (5). Suppose further that F(b) < 1, ln f is bounded in A, and that ln h
is L-superadditive (see (6)) on A◦. Then

P(NA = n) =
(
|A|eT(f̄) + o(1)

)n

(n!)2 (n →∞)

and

P(NA ≥ n) =
(
|A|eT(f̄) + o(1)

)n

(n!)2 (n →∞).
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