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Abstract I

Sojourns

Time Abstract

This talk is based on the first half of [Bunge & Goldie, 2001], plus
Limit laws some more recent material. Its view of the subject, Records, is almost
disjoint from that of other treatments such as
[Arnold, Balakrishnan & Nagaraja, 1998] or [Nevzorov, 2000].




1. Record values: Basics I

Basics

Notation & basic setup

F is the distribution function (d.f.) of a random variable (r.v.) X on R.
F(z) := P(X < z), right-continuous.
D thons o 2y :=sup{z: F(z) < 1}.

o F(z):=1— F(x).
ot e The probability space is assumed to support X, X1, Xo, ..., which are
S ii.d. (independent and identically distributed) ~ F.

The order statistics X} > X2 > ... > X" are X1, ..., X, in order.




1. Record values: Basics I

Basics

Definition 1.1.
ety The initial rank of X, is py, := Z?Zl 1x,>x,-

Definition 1.2.
X, is a k-record if p, = k.
The record values are the 1-records.

Sojourns

Times

Limit laws

e Xj is a record value.

o e For k > 1 the first k-record occurs at or after time k.
records

D e These are upper records: one can alternatively work with lower
e records.

records

Longest

sequences

Definition 1.3.
Let R¥ < RE < ... denote the successive k-records (note the strict
inequalities). The whole sequence is denoted R* = (R}, R%,...).



1. Record values: Structure I

We determine the structure of R'. Later this will yield the structure of
R for every k.

Structure If 2+ < oo and P(X = z1) > 0 there will be a final k-record; otherwise
Ignatov not.

Because the (finite or infinite) sequence R! is strictly increasing we may
regard it as a (random) set.

Lemma 1.4.
Let E be any finite union of (disjoint) intervals (u, v] in (—oo, z4+]. Then

PR'NE=10)=¢"® (1)
ol where n is the measure on (—oo, x| defined by

n(—o0, z] := —In F(z).

If z; < oo and P(X = zy) > 0 then n(—o0, z4) < oo and n{z;+} = co.
Otherwise, and in particular if zy = oo, n(—o0,z+) = oo and n{ay+} = 0.
Always, n(—o00,z] < oo for all z < zy.

Definition 1.5.
7 is the avoidance measure of R*.



1. Record values: Structure II

Theorem 1.6.
Basic The law of R is the unique law of a simple' point process such that (1)
Structure holds for all finite unions E of intervals.

Proof.

From point-process theory. (]

i Let D be the set of points where F' is discontinuous.

D is also the set of atoms of 7, i.e. the set of points where n(—o0, z] is
Limitlaws discontinuous.

Because F(z) = F(x,00) = e (=2

) = e n(=oe),

F(z,00)  _pa 1 _
Tloioe) = ¢ = — pR n{z} = 0).

Definition 1.7.
The discrete part of 7 is the measure nq(E) := > . »n{z}.
The continuous part of 1 is the measure 1. := n — nq.

lsimple: no multiple points
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1. Record values: Structure I

Theorem 1.8 ([Shorrock, 1972], [Shorrock, 1974]).
R! is composed of
e a Poisson process RY of characteristic measure 1.,

and, independently of R: and of each other,

e at each x € D, a demon who
o with probability 1 — e~ "%} gives R! a point at z,
e or with probability e=™=} does not.

Also R is completely random (= independent increments) and satisfies
(1) for all Borel sets E.

Note

A Poisson process as referred to above is more precisely an
inhomogeneous Poisson process of continuous characteristic measure
V= 1e.

This is a simple, completely random point process N with, for any Borel
set B, N(B) ~ Pois(v(B)).



1. Record values: Ignatov’s Theorem I

o Theorem 1.9 (‘Ignatov’).

fenatoy R', R?, ... arei.i.d.

Proof history

e e [Ignatov, 1976/77], submitted 1978, appeared 1986; continuous case
e [Deheuvels, 1983], continuous case; incomplete

Goldie, 1983]

Goldie & Rogers, 1984]

[
[
[
[
[Stam, 1985], continuous case
[
[
[
[

Engelen, Tommassen & Vervaat, 1988]
Samuels, 1992]
Yao, 1997]

Gnedin, 2008], continuous case




2. Record times: Sojourns I

Assume P(X = z;) = 0, so each R" is an infinite sequence.
Fix k € N.
Arrange Q* := R' U--- URP" in a sequence in increasing order:

Q' ={Qf<@< -}

If F'is not continuous this sequence can contain repeats.
Let LY := k and

Sojourns

Time

Limit laws L]]?Jrl :=min{n:n > L]I-C, pn < k}.

P These are the times when X* steps to the next point of QF:

e XY= QF for all n with Lf <n < Lf ;.

Definition 2.1.
The sojourn of the k'™ order statistic at QJ'-“, the time it spends there, is

Ab=1rF LY (G=1,2,...).

J



2. Record times: Sojourns I

Theorem 2.2.
The sojourns A¥, A% ... are conditionally independent given QF, with
geometric distributions

P(AF=1QY = (F(QN)) T'F(Q)  (1=12,...).

Definition 2.3.
Limit lawa Let X" (-) be the left-continuous inverse of X7

X" (x) ;= inf{n >m: X, >z} (z < z4).

Left-continuity yields the convenient relationship

X" (z)<n iff z< X"
Then

X" [a,y) = X" (y) = X7 (2)
= #{n: X € [1,9)}.



Sojourns

Times

2. Record times: Sojourns II

Theorem 2.4.
Fiz m € N. The process X" has independent increments: for any
disjoint intervals I, ..., Iy in (—oo, zy],

k
PX™ L =m, .., X" Lo=m) = [[ P(X" L= m),
=1

(FE=3)" forn =0,
= (5= " S (1) (2 Flas ) F(=00,p)" % (2)

fo

3

n=12....



2. Record times: Times I

Theorem 2.5 (Dwass-Rényi Lemma: [Dwass, 1960],
[Rényi, 1962]).

Assume F continuous. Then pi, p2, ... are independent and
pn ~ Unif{l,... , n}.

The uniform distribution here is discrete uniform.

Proof.

Exercise!

Aside: number of records
Let N, be the number of records among Xi, ..., Xy:

n
N, = Z I, where I, :=1{p, =1}.
k=1

By the Dwass-Rényi Lemma the I, are independent with P(I = 1)
P(I,=0)=1-k"".



2. Record times: Times I

So, with v = 0-57721 - - - the Euler-Mascheroni constant,

k

1 1
ER— EN, = ZE = lnn—&-fy—&—O(E);
Limit laws Vaan—Z( ) lnn—l—v—g—ﬁ—O(i)

e One may prove

Nn a.s. n -
’ , Mezlm N,
eauences Inn Vinn

etc.



2. Record times: Times I

Definition 2.6.
The values of n when p, = 1 are the record times 1 = L1 < Ly < ---.
If P(X = z;) = 0 this is an infinite sequence.

We restrict attention to record times but all that follows has versions
for k-record times, suitably defined.

Theorem 2.7.

Assume F continuous. Then (Ln)n>1 s a Markov chain with L1 =1
and stationary transition laws

P(Lpi1 =1L, = j) = (131)1 (I=j+1,j+2,...)



2. Record times: Times I

Lemma 2.8.

P— Assume F continuous. Let Wi, Wa, ... be 4.%.d. Unif(0,1), independent
Recor: of (Lj)j>1. Define

Ly L,

QUW‘:”‘ Yn = —ln((l — Wn)L o + WnL - 1)7 (n = 1727' . )

[,.V‘Mk Then Y1, Yo, ... are i.4i.d. Expon(1) r.v.s.

Theorem 2.9 (Williams-Pfeifer Strong Approximation for
Record Times, [Williams, 1973], [Pfeifer, 1987]).

Assume F continuous. Use the probability space extended by the W, as
above. Then

Lpi1 = [Lpe™] forn=1,2,...,

where
[z] := min{n integer, n > z}.



2. Record times: Times I

Theorem 2.10 ([Pfeifer, 1987]).

Assume F continuous. Use the probability space extended by the W, as
in Lemma 2.8. Set Sy := ZT Y;. Then there exists Z > 0 with E(Z*) < oo
for all k, such that Z and (S, —n)/+/n are asymptotically independent, and

Ly, =2+ Su-140(e™?) as. (n— ).



Limit laws

3. Limits: Limit laws for record values I

Notation

-, denotes convergence in law (in distribution), and £ denotes
equality of probability laws (distributions).

Definition 3.1.

R.v.s X, Y, or equivalently their laws F'; G, are of the same type if
there exist a € (0,00) and b € R so that

YV Eax+ b, equivalently G(y) = F(y — b) Yy.
a

This is an equivalence relation on laws on R (exercise). The equivalence
classes are the types.



Limit laws

3. Limits: Limit laws for record values I

Theorem 3.2 (Convergence of Types).

Let X, X,, be r.v.s, an, >0, b, € R (norming and centring constants, or
scale and location constants), such that

Xy —bn L

- — X (n — 00),

with X non-degenerate. Let Y be a r.v., an > 0, By € R constants. Then

() Zn=bn 1,y

Qnp

bn —

(i) 2 a € [0,00), " LBER (n— o).

(677} n

In that case Y £ aX + B, and a > 0, B are the unique constants for which
this holds.

When (i) or (ii) holds, Y is non-degenerate iff « > 0, and X and Y are
then of the same type.



3. Limits: Limit laws for record values I

Theorem 3.3 ([Resnick, 1973]).
Assume F continuous. Then the possible limit laws for (Rn — bn)/an are
those in the type of one of

s 0 ifz <0,
(i) Pa(z):= o ,
O(Inz*) ifz >0
Limit laws B @ l o o .
(i) (o) = {FNC) T <0
o 1 if ¢ > 0;
S (i) @,

where ® is the N(0,1) d.f. and o > 0 is constant.

Resnick also characterises of the domain of attraction for record values
for each of these limit types. That is, for G each of ®,, ¥4, P, he finds

those F' for which there exist a, > 0 and b, such that (R,ll — bn)/an N G.




4. Extensions I

Definition 4.1.
H(z) := H(—o0,z] where H is the hazard measure corresponding to F,

defined by O
H(A) ::/AiF[m,oo)

Sojourns for Borel sets A in R.

Proposition 4.2.

Limit laws

H is the intensity measure of the point process R':
1 B H(A) = E#(R' N A).

tensions

Proposition 4.3.

Assume F continuous. Then

(H(Rn))nZI L (Z E@) ,

1

where E1, Es, ... are independent Expon(1l) r.v.s.

These results suggest how one might generalise records to
multidimensional and other general settings.
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4. Extensions: Records in a poset I

Let S be a set with a partial order <.
That is, the graph G< := {(z,y) € S X S : z < y} has properties
(i) antisymmetry: z < z for no z € 9,
(i) transitivity: z <y, y < z Sir<a
Let S be a o-algebra of subsets of S. Assume

G< € § xS (the graph is product-measurable).

Let p be a probability law on (S,S).
Let X1, Xo, ... beiid. ~ pu.
Adjoin extra points —oo, co with the properties

—o<zrz<oo Vzes.

Let S* := SU{—00,00}.

Define intervals (z,y) :={2 € S:z < z< y} for z, y € S™.
Let

Spi={y€S:pu(~o0,y) <1}.



4. Extensions: Records in a poset I

Record

values

o Proposition 4.4.
Nzmetier u(S#) = 1.

Eieemmd

i Proof.

Fubini!

Times
So S, functions as the ‘support’ of p.

Limits

L Definition 4.5.
Hazard measure H on (S,S):

tensions

Poset

records 1
1\}..1(1»(‘1“‘\( H(A) = / 76 du(i[)
s, 1{(—o,2)7)

records

Longest

sequences

Reference

Definition 4.6.
X, is a record if X < X, for k=1,..., n—1.

Let R denote the set of records.
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4. Extensions: Records in a poset I

Theorem 4.7 ([Goldie & Resnick, 1989]).
Let A € S and define events A, := {X, € AN R}. Then

oo

.1 P(Ay) = H(A). Further, P(#(RN A) = 00) =1 or 0 according as
> P(An) = H(A) = 00 or < co.



4. Extensions: Strict multivariate records I

Continue with the setup and notation of the last section, but now

specialise to R¢ with d > 1, define z < y component-wise, and take
A:=R<%

Theorem 4.8 ([Gnedin, 1998]).

If F is a non-singular Gaussian law on R?, with correlation matriz A,
then there exist &« > 1 and 8 € {2,...,d}, both depending on A, so that

P(A,) < n”%(Inn) =772,

Poset

s Consequently P(#R < o) =1 for all non-singular Gaussian laws. The

Multivariate

same holds for singular Gaussian laws unless all correlation coefficients
are +1.

For d =2 and correlation coefficient p € (—1,1), more precisely,

Chain

P(A,) = n*2/(1+ﬂ)(1n n)*ﬂ/(lﬂJ)_



4. Extensions: Chain records I

Basic
Structure

Ignatov

Let X, X1, X2, ... be iid. in R% Define z < y component-wise. Define
a form of lower record as follows:

Sojourns

o X, is a chain record if it is below the previous chain record.

Times

Definition 4.9.
Set Ty :=1,and for k=2, 3, ...,

Limit laws

Poset Ty := min{n > Tr1: X0 < XTk—l}'

records

Multivariate

Chain The chain records are Ry := Xr,.
records
Let N, := ) " | 1{X; is a chain record}.

Lon




4. Extensions: Chain records I

Theorem 4.10 ([Gnedin, 2007]).

Suppose X has a continuous product distribution. Let W be the product
of d independent Unif(0,1) r.v.s, so that m := E(—In W) = d and
— % :=var(—In W) = d. Then N, ~m™'Inn a.s. and

_ —1
No—m Inn Lyn,1).
Limit laws V 0'2771/73 Inn
rovard: Note
o The d =1 case is included! For d = 1, W ~ Unif(0,1) so
records —In W ~ Expon(1), so m = 1 = ¢°. As in §2,

N,—Inn
N, ~Inn a.s., ———— — N(0,1).
Vinn 1)
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4. Extensions: Longest sequences |

In R? use the notation x = (21, 12), define x < y component-wise, take
Xi, Xa, ... iid. ~ F, and as above define hazard measure H by

F(dx)  P(X;e€dx)
1= Fx—)  P((X1<x})’

H(dx) :=

Let A be an interval [a, b] in R?. Considering strict records (in both
coordinates simultaneously) we know from Theorem 4.7 that the number
N4 of records falling in A is finite a.s. if and only if H(A) < co. In this
section we will find out about the r.v. N4, when it is finite.

Given points x1 < --+ < X, in A4, join a < x1 < -+ < X, < b by straight
lines to form a path.



Chain
records

Longest
sequences

4. Extensions: Longest sequences |

Theorem 4.11 ([Goldie & Resnick, 1995]).

Assume H(A) < oo, that H has a bounded density on A and that the
distribution G on A given by

_ Hx)
G(x) := H(A)

(x € A)

satisfies the conditions of either Theorem 4.18 or Theorem 4.21 below.
Then, given Na = n, as n — oo the path joining the records converges in
probability to a non-random limit curve which mazximises the
Deuschel-Zeitouni functional J(¢) or the Goldie-Resnick functional T(f)
respectively.



Chain

Longest
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4. Extensions: Longest sequences |

Definition 4.12.

Let BT be the set of non-decreasing right- contlnuous functions
¢ : [ar, az] — [by, bo]. For ¢ € BT, ¢(x) = [ &(t) dt + ¢s(z) where ¢, is
singular. Assuming G has a density g, define J : B — R by

)= / @) (,6(0)) do

Theorem 4.13 ([Deuschel & Zeitouni, 1995]).

LetZ1, ..., Z, be i.i.d. ~ G on an interval A in R2. Assume that G
has a density g that is C} and such that In g is bounded. Assume also that

J(p) is mazimised on a finite set {¢1,. .., bx}. (4)

On the event Zy < --- < Zn, let ¢, denote the element of B' formed by
joining a < Zy < --- < Zyn < b by straight-line segments. Then for each
>0,

P(min]|gn — billsos - -, 90 — Billoc} > €21 < - < Zo) =0 (n = oo).



4. Extensions: Longest sequences 11

Set J := supyept J(¢). When G is a product distribution the diagonal

is the unique maximising curve ¢, and then obviously J = J(p) =1.

Definition 4.14.
For y1, ..., yn € R an increasing subsequence is yi; < yi, < -+ < Y,
where 71 < ip < --- < 4.

(That is, in selecting the y you can miss indices out: the y selected
don’t have to be a run.)
Theorem 4.15 ([Deuschel & Zeitouni, 1995]).

Let Zi, ..., Z, be i.i.d. ~ G in [0,1])%. Order them by their =
components and let L, be the length of the longest increasing subsequence
(of the y components). Assume that G has a density g that is Cy and such

that In g is bounded. Then Lyn/\/n Ly27.



4. Extensions: Longest sequences |

o This builds on, and extends, the celebrated solution to Ulam’s problem:

E— Theorem 4.16 ([Vershik & Kerov, 1977],

o [Logan & Shepp, 1977], [Aldous & Diaconis, 1995],

Limits [Seppéldinen, 1996],).

; Let I, be the length of the longest increasing subsequence in a random
permutation of order n. Then l,/\/n Ly

Proof.

See the cited references, or for a survey [Aldous & Diaconis, 1999]. [

Longest
sequences

Reference



4. Extensions: Longest sequences |

To avoid the rather unsatisfactory condition (4), different assumptions
‘ seem to be needed, and will lead to further conclusions. First, an
B important concept from information theory.

Definition 4.17.
- For probability measures p, v on a common measurable space the
Time I-divergence (Kullback-Leibler information number, relative entropy) is

In ) dp if p < v,
o mww:{gn”)ﬂiﬁwy

N For probability densities p, ¢ on R this reduces to

o0 p(x) ; — —
o Dpllg) = fioo (ln q(z))p(x) dz if p(z) = 0 whenever ¢(z) =0,
00

sequences

if not.

Fact 4.18.
0 < D(ullv) < oc.



4. Extensions: Longest sequences |

‘ Aside: Statistics
Theorem 4.19 (Stein’s Lemma or the ‘Chernoff-Stein
Lemma’).

For testing

T Hy : the density is p,
Limit laws against

H, : the density is q,

the most powerful level-a test, based on a random sample of size n, has
Type II error probability

Longest

i Bula) = e~ D@la)n(1+o(1))

Reference

as n — o0.

Proof.
See e.g. [Cover & Thomas, 2006].



4. Extensions: Longest sequences 11

Definition 4.20.

‘ A parametrised curve f = (fi,fz) on A = [a,b] C R? is an element of D,
e the space of non-decreasing functions f : [0, 1] — R? that are
left-continuous on (0, 1] and have £(0) = a and f(1) < b. Assuming G has
a density g, define T': D;, — R by

T(f) ;:/ Ing(£(p)) dp — D(A(V)||U) — D(L(V)||V) (5)

G where U ~ Unif (a1, a2) and V ~ Unif(by, b2).

Longest
sequences
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4. Extensions: Longest sequences |

Theorem 4.21 ([Goldie & Resnick, 1995]).

Assume that G has a density g that is continuous and has In g bounded
on A, and further is such that In g is L-superadditive on A°:

2
Fng(z,y)

e 20 () € A7) ©)

(9 is ‘humped’). Then there is a unique £ € D that mazimises T(f).

LetZq, ..., 2, be ii.d. ~ G on A. On the event Z1 < --- < Zy, let £,
denote the element of Di formed by joininga < Z1 < -+ < Z, < b by
straight-line segments. Then

£, — Flloc —> 0 (n — o0)

(where ||f|[oo := sup,ejo 4 IE()[| for £:[0,1] — R?, and ||-|| is any norm on
R?).



4. Extensions: Longest sequences |

Fact 4.22.
oo T(f)=2InJ.
W Theorem 4.23 ([Goldie & Resnick, 1995]).
Limits Under the conditions of Theorem 4.21,
ll - ] P(Zi < < Z) = o2 n—2—In|A|-T(£)+0(1)) (n — o)
and
Multivariate
s P(Z1,...,Z, can be ordered) = g~n(nn=1=InlA[=T(H)+o(1)) (n — o0),
Longest

where |A| = Leb(A) = (b1 — a1)(b2 — a2).

Reference
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4. Extensions: Longest sequences |

Theorem 4.24 ([Goldie & Resnick, 1995]).

Let A = [a,b] be an interval in R®. Let X1, Xo, ... be i.4.d. ~ F where
F has continuous density f. Set h(x) := f(x)/(l — F(x)),

f h(x) dx, g(x) := h(x)/H(A) for x € A, and hence define T(-)
( ) Suppose further that F(b) < 1, Inf is bounded in A, and that In h
is L-superadditive (see (6)) on A°. Then

(14" +0(1))"

P(No=n)= o

(n — o0)

and

(141e™® +o(1))"
(n!)?

P(Na>n)= (n — 00).
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