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1. Extremes I

Y , Y1, Y2, i.i.d. F̃ .

¿ ∃ an > 0, bn so that max(Y1, . . . ,Yn)− bn

an
=⇒ non-degenerate limit?

Necessary for weak convergence (convergence in law) that

1− F(x)
1− F(x−) → 1 as x →∞.

So if Y discrete, with probabilities geometrically decaying:

P(Y = k)
P(Y = k + 1) → c > 1,

weak convergence of max(Y1, . . . ,Yn), however centred & normed, can’t
occur [Anderson, 1970].

Extremes,
coupons,
tests

1. Ex-
tremes

2.
Coupon
collect-
ing

3.
Computer-
based
tests

4. Nq for
specific
values of
a & q

5. Nq for
q large
(a fixed)

6. Lp-
boundedness

7. Mean
growth

8.
Variance
stability

References

2. Coupon collecting I

There are a types of coupon. Each cereal packet has one.
Y := # packets needed to get at least 1 coupon of each type.

Y = X1 + X2 + · · ·+ Xa,

X1, X2 independent, Xk ∼ Geom1

(a − k + 1
a

)
,

where the Geom1 law has probabilities p(1− p)k−1 at k = 1, 2, . . . .
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2. Coupon collecting I

Law of Y
Let the coupon types be 1, . . . , a. Let

Ai := {type i doesn’t occur in the first y cereal packets bought.}

So {Y > y} = A1 ∪A2 ∪ · · · ∪Aa, hence

P(Y > y)

=
a∑
1

P(Ai)−
∑
i<j

P(Ai ∩Aj) +
∑

i<j<k

P(Ai ∩Aj ∩Ak)−

· · ·+ (−)a+1P(A1 ∩ · · · ∩Aa)

=
a∑
1

(
1− 1

a

)y
−
∑
i<j

(
1− 2

a

)y
+
∑

i<j<k

(
1− 3

a

)y
− · · ·+ (−)a+1

(
1− a

a

)y

=
a∑

k=1

(−)k+1
(

a
k

)(
1− k

a

)y
,
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2. Coupon collecting II

This formula,

P(Y > y) =
a∑

k=1

(−)k+1
(

a
k

)(
1− k

a

)y
,

is a classical one for the probability that not all cells are occupied when y
balls are distributed at random among a cells.

For large y the 1st term dominates, i.e.

P(Y > y) ∼ a
(
1− 1

a

)y
as y →∞ (y ∈ N, a fixed).
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3. Computer-based tests I

Each student takes a test of q questions.
For each question there is a bank of a alternatives.
The computer generates a test by selecting, for each of the q questions,

one of the a alternatives for that question.
Let Nq := # tests one needs to generate to see all aq alternatives in the

q question banks at least once.
I fix a, for instance a := 10, and consider how Nq behaves for various q.
The case q = 1, i.e. a 1-question test, is coupon-collecting.
Coupon-collecting asymptotics are for Y = N1 as a →∞, but I’m

interested in Nq as q grows, for fixed a.
The case considered is coupon collecting when q brands of cereal bought

simultaneously, each brand having a different set of a coupons to collect.
Therefore

Nq = max(Y1, . . . ,Yq)

where the Yi are independent with the coupon-collecting distribution.
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4. Nq for specific values of a & q I

ENq =
∞∑

n=0

P(Nq > n)

=
∞∑

n=0

(
1−

q∏
i=1

P(Yi ≤ n)
)

=
∞∑

n=0

(
1−

(
1− P(Y > n)

)q
)
.

This formula involves an infinite sum. Although one may derive a formula
with no infinite sum,

ENq = −
q∑

m=1

(
q
m

) a∑
j1=1

· · ·
a∑

jm=1

(−1)j1+···+jm
( a

j1

)
· · ·
( a

jm

)
1−

∏m
i=1(1− ji/a)

,

it is interesting that the latter is much less suited to explicit calculation,
and in what follows we have used the first formula, with its infinite sum.
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4. Nq for specific values of a & q II
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Figure 1: ENq , the expected number of tests that need to be generated in order
for all questions to have appeared at least once, for tests with up to 20 questions
and 5, 10, and 20 alternatives for each question.
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4. Nq for specific values of a & q III

Note that in a 20-question test with 5 alternatives for each question,
there are 520 = 95 367 431 640 625 different possible tests and a total bank
of 100 questions; however, on average all questions will have appeared at
least once by the time only 24 tests have been generated.
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4. Nq for specific values of a & q I
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Figure 2: ENq , the expected number of tests that need to be generated in order
for all questions to have appeared at least once, for tests with up to 200 questions
and 5, 10, and 20 alternatives for each question.
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5. Nq for q large I
Set α := ln a

a−1 > 0, then I showed

P(Y > y) ∼ ae−αy as y →∞, y ∈ N.

Ignoring the restriction to N,

P
(

Nq −
ln(aq)
α

≤ x
)

=
(

P
(

Y ≤ ln(aq)
α

+ x
))q

=
(
1− ae− ln(aq)−αx(1 + o(1))

)q

=
(
1− e−αx(1 + o(1))

q

)q
→ e−e−αx

= Λ(αx),

where Λ(x) := e−e−x
is the Gumbel distribution function.

Theorem 1.
With bq := 1

α
ln(aq),

lim inf
q→∞

P(Nq − bq ≤ x) = Λ
(
α(x − 1)

)
;

lim sup
q→∞

P(Nq − bq ≤ x) = Λ(αx).
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5. Nq for q large II

Thus Nq − bq is, asymptotically, in distribution between Z
α
and Z

α
+ 1

where Z Gumbel, and the bounds are sharp.

Let bxc denote the integer part, {x} := x − bxc the fractional part, of x.

Theorem 2 (extending [Anderson, 1980, Ferguson, 1993]).

P(Nq−bq = n+1−{bq}) = P
(Z
α
≤ n+1−{bq}

)
−P
(Z
α
≤ n−{bq}

)
+on(1),

where
∑

n∈Z on(1)→ 0 as q →∞.
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6. Lp-boundedness I

Theorem 3.
Nq − bq is Lp-bounded for all p, i.e. supq∈N E

(
|Nq − bq|p

)
<∞ for all

p ≥ 1.

Proof.
Fix n ∈ N; set Rq := Nq − bq. I prove supq E(R2n

q ) <∞, which suffices.
Now

E(R2n
q ) = −2n

∫ 0

−∞
x2n−1P(Rq ≤ x) dx+2n

∫ ∞
0

x2n−1P(Rq > x) dx =: A+B.

For B, show

P(Y > x + bq) ≤ 2
q eα−αx ∀x ≥ 0, q ≥ q0;

∴ P(Rq > x) ≤ 1−
(
1− 2

q eα−αx
)q
≤ 4eα−αx ∀ x ≥ 0, q ≥ q1;

∴ B ≤ 8n
∫ ∞

0
x2n−1eα−αx dx <∞.

For A, adapt a split-and-bound technique from [Resnick, 1987].
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7. Mean growth I

Lp-boundedness implies asymptotic bounds on moments. Recall

Z
α
≤ Nq − bq ≤

Z
α

+ 1 asymptotically,

and EZ = γ l 0·5772.

Theorem 4.
γ

α
≤ lim sup/inf

q→∞
(ENq − bq) ≤ γ

α
+ 1.
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7. Mean growth I

q 1 10 100 1000
ENq 29·29 49·90 71·57 93·40

bq + γ/α 27·33 49·19 71·04 92·90
excess 1·956855 0·715025 0·527514 0·503224

q 10 000 105 106 107

ENq 115·25 137·10 158·96 180·81
bq + γ/α 114·75 136·60 158·46 180·31
excess 0·500358 0·500039 0·500004 0·500000

Table 1: For a = 10, values of ENq , its approximant bq + γ/α, and the excess
ENq − (bq + γ/α).

Conjecture.
As q →∞, ENq − bq − γ

α
→ limit, maybe 0·5.
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8. Variance stability I

Lemma.

E
((

1 + Z
α

)2
11+α−1Z≤0 +

(Z
α

)2
1Z>0

)
≤ lim sup/inf

q→∞
E
(
(Nq − bq)2)

≤ E
((Z

α

)2
1Z≤0 +

(
1 + Z

α

)2
11+α−1Z>0

)

Extremes,
coupons,
tests

1. Ex-
tremes

2.
Coupon
collect-
ing

3.
Computer-
based
tests

4. Nq for
specific
values of
a & q

5. Nq for
q large
(a fixed)

6. Lp-
boundedness

7. Mean
growth

8.
Variance
stability

References

8. Variance stability I
Note varZ = π2/6, so without discreteness we’d get varNq → π2

6α2 .

Theorem 5.

lim sup
q→∞

∣∣∣varNq −
π2

6α2

∣∣∣ ≤ θ(α) + 1− 1
e + 2(γ + E1(1))

α
,

where

θ(α) = E
((

1 + Z
α

)2
10<1+α−1Z≤1

)
∈ (0, 1),

E1(1) =
∫ ∞

1

e−t

t dt l 0·2194.

a 2 3 4 5 10 20
sd(Nq) 1·873 3·176 4·468 5·755 12·176 25·006
π/(α

√
6) 1·850 3·163 4·458 5·748 12·173 25·004

Min s.d. 0·641 2·323 3·697 5·024 11·507 24·362
Max s.d. 2·537 3·823 5·107 6·390 12·804 25·630

Table 2: Asymptotic standard deviation of Nq , its approximant, and bounds.
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8. Variance stability II

Conjecture.
As q →∞, varNq → limit.
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