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Abstract 1

Abstract

Regular variation is a convenient description for asymptotic
behaviour of functions, allowing a connection to be made between
input and output in Abelian or Tauberian contexts. However in some
areas regular variation is more than convenient, it is essential,
characterising all possible asymptotics for the problem. Examples from
probability, complex analysis and number theory will be presented.

1. Regular variation I

Definition 1.1.
A function f : (a,00) — (0,00) (where a > 0) is called regularly varying
of index o € R, notation f € R,, if it is measurable and

forall A >0, lim fz) = \“.

The slowly varying functions are the regularly varying functions of index
0, forming the class Rp.

e Examples of slowly varying functions are all eventually positive
rational functions of In = log, and its iterates.

e / denotes a generic slowly varying function.

Proposition 1.2.
f € Ro if and only if ¢(z) :== x~“f(z) € Ro.
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2. Abelian theorems 1

A typical Abelian theorem gives conditions under which
f(z) ~ cx’l(z) asz— o (1)
implies
k ]ﬂ\ff(x) ~ ck(p)z”l(z) as z — oco. (11)

Here the Mellin transform of k : (0,00) — R is given for z € C, where it

exists, by
i(2) ::/ o) &
0 t

and the Mellin convolution of two such functions k and f is given, for
z € R, by

2. Abelian theorems I

Theorem 2.1 ([Arandelovié, 1976]).

Let ]Tc(z) exist in the strip o < Rz < 7, where 0 < p < 7, and let
f:(0,00) = R be measurable, with f(x)/z° bounded on every interval (0, a
for a > 0. Then (I) implies (IT).

Proof.
[Bingham, Goldie & Teugels, 1989, pp. 201-2]. O

In (I) and (II) the constant ¢ can be any real number. All cases ¢ > 0
are equivalent, as are all cases ¢ < 0. When ¢ = 0 the result says that

f(z) = o(zP4(x)) implies k Aff(:c) = o(k(p)z"L(z)), both as z — cc.



2. Abelian theorems: Cesaro means I

For a > 0 the Cesaro mean of order « of f is given by

1 v o
I,;\|)Iz|f3‘:\ 0

transform

Set

o) = 22200 (1 1)

o then k * f = Ca(f). This k has Mellin transform

v I'(z+1)

k(z) = NEETEy for Xz > —1.

Theorem 2.1 thus gives that for all ¢ € R and p > —1, f(z) ~ cx”l(z)
' implies
“'t(:“]l:‘“““ P(p + 1)
T Ca(f)(z) ~c

z’l(z) as x — oo.

2. Abelian theorems: Cesaro means I

— The case a = 1 is the familiar ‘Cesaro average’:

C(f)(a) = 2! / £(1) dr.

For this case the result is that, again for all ¢ € R and p > —1,
f(z) ~ cxPl(z) implies

cx’l(z)
(p+1)

Cr(f)(z) ~

as r — Q.
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2. Abelian theorems: Laplace transform I
Define the Laplace transform f by

J(s) = s / () dt

i.e. with an extra factor s. If f € BVi4c[0,00) and f(0—) = 0 then

7(s) = / e df (1),
[0,00)

so we have defined the Laplace-Stieltjes transform of f. The integral then
converges in s > o, where possibly o = co. Set

k(z) =z te /",

then k Aﬂff(x) = f(1/z). And
k(z) =T(1+42) for Rz > —1.

The Theorem thus gives that for all ¢ € R and p > —1, f(z) ~ cz’l(x)

implies
- cI'(1 + 1
f(s) ~ %E(;) as s | 0.

2. Abelian theorems: power series I

Given coefficients (an)n—g, let

L]

f(z) = Z an,

n=0

where |z| denotes the largest integer not exceeding z. Set u := e~/ in

the latter example; then

The Theorem thus says that if

n
Zak ~ cnfl(n) as n — oo,

k=0
where ¢ € R and p > —1, then

oo

Zanunwcr(1+p)€< 1 > as u T 1.

— (—Inu)? \—Inu
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2. Abelian theorems: power series 11

Because —Inu ~1— u as v T 1 we may replace —Inu by 1 — u in the
right-hand side; replacing the argument of ¢ by an asymptotic equivalent
involves the Uniform Convergence Theorem for slowly varying functions
[Bingham, Goldie & Teugels, 1989, Theorem 1.2.1]. We thus gain the
neater conclusion that

(o)

Zanu” ~ (1 +p)w as u T 1.

n=0

3. Tauberian theorems I
We want (II) = (I).

EXMercise 3.1V. 5
(k* f)¥(2) = k(2)f(2) for Rz = p.

So to get information about f from k& ¥ f, need
(z) £0 for Rz = p, (W)

that is, k is a Wiener kernel.
We also need a condition on f. To see this, consider for example the
Cesaro mean: if f(z) = (—1)!*) then z7* fomf — 0 as £ — oo, but

f(z) # 0.

So impose one of

v i) — 7 0f(2) |

fmliminf inf ) 20 (s0=0), (SD)
—p )
limlimsup sup v "f(y) =@ "f(@) = 0. (SO)

M1z 500 yE[z,\x] 6(:}3)

These are extended versions of slow decrease (SD) and slow oscillation

(SO).
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3. Tauberian theorems I

Theorem 3.2 ([Bingham & Teugels, 1979]).
Assume the conditions of Theorem 2.1, plus (W), plus
e either (SO)
e or k>0 and (SD).

Then (II) = (I).

The case £ =1 is:
Theorem 3.3 (Wiener-Pitt Theorem).

Assume (W). If f is bounded and measurable, and of slow decrease:

lim lim inf inf (f(tm) —f(m)) >0 (hence =0),

M1l z—oo t€[1,A]

then o
k* f(z) — ck(0) implies f(z) — c.

3. Tauberian theorems I

Example 3.4 (Cesaro means).

An Abel-Tauber theorem: for p > —1, f(z) ~ cz’(z) as x — oo if and
only if

’ . a—1 ~ C F(p+1) mp T
_I‘(a)xo‘/o (z— )" f(t)dt T+ ot l(x).

Example 3.5 (Laplace transforms).
An Abel-Tauber theorem: for p > —1, f(x) ~ cz’l(z) as © — oo if and

only if
}(3) = S/ e_Stf(t) dt ~ M€<l> as s | 0.
0 s

SP



3. Tauberian theorems: entire functions I

Example 3.6 (Entire functions).

Let f be entire, with maximal function

M(r) := sup|f(2)| = sup|f(2)].

2| <r 2| =r

Definition 3.7.
Entire The order of f is

functions

e _ Inln M(r)

— p = limsup —————.
r—00 Inr

Theorem 3.8 (Proximate Order Theorem [Valiron, 1913]).
If f is entire with order p < oo then there exists £ € Ry with

_ In M(r)
1 — = 1.
o

3. Tauberian theorems: entire functions I

Definition 3.9.
f has completely regular growth if

i0
i B (re))]

r—00 'rpg(fr') - h(e) for all 97

where lim* means limit as r — oo avoiding an exceptional set of density 0.
The zeros of f have angular density if

eI Zn |z <7, 60 <argz, <0}

functions

— D(6,0") as r — oo.

Lambert P ( )
kernel r E r

Levin-Pfluger theory connects these two notions.
The simplest case is when 0 < p < 1. Then

n

f(z) = czmH (1 — i)

1

where ¢ #0, 0 < |z1] < || < -+
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3. Tauberian theorems: entire functions II

Without loss of generality, take m = 0, ¢ = 1. Consider the case when
the zeros 21, z2, ... are negative reals. Then

lnf(z)z/ooolj/;/t n(t)% for arg z # ,

where n(t) := > ° 1{|z.| < t} is the zero-counting function. Then

Inf(re®) = e®ky * n(r),
where ko(z) = 2/(1 + ze™), so that

10 (s—1)
kg(s)zm— for 0 < Ns < 1 and 0 # .

sin s
Theorems 2.1 and 3.2 thus give the Levin-Pfluger result that for each
0 € (—m,m), n(r) ~ crfl(r) as r — oo if and only if
e e®P(r)

sinmp

In f(re”) ~

3. Tauberian theorems: Lambert kernel |

Example 3.10 (Lambert kernel).

Here
d 1

k(t):t%m.

This has k(z) = 2I'(1 + 2)((1 + z), non-zero on Rz = 0. Its use is to get a
proof of the Prime Number Theorem, as follows.

Definition 3.11.
von Mangoldt’s function is

A(x) = {lnp lfn:pk for SOmek:L 2, ...,
0 if not.

One can prove (see for example [Widder, 1941]) that

—~ A(n)—1
g ———— — —27 as T — Q.
— z(en/* —1)
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3. Tauberian theorems: Lambert kernel 11

The left-hand side is k * f(z) where

Lz]
f(z) = Z A(n?)l— 1

Theorem 3.2 then gives that f(z) — —2v as z — oo. This is equivalent
(see for example [Hardy & Wright, 1979]) to

Theorem 3.12 (Prime Number Theorem).

T
l1~— aszxz— 0.
Inz
p<z

4. Question pause I

Let us ask the following questions:
e Why regular variation?
e Are the conditions right?

We have partly answered the first of these above by giving instances
where regular variation plays an important role, necessary for full
understanding. We complete our answer in the next Section by giving
results from probability theory and analysis where regular variation plays
an intrinsic role: it can’t be avoided.

We answer the second question in Section 6 by discussing Converse
Abelian Theorems.



5. Intrinsic roles: central attraction I

Definition 5.1.

A probability law G is stable if there exists a law F' such that with X,
X2, ... independent ~ F', and S, := X1 + -+ S,, there exist a, > 0 and
b, with

&=JMJAG,
an,

series

where — denotes convergence in law. Then we say that F' is attracted to

G.

S Theorem 5.2 (Domain of Attraction Theorem).

F is attracted to Gaussian laws if and only if the truncated variance
V(zx) := sz t* dF(t) is slowly varying.

F is attracted to a non-Gaussian law G if and only if
1—F(x)+ F(—z) € R_o for some 0 < a < 2, and there exists

Central
- lim 1— F(x)

5. Intrinsic roles: extremal attraction I

Definition 5.3.
A probability law G is extreme-stable (extremal) if there exists a

law F' such that with X;, X2, ... independent ~ F', and

Cone M, = max(Xi,..., Xy,), there exist a, > 0 and b, with
Laplace M
transform
n L
P()\Vvt‘r - bn —> G-
series an

Then we say that F € D(G).

i]‘t Theorem 5.4 (Fisher-Tippett-Gnedenko Theorem).
femnel For some a > 0, b, G(ax + b) is one of

0 0

D, (z) = B (z <0), where o > 0;

exp(—x a) (I = 0)’
(,‘unrml. — 1 — @ 0
attraction \Ijoc (m) o— eXp( ( x) ) (x < ’ where o > 0,
Bisscn 1 (z20),



5. Intrinsic roles: extremal attraction 11

Theorem 5.5 (Extremal Attraction Theorem
[Gnedenko, 1943, de Haan, 1970]).

f € D(®,) if and only if 1 — F € R_,.

f € D(W,) if and only if F(z+) =1 and 1 — F(zy — 2™ ') € R_,.

F € D(A) if and only if H(z) :== —In(1 — F(x)) has inverse H™ with

~ L
o lim (2w = A" (z)

Jim (e =u forall u>0,

for some slowly varying .

Extremal
attr, i

5. Intrinsic roles: Mercerian theorems [
If ¢ #0, (I) and (II) imply

k* f(2)

*

Y sa as r — 0o, (I11)
- f(z)

ln where a = l;;(p) Here is a converse:

transform

o Theorem 5.6 (Drasin-Shea-Jordan Theorem

[Drasin & Shea, 1976, Jordan, 1974]).

- Let k be a real kernel and let (a, b) be the mazximal open interval such
functions that k(z) converges absolutely in a < Rz < b. Assume that k'(p) and k' (p)
Kernel are not both 0, that k is monotone on [p, b) and zero on (0,1), and that

k(2) # k(p) for Rz = p and z # p.

Let f > 0 be locally bounded on [0,00), have finite order p € (a,b), and
have bounded decrease:

aura:cti;:m hmlnf 1nf f('ux)
Mercerian T—r OO NG[I,)\] f(il?)

theorems

>0

for some (equivalently all) X > 1. Then (II1) implies a = k(p) and f € R,.
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6. Converse Abelian theorems I

The Wiener-Pitt Theorem needs the Wiener condition (W) on k, and
for f to be locally bounded and of slow decrease. The extra condition for

Theorem 3.2 is

v

k(z) exists for 0 < Rz < 7, for some 0 < p < 7.

This cannot be omitted:

Theorem 6.1 (Converse Abelian Theorem
[Arandelovié, 1976]).

Let Ry :={f € R, : f locally bounded on (0,00), O(z”) as z | 0}. The
following are equivalent:

k Aﬂff(x) = O(f(:z:)) as  — oo, for all f € Rp;
li(z) exists for p—8 <Rz < p+ 6, for some § > 0.

The proof needs:

Proposition 6.2 ([Vuilleumier, 1963]).

If f is such that f(z)é(z) = O(1) as © — oo, for every non-decreasing
slowly varying ¢, then z®f(z) = O(1) as z — oo, for some o > 0.

6. Converse Abelian theorems 11

Proof.
Let us show that if limsup,_,  z%|f(z)| = oo for each a > 0, then also
limsup,_, . (z)|f(z)| = oo for some non-decreasing ¢ € Ry.

Set ag := 1.

Because lim sup z/*|f(z)| = co for each k=1, 2, ..., we may
successively find aq, az, ... such that ay > ax—1 + 1 and a;/k|f(ak)| > k for
k=1,2,....

Define e(ax) := 1/k, and complete e(z) so as to be continuous and

piecewise-linear.
Then e(z) | 0 as « — oo, while limsup,_, __ 25 |f(z)| = co.
Set 4(z) := exp flm e(y)y~ " dy, then £ is slowly varying, and

U(z)|f(2)] = |f(f6)|eXp/ e(y) % > 2°|f ()

is unbounded as z — oo. O
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