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The computability of R − fpmod

Generalized morphisms
Axioms of an A BEL ian category (reminder)
Basic matrix operations and computability of R− fpmod

Computable ring

Definition ([BLH11, Def. 3.2])

A ring R is called left (resp. right) computable if one can
specify an algorithm to solve inhomogeneous linear equations
B = XA (resp. B = AX) over R.

In other words, we want to be able to compute a generating set
of syzygies and to effectively decide solvability, i.e., to compute
a particular solution.
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The computability of R − fpmod

Generalized morphisms
Axioms of an A BEL ian category (reminder)
Basic matrix operations and computability of R− fpmod

Computable ABELian categories

Definition ([BLH11, Def. 2.1])

An ABELian category is called computable a if the existential
quantifiers entering the defining axioms can be turned into
constructive ones.

aas an ABELian category.
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Generalized morphisms
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R − fpmod over a computable ring is computable

Theorem ([BLH11, Thm. 3.4])

The category R− fpmod of finitely presented left (resp. right)
modules over a left (resp. right) computable ring R is ABELian
and, as such, computable.

Below we list the two additional axioms an additive category
needs to satisfy to become ABELian.
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A is an ABEL ian category

A is an ABEL ian category:

10
For any morphism ϕ : M → N there exists a kernel
kerϕ

κ
→֒M , such that

11 for any morphism τ : L→M and any monomorphism
κ : K →֒M with τϕ = 0 for ϕ = coker κ there exists a lift
τ0 : L→ K of τ along κ.

12 For any morphism ϕ :M → N there exists a cokernel
N

ε
։ cokerϕ, such that

13 for any morphism η : N → L and any epimorphism
ε : N ։ C with ϕη = 0 for ϕ = ker ε there exists a colift
η0 : C → L of η along ε.
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A morphism κ : K →M is called “the” kernel of ϕ :M → N if

(i) κϕ = 0, and

(ii) for all objects L and all morphisms τ : L→M with τϕ = 0
there exists a unique morphism τ0 : L→ K, such that
τ = τ0κ. τ0 is called the lift of τ along κ.

It follows from the uniqueness of the lift τ0 that κ is a
monomorphism.

L

τ0
τ

0

K κ M ϕ N

K is called “the” kernel object of ϕ. This funny diagram just
means that

im τ ≤ imκ,

in the categorial language.
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X = SyzygiesGenerators(A)

Let A be an r1 × r0-matrix over R.

We call X ∈ Rr2×r1 a matrix of generating syzygies (of the
rows) of A if for all x ∈ R1×r1 with xA = 0, there exists a
y ∈ R1×r2 such that yX = x. The rows of X are thus a generating
set of the kernel of the map R1×r1 A

−→ R1×r0 . We write

X = SyzygiesGenerators(A)

and say that X is the most general solution of the homogeneous
linear system XA = 0.
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X = RelativeSyzygiesGenerators(A, L)

Further let L be an r′1 × r0-matrix over R. We call X ∈ Rr2×r1 a
matrix of relative generating syzygies (of the rows) of A

modulo L if the rows of X form a generating set of the kernel of
the map R1×r1 A

−→ coker L. We write

X = RelativeSyzygiesGenerators(A, L)

and say that X is the most general solution of the homogeneous
linear system XA+ YL = 0. This last system is of course
equivalent1 to solving the homogeneous linear system

(

X Y
)

(

A

L

)

= 0.

1In practice, however, one can often implement efficient algorithms to
compute X without explicitly computing Y.
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How to compute kerϕ
κ
→֒M of ϕ : M → N?

In the following we take M := coker M and N := coker N.

How to compute kerϕ
κ
→֒M of ϕ :M → N?

To compute the kernel kerϕ
κ
→֒M of a morphism ϕ :M → N

represented by a matrix A we do the following:
1 First compute

X = RelativeSyzygiesGenerators(A, N),

the matrix representing κ.
2 Then kerϕ is presented by the matrix

K = RelativeSyzygiesGenerators(X, M).
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X = RightDivide(B, A)

Further let B be an r2 × r0-matrix over R.

Deciding the solvability and solving the inhomogeneous linear
system XA = B is equivalent to the construction of matrices N, T
such that N = TA+ B satisfying the following condition: If the i-th
row of B is a linear combination of the rows of A, then the i-th
row of N is zero2. Hence the inhomogeneous linear system
XA = B is solvable (with X = −T), if and only if N = 0. We write

(N, T) = DecideZeroEffectively(A, B) and N = DecideZero(A, B).

In case N = 0 we write

X = RightDivide(B, A).

2So we do not require a “normal form”, but only a mechanism to decide if
a row is zero modulo some relations.
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submodule membership problem

Rows of the matrices A and B can be considered as elements of
the free module R1×r0 .

Deciding the solvability of the inhomogeneous linear
system XA = B for a single row matrix B is thus nothing but
the submodule membership problem for the submodule
generated by the rows of the matrix A.

Finding a particular solution X (in case one exists) solves
the submodule membership problem effectively .
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X = RightDivide(B, A, L)

As with relative syzygies we also consider a relative version. In
case the inhomogeneous system XA = B mod L is solvable, we
denote a particular solution by

X = RightDivide(B, A, L).

This is equivalent to solving

(

X Y
)

(

A

L

)

= B.
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How to compute the lift τ0 : L→ K of τ along κ?

How to compute the lift τ0 : L→ K of τ along κ?

Let τ : L→M be a morphism represented by a matrix B and
κ : K →֒M a monomorphism represented by a matrix A with
τϕ = 0 for ϕ = coker κ. Then the matrix

X = RightDivide(B, A, M)

is a representation matrix for τ0 : L→ K, the lift of τ along κ.

It is an easy exercise3 to check that X represents a morphism.

3Cf. [BR08, 3.1.1, case (2)]).
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Applications of lifts

Applications of the lift in ABELian categories

Compute the morphism part of a functor, e.g.,

ExtcR(N,L)
Extc

R
(ϕ,L)

ExtcR(M,L) ,

for ϕ :M → N .

...
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A has enough projectives

A has enough projectives :

14

For each morphism ϕ : P → N , with P projective, and
each morphism ε : M → N with imϕ ≤ im ε there
exists a projective lift ϕ1 : P →M of a ϕ along ε.

15 For each object M there exists a projective hull
ν : P ։M .
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Projective object and projective lift

Definition

An object P in a category A is called projective , if for each
epimorphism ε :M ։ N and each morphism ϕ : P → N there
exists a morphism ϕ1 : P →M with ϕ1ε = ϕ.

P
ϕ

ϕ1

M ε N

We call ϕ1 a projective lift of ϕ along ε.
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Generalized morphisms
Axioms of an A BEL ian category (reminder)
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Deciding projectiveness in R − fpmod

We already know several methods to test projectiveness in
R− fpmod.

At least one of them does not make use of syzygies (needs
commutativity).

Another one uses Ext1R (needs commutativity).

The FITTING criterion: FittM = R (needs commutativity).

And two that do not need the commutativity assumption,
but the computability of a finite free resolution instead
[AB69, CQR05] and [Lam06, QR07].
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Generalized morphisms
Axioms of an A BEL ian category (reminder)
Basic matrix operations and computability of R− fpmod

Deciding projectiveness in R − fpmod using a split

Let ν : F0 ։M be a free presentation of the R-module M . It
follows that M is projective if and only if ν admits a section
σ :M →֒ F0 (i.e., σν = idM ).

Deciding projectiveness in R− fpmod without syzygies

Finding the section σ for a finitely and freely presented module

M
ν
և F0

M
←− F1 leads to solving the two-sided inhomogeneous

linear system
X+ YM = Id, MX = 0,

over R, where X is a square matrix representing σ and Y

another unknown matrix.

This system can be easily brought to a one-sided
inhomogeneous linear system if R is commutative4.

4Cf. [ZL02]
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Deciding projectiveness in R − fpmod using Ext1R

Again let ν : F0 ։M be a free presentation of M .

Theorem

An R-module M is projective if and only if
Ext1R(M,K1(M)) = 0.

Proof.

Ext1(M,K1(M)) = 0 implies that the extension
M և F0 ←֓ K1(M) splits, i.e., F0

∼=M ⊕K1(M) and M is
projective as a direct summand of the free module F0.

Computing Ext1R(M,K1(M)) involves computing syzygies. We
again assume that R is commutative.
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The computability of R − fpmod

Generalized morphisms
Axioms of an A BEL ian category (reminder)
Basic matrix operations and computability of R− fpmod

Deciding projectiveness in R − fpmod using the
FITTING criterion

Theorem ([Eis95, Prop. 20.8])

A finitely presented R-module M over a commutative ring R is
projective of constant rank if and only if FittM = R.

Example (Caution)

Take R := k[x]/〈x2 − x〉 ∼= k × k and

I := 〈x〉 ∼= k ⊕ 0⊳R.

I, as an R-module, is projective but not of constant rank (its
(global) rank is 0).
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(global) rank is 0).
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Deciding freeness – QUILLEN-SUSLIN

Deciding freeness seems to be much harder than deciding
projectiveness.

Theorem (QUILLEN-SUSLIN)

If R is a commutative principal ideal domain then R[x1, . . . , xn]
is a HERMITE ring.

See [FQ07] for an implementation.
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Deciding freeness – Hairy ball theorem

Example (Hairy ball theorem)

Let R = R[x, y, z]/〈x2 + y2 + z2 − 1〉. Then

R1×3/〈
(

x y z
)

〉

is stably free but not free.

Proof.

This follows from the hairy ball theorem in analysis.

There is no known5 algebraic proof for non-freeness!

5July 2011
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Software demo
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A has enough projectives

A has enough projectives :

14

For each morphism ϕ : P → N , with P projective, and
each morphism ε : M → N with imϕ ≤ im ε there
exists a projective lift ϕ1 : P →M of a ϕ along ε.

15 For each object M there exists a projective hull
ν : P ։M .

Instead of projective lifts we compute free lifts.
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How to compute the free lift ϕ1 : P →M?

Let F be a free R-module presented by an empty matrix, i.e., F
is given on a set of free generators. Further let ϕ : F → N and
ε :M → N be morphisms represented by the matrices B and A,
respectively.

F
ϕ

ϕ1

M ε N

How to compute the free lift ϕ1 : P →M of a ϕ along ε?

The image condition imϕ ≤ im ε guarantees the existence of
the matrix

X = RightDivide(B, A, N),

which is a matrix representing a free lift ϕ1 : F →M along ε
(cf. [BR08, 3.1.1, case (1)]).
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Applications of free lifts

Applications of the free lift in ABELian categories

Resolution of morphisms.

Horseshoe lemma and Cartan-Eilenberg resolution.

Spectral sequences.

...
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Overview

1 The computability of R − fpmod

Axioms of an ABELian category (reminder)

Basic matrix operations and computability of R − fpmod

2 Generalized morphisms
Generalized morphisms

Spectral sequences of filtered complexes
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HASSE diagram of a morphism

T

S

ϕ

imϕ

kerϕ

Figure: The homomorphism theorem of a morphism
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Subfactors as images?

How to relate subfactor objects,e.g., (co)homologies, to their
hull objects in a categorical way?
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HASSE diagram of a generalized morphism

replacements T

S

L

ψimψ

kerψ

Figure: A homomorphism theorem generalized morphism

Cf. [Bar, Def. 4.1].
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replacements T

S

L

ψimψ

kerψ

Figure: A homomorphism theorem generalized morphism

Cf. [Bar, Def. 4.1].
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Composition of generalized morphisms

Sϕ

Tϕ = Sψ

Tψ

ϕ

ϕ
kerϕ

kerψ ◦ ϕ imϕ

ψ

ψ

ψ

kerψ

imψ ◦ ϕ

Figure: The composition ψ ◦ ϕ
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The lifting emma

Lemma (The lifting lemma [Bar, Lemma 4.5])

Let γ = (γ̄, Lγ) and β = (β̄, Lβ) be two generalized morphisms
with the same target N . Suppose that β lifts γ. Then there
exists a generalized morphism α :M ′ → N ′ with β ◦ α , γ,

M ′

γ
α

N ′

β
N.

...

Mohamed Barakat Lifts and generalized morphisms

http://www.mathematik.uni-kl.de/~barakat/
http://homalg.math.rwth-aachen.de/


The computability of R − fpmod

Generalized morphisms
Generalized morphisms
Spectral sequences of filtered complexes

Lifting of generalized morphisms

N

M ′

N ′

imα

β

β

βker β
γ

ker γ

Figure: The lifting condition and the lifting lemma
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The spectral filtration of H(Cn)

Q: What happens inside the object Cn while flipping the pages?

Cn

•

•

Hn(C)
•

A: Hn(C) got approximated and the homomorphism theorem
can be used to recover the extension [Bar].
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The spectral filtration of H(Cn)

Q: What happens inside the object Cn while flipping the pages?

• Cn

Rn

•

••

An

•

Hn(C)
•

• E0

A: Hn(C) got approximated and the homomorphism theorem
can be used to recover the extension [Bar].

Mohamed Barakat Lifts and generalized morphisms

http://www.mathematik.uni-kl.de/~barakat/
http://homalg.math.rwth-aachen.de/


The computability of R − fpmod

Generalized morphisms
Generalized morphisms
Spectral sequences of filtered complexes

The spectral filtration of H(Cn)

Q: What happens inside the object Cn while flipping the pages?

• Cn

•
Hn(R)

• •

•

Hn(A)

Hn(C)
•
•

• •

•

• E1

A: Hn(C) got approximated and the homomorphism theorem
can be used to recover the extension [Bar].
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replacements

Cn

An

E∞

1,n−1

E∞

0,n

Hn(C) Hn(C)
ι

ι

ι0

ι1

Figure: ι lifts ι0 and ι1
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An m-filtration

ψp0

ψp1

ψpm−2

ψpm−1

Lp1

Lp2

Lpm−2

Lpm−1

M

Figure: An ascending m-filtration system
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Generalized morphisms

Generalized morphisms

Provide a categorical substitute for the annoying diagram
chasing of elements which, a priori, do not exist in general
ABELian categories.

Offer an extremely computer-friendly data structure to
control the enormous amount of generalized lifting
processes needed in homological algebra.
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Thank you for your attention
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