Lifts and generalized morphisms

Mohamed Barakat

University of Kaiserslautern

Workshop on Computational Commutative Algebra
July 2011, Tehran

joint work with Markus Lange-Hegermann

Overview

- The computability of $R \mathbf{fpmod}$
 - Axioms of an ABELian category (reminder)
 - lacktriangled Basic matrix operations and computability of $R-\mathbf{fpmod}$

- Generalized morphisms
 - Generalized morphisms
 - Spectral sequences of filtered complexes

Computable ring

Definition ([BLH11, Def. 3.2])

A ring R is called left (resp. right) **computable** if one can specify an algorithm to solve inhomogeneous linear equations B = XA (resp. B = AX) over R.

In other words, we want to be able to compute a generating set of syzygies and to effectively decide solvability, i.e., to compute a particular solution.

Computable ring

Definition ([BLH11, Def. 3.2])

A ring R is called left (resp. right) **computable** if one can specify an algorithm to solve inhomogeneous linear equations B = XA (resp. B = AX) over R.

In other words, we want to be able to compute a generating set of syzygies and to effectively decide solvability, i.e., to compute a particular solution.

Computable ABELian categories

Definition ([BLH11, Def. 2.1])

An ABELian category is called **computable**^a if the existential quantifiers entering the defining axioms can be turned into constructive ones.

^aas an ABELian category.

R -fpmod over a computable ring is computable

Theorem ([BLH11, Thm. 3.4])

The category $R-\mathbf{fpmod}$ of finitely presented left (resp. right) modules over a left (resp. right) computable ring R is ABELian and, as such, computable.

Below we list the two additional axioms an additive category needs to satisfy to become ABELian.

R -fpmod over a computable ring is computable

Theorem ([BLH11, Thm. 3.4])

The category $R-\mathbf{fpmod}$ of finitely presented left (resp. right) modules over a left (resp. right) computable ring R is ABELian and, as such, computable.

Below we list the two additional axioms an additive category needs to satisfy to become ABELian.

A is an ABELian category

A is an **ABELian** category:

- For any morphism $\varphi:M\to N$ there exists a **kernel** $\ker\varphi\overset{\kappa}{\hookrightarrow}M$, such that
- for any morphism $\tau:L\to M$ and any monomorphism $\kappa:K\hookrightarrow M$ with $\tau\varphi=0$ for $\varphi=\operatorname{coker}\kappa$ there exists a lift $\tau_0:L\to K$ of τ along κ .

A morphism $\kappa:K\to M$ is called "the" **kernel** of $\varphi:M\to N$ if

- (i) $\kappa \varphi = 0$, and
- (ii) for all objects L and all morphisms $\tau:L\to M$ with $\tau\varphi=0$ there exists a *unique* morphism $\tau_0:L\to K$, such that $\tau=\tau_0\kappa$. τ_0 is called the **lift** of τ along κ .

It follows from the uniqueness of the lift τ_0 that κ is a monomorphism.

K is called "the" **kernel object** of φ . This funny diagram just means that

$$im \tau \leq im \kappa$$
,

in the categorial language.

X = SyzygiesGenerators(A)

Let A be an $r_1 \times r_0$ -matrix over R.

We call $\mathtt{X} \in R^{r_2 \times r_1}$ a matrix of **generating syzygies (of the rows) of** \mathtt{A} if for all $\mathtt{x} \in R^{1 \times r_1}$ with $\mathtt{x} \mathtt{A} = \mathtt{0}$, there exists a $\mathtt{y} \in R^{1 \times r_2}$ such that $\mathtt{y} \mathtt{X} = \mathtt{x}$. The rows of \mathtt{X} are thus a generating set of the kernel of the map $R^{1 \times r_1} \xrightarrow{\mathtt{A}} R^{1 \times r_0}$. We write

$${\tt X} = {\tt SyzygiesGenerators}({\tt A})$$

and say that \mathtt{X} is the most general solution of the homogeneous linear system $\mathtt{XA} = \mathtt{0}$.

X = RelativeSyzygiesGenerators(A, L)

Further let L be an $r_1' \times r_0$ -matrix over R. We call $\mathtt{X} \in R^{r_2 \times r_1}$ a matrix of **relative generating syzygies (of the rows) of** \mathtt{A} **modulo** L if the rows of X form a generating set of the kernel of the map $R^{1 \times r_1} \stackrel{\mathtt{A}}{\to} \operatorname{coker} \mathtt{L}$. We write

$$X = RelativeSyzygiesGenerators(A, L)$$

and say that X is the most general solution of the homogeneous linear system XA + YL = 0. This last system is of course equivalent¹ to solving the homogeneous linear system

$$\begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} A \\ L \end{pmatrix} = 0.$$

¹In practice, however, one can often implement efficient algorithms to compute X without explicitly computing Y.

How to compute $\ker \varphi \stackrel{\kappa}{\hookrightarrow} M$ of $\varphi : M \to N$?

In the following we take $M := \operatorname{coker} M$ and $N := \operatorname{coker} N$.

How to compute
$$\ker \varphi \overset{\kappa}{\hookrightarrow} M$$
 of $\varphi : M \to N$?

To compute the kernel $\ker \varphi \overset{\kappa}{\hookrightarrow} M$ of a morphism $\varphi: M \to N$ represented by a matrix \mathtt{A} we do the following:

First compute

$$X = RelativeSyzygiesGenerators(A, N),$$

the matrix representing κ .

2 Then $\ker \varphi$ is presented by the matrix

K = RelativeSyzygiesGenerators(X, M).

X = RightDivide(B, A)

Further let B be an $r_2 \times r_0$ -matrix over R.

Deciding the solvability and solving the inhomogeneous linear system $\mathtt{XA} = \mathtt{B}$ is equivalent to the construction of matrices \mathtt{N},\mathtt{T} such that $\mathtt{N} = \mathtt{TA} + \mathtt{B}$ satisfying the following condition: If the i-th row of \mathtt{B} is a linear combination of the rows of \mathtt{A} , then the i-th row of \mathtt{N} is zero². Hence the inhomogeneous linear system $\mathtt{XA} = \mathtt{B}$ is solvable (with $\mathtt{X} = -\mathtt{T}$), if and only if $\mathtt{N} = \mathtt{0}$. We write

$$(\mathtt{N},\mathtt{T}) = \mathtt{DecideZeroEffectively}(\mathtt{A},\mathtt{B}) \text{ and } \mathtt{N} = \mathtt{DecideZero}(\mathtt{A},\mathtt{B}).$$

In case N = 0 we write

$$X = RightDivide(B, A).$$

²So we do not require a "normal form", but only a mechanism to decide if a row is zero modulo some relations.

submodule membership problem

Rows of the matrices A and B can be considered as elements of the free module $R^{1\times r_0}$.

- Deciding the solvability of the inhomogeneous linear system XA = B for a single row matrix B is thus nothing but the **submodule membership problem** for the submodule generated by the rows of the matrix A.
- Finding a particular solution X (in case one exists) solves the submodule membership problem **effectively**.

X = RightDivide(B, A, L)

As with relative syzygies we also consider a relative version. In case the inhomogeneous system $XA = B \mod L$ is solvable, we denote a particular solution by

$$X = RightDivide(B, A, L).$$

This is equivalent to solving

$$\begin{pmatrix} \mathtt{X} & \mathtt{Y} \end{pmatrix} \begin{pmatrix} \mathtt{A} \\ \mathtt{L} \end{pmatrix} = \mathtt{B}.$$

A is an ABELian category

A is an **ABELian** category:

- $\textbf{ 0} \ \, \text{For any morphism} \, \varphi: M \to N \, \text{there exists a kernel} \\ \ker \varphi \overset{\kappa}{\hookrightarrow} M, \, \text{such that}$
 - for any morphism $\tau:L\to M$ and any monomorphism
- $\begin{tabular}{ll} \hline {\bf \mathcal{Q}} & \mbox{For any morphism } \varphi: M \to N \mbox{ there exists a cokernel} \\ N \stackrel{\varepsilon}{\to} {\rm coker} \ \varphi, \mbox{ such that} \\ \hline \end{tabular}$
- for any morphism $\eta:N\to L$ and any epimorphism $\varepsilon:N\twoheadrightarrow C$ with $\varphi\eta=0$ for $\varphi=\ker\varepsilon$ there exists a **colift** $\eta_0:C\to L$ of η along ε .

How to compute the lift $\tau_0: L \to K$ of τ along κ ?

How to compute the lift $\tau_0: L \to K$ of τ along κ ?

Let $\tau:L\to M$ be a morphism represented by a matrix B and $\kappa:K\hookrightarrow M$ a monomorphism represented by a matrix A with $\tau\varphi=0$ for $\varphi=\operatorname{coker}\kappa.$ Then the matrix

$$X = RightDivide(B, A, M)$$

is a representation matrix for $\tau_0: L \to K$, the lift of τ along κ .

It is an easy exercise³ to check that X represents a morphism.

³Cf. [BR08, 3.1.1, case (2)]).

Applications of lifts

Applications of the lift in ABELian categories

Compute the morphism part of a functor, e.g.,

$$\operatorname{Ext}_R^c(N,L) \xrightarrow{\operatorname{Ext}_R^c(\varphi,L)} \operatorname{Ext}_R^c(M,L),$$

for
$$\varphi:M\to N$$
.

...

A has enough projectives

\mathcal{A} has enough projectives:

- For each morphism $\varphi: P \to N$, with P projective, and each morphism $\varepsilon: M \to N$ with $\operatorname{im} \varphi \leq \operatorname{im} \varepsilon$ there exists a **projective lift** $\varphi_1: P \to M$ of a φ along ε .
- **⑤** For each object M there exists a **projective hull** $\nu \cdot P \twoheadrightarrow M$

Projective object and projective lift

Definition

An object P in a category $\mathcal A$ is called **projective**, if for each epimorphism $\varepsilon: M \twoheadrightarrow N$ and each morphism $\varphi: P \to N$ there exists a morphism $\varphi_1: P \to M$ with $\varphi_1 \varepsilon = \varphi$.

We call φ_1 a **projective lift** of φ along ε .

Deciding projectiveness in $R - \mathbf{fpmod}$

- At least one of them does not make use of syzygies (needs commutativity).
- Another one uses Ext¹_R (needs commutativity).
- The FITTING criterion: Fitt M=R (needs commutativity)
- And two that do not need the commutativity assumption, but the computability of a finite free resolution instead [AB69, CQR05] and [Lam06, QR07].

Deciding projectiveness in R – fpmod

- At least one of them does not make use of syzygies (needs commutativity).
- Another one uses Ext_R^1 (needs commutativity).
- The FITTING criterion: Fitt M=R (needs commutativity).
- And two that do not need the commutativity assumption, but the computability of a finite free resolution instead [AB69, CQR05] and [Lam06, QR07].

Deciding projectiveness in $R - \mathbf{fpmod}$

- At least one of them does not make use of syzygies (needs commutativity).
- Another one uses Ext_R^1 (needs commutativity).
- The FITTING criterion: Fitt M=R (needs commutativity).
- And two that do not need the commutativity assumption, but the computability of a finite free resolution instead [AB69, CQR05] and [Lam06, QR07].

Deciding projectiveness in $R - \mathbf{fpmod}$

- At least one of them does not make use of syzygies (needs commutativity).
- Another one uses Ext_R^1 (needs commutativity).
- The FITTING criterion: $\operatorname{Fitt} M = R$ (needs commutativity).
- And two that do not need the commutativity assumption, but the computability of a finite free resolution instead [AB69, CQR05] and [Lam06, QR07].

Deciding projectiveness in R – fpmod

- At least one of them does not make use of syzygies (needs commutativity).
- Another one uses Ext_R^1 (needs commutativity).
- The FITTING criterion: $\operatorname{Fitt} M = R$ (needs commutativity).
- And two that do not need the commutativity assumption, but the computability of a finite free resolution instead [AB69, CQR05] and [Lam06, QR07].

Deciding projectiveness in R -fpmod using a split

Let $\nu: F_0 \twoheadrightarrow M$ be a free presentation of the R-module M. It follows that M is projective if and only if ν admits a section $\sigma: M \hookrightarrow F_0$ (i.e., $\sigma \nu = \mathrm{id}_M$).

Deciding projectiveness in R – fpmod without syzygies

Finding the section σ for a finitely and freely presented module $M \overset{\nu}{\twoheadleftarrow} F_0 \overset{\mathtt{M}}{\twoheadleftarrow} F_1$ leads to solving the two-sided inhomogeneous linear system

$$X + YM = Id$$
, $MX = 0$,

over R, where ${\tt X}$ is a square matrix representing σ and ${\tt Y}$ another unknown matrix

This system can be easily brought to a one-sided inhomogeneous linear system if R is commutative⁴.

⁴Cf. [ZL02]

Deciding projectiveness in R -fpmod using a split

Let $\nu: F_0 \twoheadrightarrow M$ be a free presentation of the R-module M. It follows that M is projective if and only if ν admits a section $\sigma: M \hookrightarrow F_0$ (i.e., $\sigma \nu = \mathrm{id}_M$).

Deciding projectiveness in R – fpmod without syzygies

Finding the section σ for a finitely and freely presented module $M \overset{\nu}{\twoheadleftarrow} F_0 \overset{\mathbb{M}}{\twoheadleftarrow} F_1$ leads to solving the two-sided inhomogeneous linear system

$$X + YM = Id$$
, $MX = 0$,

over R, where ${\tt X}$ is a square matrix representing σ and ${\tt Y}$ another unknown matrix.

This system can be easily brought to a one-sided inhomogeneous linear system if R is commutative⁴.

⁴Cf. [ZL02]

Deciding projectiveness in R -fpmod using a split

Let $\nu: F_0 \twoheadrightarrow M$ be a free presentation of the R-module M. It follows that M is projective if and only if ν admits a section $\sigma: M \hookrightarrow F_0$ (i.e., $\sigma \nu = \mathrm{id}_M$).

Deciding projectiveness in R – fpmod without syzygies

Finding the section σ for a finitely and freely presented module $M \overset{\nu}{\twoheadleftarrow} F_0 \overset{\mathtt{M}}{\twoheadleftarrow} F_1$ leads to solving the two-sided inhomogeneous linear system

$$X + YM = Id$$
, $MX = 0$,

over R, where ${\tt X}$ is a square matrix representing σ and ${\tt Y}$ another unknown matrix.

This system can be easily brought to a one-sided inhomogeneous linear system if R is commutative⁴.

⁴Cf. [ZL02]

Again let $\nu: F_0 \twoheadrightarrow M$ be a free presentation of M.

Theorem

An R-module M is projective if and only if $\operatorname{Ext}^1_R(M,K_1(M))=0.$

Proof

 $\operatorname{Ext}^1(M,K_1(M))=0$ implies that the extension $M \leftarrow F_0 \hookleftarrow K_1(M)$ splits, i.e., $F_0 \cong M \oplus K_1(M)$ and M is projective as a direct summand of the free module F_0 .

Computing $\operatorname{Ext}^1_R(M,K_1(M))$ involves computing syzygies. We again assume that R is *commutative*.

Again let $\nu: F_0 \twoheadrightarrow M$ be a free presentation of M.

Theorem

An R-module M is projective if and only if $\operatorname{Ext}^1_R(M,K_1(M))=0.$

Proof.

 $\operatorname{Ext}^1(M,K_1(M))=0$ implies that the extension $M \leftarrow F_0 \leftarrow K_1(M)$ splits, i.e., $F_0 \cong M \oplus K_1(M)$ and M is projective as a direct summand of the free module F_0 .

Computing $\operatorname{Ext}^1_R(M,K_1(M))$ involves computing syzygies. We again assume that R is *commutative*.

Again let $\nu: F_0 \twoheadrightarrow M$ be a free presentation of M.

Theorem

An R-module M is projective if and only if $\operatorname{Ext}^1_R(M,K_1(M))=0.$

Proof.

 $\operatorname{Ext}^1(M,K_1(M))=0$ implies that the extension $M \twoheadleftarrow F_0 \hookleftarrow K_1(M)$ splits, i.e., $F_0 \cong M \oplus K_1(M)$ and M is projective as a direct summand of the free module F_0 .

Computing $\operatorname{Ext}_R^1(M,K_1(M))$ involves computing syzygies. We again assume that R is *commutative*.

Again let $\nu: F_0 \twoheadrightarrow M$ be a free presentation of M.

Theorem

An R-module M is projective if and only if $\operatorname{Ext}^1_R(M,K_1(M))=0.$

Proof.

 $\operatorname{Ext}^1(M,K_1(M))=0$ implies that the extension $M \leftarrow F_0 \hookleftarrow K_1(M)$ splits, i.e., $F_0 \cong M \oplus K_1(M)$ and M is projective as a direct summand of the free module F_0 .

Computing $\operatorname{Ext}^1_R(M,K_1(M))$ involves computing syzygies. We again assume that R is *commutative*.

Deciding projectiveness in $R - \mathbf{fpmod}$ using the FITTING criterion

Theorem ([Eis95, Prop. 20.8])

A finitely presented R-module M over a commutative ring R is projective of **constant rank** if and only if $\operatorname{Fitt} M = R$.

Example (Caution)

Take
$$R:=k[x]/\langle x^2-x\rangle\cong k\times k$$
 and

$$I := \langle x \rangle \cong k \oplus 0 \lhd R.$$

I, as an R-module, is projective but not of constant rank (its (global) rank is 0).

Deciding projectiveness in $R - \mathbf{fpmod}$ using the FITTING criterion

Theorem ([Eis95, Prop. 20.8])

A finitely presented R-module M over a commutative ring R is projective of **constant rank** if and only if $\operatorname{Fitt} M = R$.

Example (Caution)

Take
$$R := k[x]/\langle x^2 - x \rangle \cong k \times k$$
 and

$$I := \langle x \rangle \cong k \oplus 0 \lhd R.$$

I, as an R-module, is projective but not of constant rank (its (global) rank is 0).

Deciding projectiveness in $R - \mathbf{fpmod}$ using the FITTING criterion

Theorem ([Eis95, Prop. 20.8])

A finitely presented R-module M over a commutative ring R is projective of **constant rank** if and only if $\operatorname{Fitt} M = R$.

Example (Caution)

Take
$$R := k[x]/\langle x^2 - x \rangle \cong k \times k$$
 and

$$I := \langle x \rangle \cong k \oplus 0 \lhd R.$$

I, as an R-module, is projective but not of constant rank (its (global) rank is 0).

Deciding freeness - QUILLEN-SUSLIN

Deciding freeness seems to be much harder than deciding projectiveness.

Theorem (QUILLEN-SUSLIN)

If R is a commutative principal ideal domain then $R[x_1,\ldots,x_n]$ is a HERMITE ring.

See [FQ07] for an implementation.

Deciding freeness - QUILLEN-SUSLIN

Deciding freeness seems to be much harder than deciding projectiveness.

Theorem (QUILLEN-SUSLIN)

If R is a commutative principal ideal domain then $R[x_1, \ldots, x_n]$ is a HERMITE ring.

See [FQ07] for an implementation.

Deciding freeness - QUILLEN-SUSLIN

Deciding freeness seems to be much harder than deciding projectiveness.

Theorem (QUILLEN-SUSLIN)

If R is a commutative principal ideal domain then $R[x_1, \ldots, x_n]$ is a HERMITE ring.

See [FQ07] for an implementation.

Deciding freeness - Hairy ball theorem

Example (Hairy ball theorem)

Let
$$R = \mathbb{R}[x, y, z]/\langle x^2 + y^2 + z^2 - 1 \rangle$$
. Then

$$R^{1\times3}/\langle \begin{pmatrix} x & y & z \end{pmatrix} \rangle$$

is stably free but not free.

Proof.

This follows from the hairy ball theorem in analysis.

There is no known⁵ algebraic proof for non-freeness!

⁵July 2011

Axioms of an Abelian category (reminder) Basic matrix operations and computability of $R-\mathbf{fpmod}$

Software demo

A has enough projectives

\mathcal{A} has **enough projectives**:

- For each morphism $\varphi:P\to N$, with P projective, and each morphism $\varepsilon:M\to N$ with $\operatorname{im}\varphi\leq\operatorname{im}\varepsilon$ there exists a **projective lift** $\varphi_1:P\to M$ of a φ along ε .
- **⑤** For each object M there exists a **projective hull** $\nu: P \twoheadrightarrow M$.

Instead of projective lifts we compute free lifts.

A has enough projectives

\mathcal{A} has enough projectives:

- For each morphism $\varphi:P\to N$, with P projective, and each morphism $\varepsilon:M\to N$ with $\operatorname{im}\varphi\leq\operatorname{im}\varepsilon$ there exists a **projective lift** $\varphi_1:P\to M$ of a φ along ε .
- **⑤** For each object M there exists a **projective hull** $\nu: P \twoheadrightarrow M$.

Instead of projective lifts we compute free lifts.

How to compute the **free** lift $\varphi_1: P \to M$?

Let F be a **free** R-module presented by an empty matrix, i.e., F is given on a set of *free* generators. Further let $\varphi: F \to N$ and $\varepsilon: M \to N$ be morphisms represented by the matrices B and A, respectively.

$$\begin{array}{ccc}
F & \varphi \\
\varphi_1 & & \downarrow \\
M & \underset{\varepsilon}{\gg} N
\end{array}$$

How to compute the **free** lift $\varphi_1: P \to M$ of a φ along ε ?

The image condition $\operatorname{im} \varphi \leq \operatorname{im} \varepsilon$ guarantees the existence of the matrix

$$X = RightDivide(B, A, N),$$

which is a matrix representing a **free lift** $\varphi_1: F \to M$ along ε (cf. [BR08, 3.1.1, case (1)]).

How to compute the **free** lift $\varphi_1: P \to M$?

Let F be a **free** R-module presented by an empty matrix, i.e., F is given on a set of *free* generators. Further let $\varphi:F\to N$ and $\varepsilon:M\to N$ be morphisms represented by the matrices B and A, respectively.

$$\begin{array}{c}
F \\
\varphi_1 \\
\downarrow \\
M \xrightarrow{\varepsilon} N
\end{array}$$

How to compute the **free** lift $\varphi_1: P \to M$ of a φ along ε ?

The image condition $\operatorname{im} \varphi \leq \operatorname{im} \varepsilon$ guarantees the existence of the matrix

$$X = RightDivide(B, A, N)$$

which is a matrix representing a **free lift** $\varphi_1: F \to M$ along ε (cf. [BR08, 3.1.1, case (1)]).

How to compute the **free** lift $\varphi_1: P \to M$?

Let F be a **free** R-module presented by an empty matrix, i.e., F is given on a set of *free* generators. Further let $\varphi:F\to N$ and $\varepsilon:M\to N$ be morphisms represented by the matrices B and A, respectively.

$$F_{\varphi_1 \begin{subarray}{c} \varphi \\ \downarrow \\ M \end{subarray}}$$

How to compute the **free** lift $\varphi_1: P \to M$ of a φ along ε ?

The image condition $\operatorname{im} \varphi \leq \operatorname{im} \varepsilon$ guarantees the existence of the matrix

$$X = RightDivide(B, A, N),$$

which is a matrix representing a **free lift** $\varphi_1: F \to M$ along ε (cf. [BR08, 3.1.1, case (1)]).

- Resolution of morphisms.
- Horseshoe lemma and Cartan-Eilenberg resolution.
- Spectral sequences.
- ...

- Resolution of morphisms.
- Horseshoe lemma and Cartan-Eilenberg resolution.
- Spectral sequences.
- ...

- Resolution of morphisms.
- Horseshoe lemma and Cartan-Eilenberg resolution.
- Spectral sequences.

- Resolution of morphisms.
- Horseshoe lemma and Cartan-Eilenberg resolution.
- Spectral sequences.
- •

Overview

- The computability of $R-\mathbf{f}$
 - Axioms of an ABELian category (reminder)
 - Basic matrix operations and computability of $R \mathbf{fpmod}$

- Generalized morphisms
 - Generalized morphisms
 - Spectral sequences of filtered complexes

HASSE diagram of a morphism

Figure: The homomorphism theorem of a morphism

Subfactors as images?

How to relate **subfactor** objects,e.g., (co)homologies, to their hull objects in a categorical way?

HASSE diagram of a generalized morphism

Figure: A homomorphism theorem generalized morphism

Cf. [Bar, Def. 4.1].

HASSE diagram of a generalized morphism

Figure: A homomorphism theorem generalized morphism

Cf. [Bar, Def. 4.1].

Composition of generalized morphisms

Figure: The composition $\psi \circ \varphi$

The lifting emma

Lemma (The lifting lemma [Bar, Lemma 4.5])

Let $\gamma=(\bar{\gamma},L_{\gamma})$ and $\beta=(\bar{\beta},L_{\beta})$ be two generalized morphisms with the same target N. Suppose that β lifts γ . Then there exists a generalized morphism $\alpha:M'\to N'$ with $\beta\circ\alpha\triangleq\gamma$,

:

Lifting of generalized morphisms

Figure: The lifting condition and the lifting lemma

Q: What happens inside the object C_n while flipping the pages?

Q: What happens inside the object C_n while flipping the pages?

Q: What happens inside the object C_n while flipping the pages?

Q: What happens inside the object C_n while flipping the pages?

Q: What happens inside the object C_n while flipping the pages?

Q: What happens inside the object C_n while flipping the pages?

Figure: ι lifts ι_0 and ι_1

An *m*-filtration

Figure: An ascending *m*-filtration system

Generalized morphisms

Generalized morphisms

- Provide a categorical substitute for the annoying diagram chasing of elements which, a priori, do not exist in general ABELian categories.
- Offer an extremely computer-friendly data structure to control the enormous amount of generalized lifting processes needed in homological algebra.

Generalized morphisms

Generalized morphisms

- Provide a categorical substitute for the annoying diagram chasing of elements which, a priori, do not exist in general ABELian categories.
- Offer an extremely computer-friendly data structure to control the enormous amount of generalized lifting processes needed in homological algebra.

Thank you for your attention

- Maurice Auslander and Mark Bridger, *Stable module theory*, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR MR0269685 (42 #4580)
- Mohamed Barakat, Spectral filtrations via generalized morphisms, submitted (arXiv:0904.0240).
- Mohamed Barakat and Markus Lange-Hegermann, *An axiomatic setup for algorithmic homological algebra and an alternative approach to localization*, J. Algebra Appl. **10** (2011), no. 2, 269–293, (arxiv:1003.1943).
- Mohamed Barakat and Daniel Robertz, homalg *A* meta-package for homological algebra, J. Algebra Appl. **7** (2008), no. 3, 299–317, (arXiv:math.AC/0701146). MR 2431811 (2009f:16010)

- F. Chyzak, A. Quadrat, and D. Robertz, *Effective algorithms for parametrizing linear control systems over Ore algebras*, Appl. Algebra Engrg. Comm. Comput. **16** (2005), no. 5, 319–376,
 - (http://www-sop.inria.fr/members/Alban.Quadrat/Pt MR MR2233761 (2007c:93041)
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995, With a view toward algebraic geometry. MR MR1322960 (97a:13001)
- Anna Fabianska and Alban Quadrat, *Applications of the Quillen-Suslin theorem in multidimensional systems theory*, H. Park et G. Regensburger (eds.), Gröbner Bases in Control Theory and Signal Processing, Radon Series on Computational and Applied Mathematics 3, de Gruyter, 2007, pp. 23–106.

- T. Y. Lam, *Serre's problem on projective modules*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. MR MR2235330 (2007b:13014)
- Alban Quadrat and Daniel Robertz, Computation of bases of free modules over the Weyl algebras, J. Symbolic Comput. **42** (2007), no. 11-12, 1113–1141. MR MR2368075 (2009a:16041)
- E. Zerz and V. Lomadze, A constructive solution to interconnection and decomposition problems with multidimensional behaviors, SIAM J. Control Optim. 40 (2001/02), no. 4, 1072–1086 (electronic). MR MR1882725 (2002m:93020)