# Sheaf and local cohomology

#### Mohamed Barakat

University of Kaiserslautern

Workshop on Computational Commutative Algebra
July 2011, Tehran



joint work with Markus Lange-Hegermann



### Overview

- Coherent sheaves on projective schemes From graded rings to projective schemes
  - From graded modules to guasi-coherent sheaves

- - The functor R and the CASTELNUOVO-MUMFORD regularity

Let

$$S = \bigoplus_{i \ge 0} S_i$$

be a graded ring with  $S_0=k$  a field and **maximal** homogeneous ideal

$$\mathfrak{m} := S_{>0} := \bigoplus_{i>0} S_i.$$

Define the scheme

$$X:=\operatorname{Proj} S$$

in the following way:

The underlying set

 $X := \operatorname{Proj} S := \{ \mathfrak{p} \triangleleft S \mid \mathfrak{p} \text{ homogeneous prime and } \mathfrak{p} \not\supset \mathfrak{m} \}.$ 



Let

$$S = \bigoplus_{i \ge 0} S_i$$

be a graded ring with  $S_0=k$  a field and **maximal** homogeneous ideal

$$\mathfrak{m} := S_{>0} := \bigoplus_{i>0} S_i.$$

Define the scheme

$$X := \operatorname{Proj} S$$

in the following way:

The underlying set

 $X := \operatorname{Proj} S := \{ \mathfrak{p} \triangleleft S \mid \mathfrak{p} \text{ homogeneous prime and } \mathfrak{p} \not\supset \mathfrak{m} \}.$ 



Let

$$S = \bigoplus_{i \ge 0} S_i$$

be a graded ring with  $S_0=k$  a field and **maximal** homogeneous ideal

$$\mathfrak{m} := S_{>0} := \bigoplus_{i>0} S_i.$$

Define the scheme

$$X := \operatorname{Proj} S$$

in the following way:

The underlying set

$$X := \operatorname{Proj} S := \{ \mathfrak{p} \triangleleft S \mid \mathfrak{p} \text{ homogeneous prime and } \mathfrak{p} \not\supset \mathfrak{m} \}.$$



• For a homogeneous ideal  $I \subseteq S$  define the vanishing locus

$$V(I) = {\mathfrak{p} \in \operatorname{Proj} S \mid \mathfrak{p} \supset I} = V(\sqrt{I}).$$

- Taking  $\{V(I) \mid I \leq S \text{ homogeneous}\}$  as the set of closed subsets defines the **ZARISKI topology** on X.
- For a homogeneous  $f \in \mathfrak{m}$  define  $S_{(f)} := (S_f)_0$ .
- The distinguished open set  $D(f) := \operatorname{Proj} S \setminus V(\langle f \rangle)$ .

It follows that

- $D(f) = \operatorname{Spec} S_{(f)}$ .
- The distinguished open sets form a basis of the ZARISKI topology on X.



• For a homogeneous ideal  $I \subseteq S$  define the vanishing locus

$$V(I) = {\mathfrak{p} \in \operatorname{Proj} S \mid \mathfrak{p} \supset I} = V(\sqrt{I}).$$

- Taking  $\{V(I) \mid I \leq S \text{ homogeneous}\}$  as the set of closed subsets defines the **Zariski topology** on X.
- For a homogeneous  $f \in \mathfrak{m}$  define  $S_{(f)} := (S_f)_0$ .
- The distinguished open set  $D(f) := \operatorname{Proj} S \setminus V(\langle f \rangle)$ .

#### It follows that

- $D(f) = \operatorname{Spec} S_{(f)}$ .
- The distinguished open sets form a basis of the ZARISKI topology on X.



• For a homogeneous ideal  $I \subseteq S$  define the vanishing locus

$$V(I) = {\mathfrak{p} \in \operatorname{Proj} S \mid \mathfrak{p} \supset I} = V(\sqrt{I}).$$

- Taking  $\{V(I) \mid I \leq S \text{ homogeneous}\}$  as the set of closed subsets defines the **Zariski topology** on X.
- For a homogeneous  $f \in \mathfrak{m}$  define  $S_{(f)} := (S_f)_0$ .
- The distinguished open set  $D(f) := \operatorname{Proj} S \setminus V(\langle f \rangle)$ .

It follows that

- $D(f) = \operatorname{Spec} S_{(f)}$ .
- The distinguished open sets form a basis of the ZARISKI topology on X.



• For a homogeneous ideal  $I \subseteq S$  define the vanishing locus

$$V(I) = {\mathfrak{p} \in \operatorname{Proj} S \mid \mathfrak{p} \supset I} = V(\sqrt{I}).$$

- Taking  $\{V(I) \mid I \leq S \text{ homogeneous}\}$  as the set of closed subsets defines the **Zariski topology** on X.
- For a homogeneous  $f \in \mathfrak{m}$  define  $S_{(f)} := (S_f)_0$ .
- The distinguished open set  $D(f) := \operatorname{Proj} S \setminus V(\langle f \rangle)$ .

It follows that

- $D(f) = \operatorname{Spec} S_{(f)}$ .
- The distinguished open sets form a basis of the ZARISKI topology on X.



• For a homogeneous ideal  $I \subseteq S$  define the vanishing locus

$$V(I) = {\mathfrak{p} \in \operatorname{Proj} S \mid \mathfrak{p} \supset I} = V(\sqrt{I}).$$

- Taking  $\{V(I) \mid I \leq S \text{ homogeneous}\}$  as the set of closed subsets defines the **Zariski topology** on X.
- For a homogeneous  $f \in \mathfrak{m}$  define  $S_{(f)} := (S_f)_0$ .
- The distinguished open set  $D(f) := \operatorname{Proj} S \setminus V(\langle f \rangle)$ .

#### It follows that

- $D(f) = \operatorname{Spec} S_{(f)}$ .
- The distinguished open sets form a basis of the ZARISKI topology on X.



• For a homogeneous ideal  $I \subseteq S$  define the vanishing locus

$$V(I) = {\mathfrak{p} \in \operatorname{Proj} S \mid \mathfrak{p} \supset I} = V(\sqrt{I}).$$

- Taking  $\{V(I) \mid I \leq S \text{ homogeneous}\}$  as the set of closed subsets defines the **Zariski topology** on X.
- For a homogeneous  $f \in \mathfrak{m}$  define  $S_{(f)} := (S_f)_0$ .
- The distinguished open set  $D(f) := \operatorname{Proj} S \setminus V(\langle f \rangle)$ .

#### It follows that

- $D(f) = \operatorname{Spec} S_{(f)}$ .
- The distinguished open sets form a basis of the ZARISKI topology on X.



# Projective schemes

#### Definition

A **projective scheme**  $(X, \mathcal{O}_X)$  is a scheme of the form

$$X := \operatorname{Proj} S$$

for some graded ring  $S = \bigoplus_{i \ge 0} S_i$ .

# The quasi-coh. sheaf associated to a graded module

Analogously, for a graded S-module  $M_{\bullet} = \bigoplus_{i \in \mathbb{Z}} M_i$  define the sheafification

$$\widetilde{M}_{\bullet} = \operatorname{Proj} M$$

to be the quasi-coherent (elementary) sheaf on  $X = \operatorname{Proj} S$  satisfying

$$(\text{Proj } M)(D(f)) := M_{(f)} := (M_f)_0 := (S_f \otimes_S M)_0$$

for any homogeneous  $f \in \mathfrak{m}$ .

### Quasi-coherent sheaves

#### Definition

Let  $(X, \mathcal{O}_X)$  be a scheme. A sheaf of  $\mathcal{O}_X$ -modules  $\mathcal{F}$  is called **quasi-coherent** if X can be covered by open affine subsets  $U_i := \operatorname{Spec} R_i$  with  $\mathcal{F}|_{U_i} \cong \operatorname{Spec} M_i$  (where  $M_i$  is some  $R_i$ -module).

#### **Theorem**

Any quasi-coherent sheaf on a projective scheme  $X := \operatorname{Proj} S$  is the sheafification

 $\operatorname{Proj} M_{\bullet}$ 

of some graded S-module  $M_{\bullet}$ .

# Twisting sheaves and twisted sheaves

### Define the twisting<sup>1</sup> sheaf or twisting line bundle

$$\mathcal{O}_X(1) = \operatorname{Proj} S(1).$$

More generally define the twisted line bundles

$$\mathcal{O}_X(n) = \operatorname{Proj} S(n)$$

for all  $n \in \mathbb{Z}$ .

For  $\mathcal{F} = \operatorname{Proj} M$  define the **twisted sheaves** 

$$\mathfrak{F}(n) = \operatorname{Proj} M(n) = \operatorname{Proj}(S(n) \otimes_S M) = \mathfrak{O}_X(n) \otimes_{\mathfrak{O}_X} \mathfrak{F}.$$

<sup>&</sup>lt;sup>1</sup>Note: The notion of twisting only makes sense in the *projective* context!

# Twisting sheaves and twisted sheaves

### Define the twisting<sup>1</sup> sheaf or twisting line bundle

$$\mathcal{O}_X(1) = \operatorname{Proj} S(1).$$

More generally define the **twisted line bundles** 

$$\mathcal{O}_X(n) = \operatorname{Proj} S(n)$$

for all  $n \in \mathbb{Z}$ .

For  $\mathcal{F} = \operatorname{Proj} M$  define the **twisted sheaves** 

$$\mathfrak{F}(n) = \operatorname{Proj} M(n) = \operatorname{Proj}(S(n) \otimes_S M) = \mathfrak{O}_X(n) \otimes_{\mathfrak{O}_X} \mathfrak{F}.$$

<sup>&</sup>lt;sup>1</sup>Note: The notion of twisting only makes sense in the *projective* context!

# Twisting sheaves and twisted sheaves

Define the twisting<sup>1</sup> sheaf or twisting line bundle

$$\mathcal{O}_X(1) = \operatorname{Proj} S(1).$$

More generally define the **twisted line bundles** 

$$\mathcal{O}_X(n) = \operatorname{Proj} S(n)$$

for all  $n \in \mathbb{Z}$ .

For  $\mathcal{F} = \operatorname{Proj} M$  define the **twisted sheaves** 

$$\mathfrak{F}(n) = \operatorname{Proj} M(n) = \operatorname{Proj}(S(n) \otimes_S M) = \mathfrak{O}_X(n) \otimes_{\mathfrak{O}_X} \mathfrak{F}.$$

<sup>&</sup>lt;sup>1</sup>Note: The notion of twisting only makes sense in the *projective* context!

### Model quasi-coherent sheaves on graded modules

#### Good news

We can **model** quasi-coherent sheaves  $\mathcal{F}$  on  $X = \operatorname{Proj} S$  on graded S-modules  $M_{\bullet}$ . Finitely generated graded S-modules give rise to **coherent** sheaves.

# Up to ARTINian parts

#### Bad news

Unfortunately the sheafification does *not* yield an equivalence of categories

{graded S-modules}  $\xrightarrow{\not\simeq}$  {quasi-coh. sheaves on  $\operatorname{Proj} S$ }

#### Theorem

Two S-modules  $M_{ullet}$  and  $N_{ullet}$  define the same quasi-coherent sheaf iff  $M_{\geq d}\cong N_{\geq d}$  for some  $d\in\mathbb{Z}$ , i.e., if they coincide up to ARTINian parts.

### Up to ARTINian parts

#### Bad news

Unfortunately the sheafification does *not* yield an equivalence of categories

 $\{graded S-modules\} \xrightarrow{\not\cong} \{quasi-coh. sheaves on Proj S\}$ 

#### **Theorem**

Two S-modules  $M_{\bullet}$  and  $N_{\bullet}$  define the same quasi-coherent sheaf iff  $M_{\geq d} \cong N_{\geq d}$  for some  $d \in \mathbb{Z}$ , i.e., if they coincide up to Artinian parts.

# Up to ARTINian parts

#### Bad news

Unfortunately the sheafification does *not* yield an equivalence of categories

{graded S-modules}  $\xrightarrow{\not\simeq}$  {quasi-coh. sheaves on  $\operatorname{Proj} S$ }

#### **Theorem**

Two S-modules  $M_{ullet}$  and  $N_{ullet}$  define the same quasi-coherent sheaf iff  $M_{\geq d}\cong N_{\geq d}$  for some  $d\in\mathbb{Z}$ , i.e., if they coincide up to ARTIN*ian parts*.

### The basic reason for this phenomena is the isomorphism

$$M_{x_i} = (M_{\geq d})_{x_i}.$$

This follows from the exactness of the localization functor applied to the short exact sequence

$$0 \to M_{\leq d} \to M \to M/M_{\leq d} \to 0.$$

For a homogeneous element  $m \in M/M_{\leq d}$  of degree  $\ell$  we deduce that  $m=1\cdot m=x_i^{-(d-\ell)}\underbrace{(x_i^{d-\ell}m)}_{=0}=0.$ 

The basic reason for this phenomena is the isomorphism

$$M_{x_i} = (M_{\geq d})_{x_i}.$$

This follows from the **exactness of the localization functor** applied to the short exact sequence

$$0 \to M_{\leq d} \to M \to M/M_{\leq d} \to 0.$$

For a homogeneous element  $m \in M/M_{\leq d}$  of degree  $\ell$  we deduce that  $m=1\cdot m=x_i^{-(d-\ell)}\underbrace{(x_i^{d-\ell}m)}_{=0}=0.$ 

The basic reason for this phenomena is the isomorphism

$$M_{x_i} = (M_{\geq d})_{x_i}.$$

This follows from the **exactness of the localization functor** applied to the short exact sequence

$$0 \to M_{\leq d} \to M \to M/M_{\leq d} \to 0.$$

For a homogeneous element  $m \in M/M_{\leq d}$  of degree  $\ell$  we deduce that  $m=1\cdot m=x_i^{-(d-\ell)}\underbrace{(x_i^{d-\ell}m)}_{=0}=0.$ 

#### Q:

Is there a way to construct a canonical representative in an equivalence class of graded modules "isomorphic in high degrees"?

#### A:

One can take the graded S-module of global sections

$$\Gamma_{\bullet}(\operatorname{Proj} M),$$

or any of its truncations, e.g.,  $\Gamma_{\geq 0}(\operatorname{Proj} M)$ .

So how can we compute  $\Gamma_{\bullet}(\operatorname{Proj} M)$ ?

#### Q:

Is there a way to construct a canonical representative in an equivalence class of graded modules "isomorphic in high degrees"?

#### A:

One can take the graded S-module of global sections

$$\Gamma_{\bullet}(\operatorname{Proj} M),$$

or any of its truncations, e.g.,  $\Gamma_{\geq 0}(\operatorname{Proj} M)$ .

So how can we compute  $\Gamma_{\bullet}(\operatorname{Proj} M)$ ?

#### Q:

Is there a way to construct a canonical representative in an equivalence class of graded modules "isomorphic in high degrees"?

#### A:

One can take the graded S-module of global sections

$$\Gamma_{\bullet}(\operatorname{Proj} M),$$

or any of its truncations, e.g.,  $\Gamma_{>0}(\operatorname{Proj} M)$ .

So how can we compute  $\Gamma_{\bullet}(\operatorname{Proj} M)$ ?

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong \varinjlim \operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M)$$

Example (Skyscraper sheaf)

$$S:=k[x_0,x_1]$$
,  $\mathfrak{m}:=\langle x_0,x_1\rangle$ , and  $M_{ullet}:=S/\langle x_1\rangle$ . Check that

$$\operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M) \cong \frac{1}{x_0^{\ell}} M_{\bullet} \quad \text{for all } \ell \geq 0.$$

Hence

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong (M_{x_0})_{\bullet}$$
,

not finitely generated.

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong \varinjlim \operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M)$$

### Example (Skyscraper sheaf)

$$S:=k[x_0,x_1]$$
,  $\mathfrak{m}:=\langle x_0,x_1\rangle$ , and  $M_{ullet}:=S/\langle x_1\rangle$ . Check that

$$\operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M) \cong \frac{1}{x_0^{\ell}} M_{\bullet} \quad \text{for all } \ell \geq 0.$$

Hence

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong (M_{x_0})_{\bullet}$$
,

not finitely generated.

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong \varinjlim \operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M)$$

### Example (Skyscraper sheaf)

$$S:=k[x_0,x_1]$$
,  $\mathfrak{m}:=\langle x_0,x_1 \rangle$ , and  $M_{ullet}:=S/\langle x_1 \rangle$ . Check that

$$\operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M) \cong \frac{1}{x_0^{\ell}} M_{\bullet} \quad \text{for all } \ell \geq 0.$$

Hence

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong (M_{x_0})_{\bullet}$$
,

not finitely generated.

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong \lim_{\longrightarrow} \operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M)$$

### Example (Skyscraper sheaf)

$$S:=k[x_0,x_1], \mathfrak{m}:=\langle x_0,x_1\rangle,$$
 and  $M_{\bullet}:=S/\langle x_1\rangle.$  Check that

$$\operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell},M) \cong \frac{1}{x_0^{\ell}} M_{\bullet} \quad \text{for all $\ell \geq 0$.}$$

Hence

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong (M_{x_0})_{\bullet}$$
,

not finitely generated.

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong \lim_{\longrightarrow} \operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M)$$

### Example (Skyscraper sheaf)

$$S:=k[x_0,x_1],\,\mathfrak{m}:=\langle x_0,x_1\rangle$$
, and  $M_{\bullet}:=S/\langle x_1\rangle$ . Check that

$$\operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M) \cong \frac{1}{x_0^{\ell}} M_{\bullet} \quad \text{for all } \ell \geq 0.$$

Hence

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong (M_{x_0})_{\bullet}$$
,

not finitely generated.

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong \lim_{\longrightarrow} \operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M)$$

### Example (Skyscraper sheaf)

$$S:=k[x_0,x_1],\,\mathfrak{m}:=\langle x_0,x_1\rangle$$
, and  $M_{\bullet}:=S/\langle x_1\rangle$ . Check that

$$\operatorname{Hom}_{\bullet}(\mathfrak{m}^{\ell}, M) \cong \frac{1}{x_0^{\ell}} M_{\bullet} \quad \text{for all } \ell \geq 0.$$

Hence

$$\Gamma_{\bullet}(\operatorname{Proj} M) \cong (M_{x_0})_{\bullet}$$
,

not finitely generated.

# Efficiency?

### How to compute the m-transform efficiently?

Is there a way to compute the m-transform

$$\varinjlim \operatorname{Hom}_{ullet}(\mathfrak{m}^{\ell}, M)$$

in a more efficient way?

### Overview

- 1
  - Coherent sheaves on projective schemes
  - From graded rings to projective schemes
  - From graded modules to quasi-coherent sheaves

- 2
- Sheaf cohomology and the TATE resolution
- The functor R and the CASTELNUOVO-MUMFORD regularity
- The TATE functor T

# Setting the stage

Let k be a field, V an n+1 dimensional k-vector space with basis

$$(e_0,\ldots,e_n),$$

and  $W = V^* = \text{Hom}(V, k)$  its k-dual space with dual basis

$$(x_0,\ldots,x_n).$$

# Setting the stage

Let k be a field, V an n+1 dimensional k-vector space with basis

$$(e_0,\ldots,e_n),$$

and  $W = V^* = \text{Hom}(V, k)$  its k-dual space with **dual basis** 

$$(x_0,\ldots,x_n).$$

# Setting the stage

$$E = \bigwedge V$$

Define the exterior algebra

$$E = \bigwedge V$$
.

Set  $\deg e_i = -1$ .

$$S = \operatorname{Sym}(W)$$

Further define the free polynomial ring

$$S := \operatorname{Sym}(W) = k[V] = k[x_0, \dots, x_n]$$

in n+1 indeterminates with  $S_0=k$  and maximal homogeneous ideal  $\mathfrak{m}:=S_{>0}=\langle x_0,\ldots,x_n\rangle$ .

# Setting the stage

$$E = \bigwedge V$$

Define the exterior algebra

$$E = \bigwedge V$$
.

Set  $\deg e_i = -1$ .

$$S = \operatorname{Sym}(W)$$

Further define the free polynomial ring

$$S := \operatorname{Sym}(W) = k[V] = k[x_0, \dots, x_n]$$

in n+1 indeterminates with  $S_0=k$  and maximal homogeneous ideal  $\mathfrak{m}:=S_{>0}=\langle x_0,\ldots,x_n\rangle$ .

## The R-functor

#### Idea

The graded S-module structure of  $M_{\bullet}$  can be translated into a complex over the exterior algebra  $E := \bigwedge V$ .

Take  $S := k[x_0, x_1]$  and

$$M_{\bullet} := S_{\geq 1} = \mathfrak{m} = \langle x_0, x_1 \rangle_S \cong S(-1)^{1 \times 2} / (-x_1, x_0).$$

The indeterminates  $x_0$  and  $x_1$  induce maps between

$$M_1 = \langle x_0, x_1 \rangle_k$$

and

$$M_2 = \langle x_0^2, x_0 x_1, x_1^2 \rangle_k$$

given by

$$\mu_0^1 := \left( egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \end{array} 
ight) \ ext{and} \ \mu_1^1 := \left( egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \end{array} 
ight).$$

$$\mathbf{R}(M): 0 \to E(-1)^2 \xrightarrow{\begin{pmatrix} e_0 \ e_1 \ 0 \\ 0 \ e_0 \ e_1 \end{pmatrix}} E(-2)^3 \xrightarrow{\begin{pmatrix} e_0 \ e_1 \ 0 \\ 0 \ e_0 \ e_1 \ 0 \\ 0 \ 0 \ e_0 \ e_1 \end{pmatrix}} E(-3)^4 \cdots$$

Take  $S := k[x_0, x_1]$  and

$$M_{\bullet} := S_{\geq 1} = \mathfrak{m} = \langle x_0, x_1 \rangle_S \cong S(-1)^{1 \times 2} / (-x_1, x_0).$$

The indeterminates  $x_0$  and  $x_1$  induce maps between

$$M_1 = \langle x_0, x_1 \rangle_k$$

and

$$M_2 = \langle x_0^2, x_0 x_1, x_1^2 \rangle_k$$

given by

$$\mu^1_0 := \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \text{ and } \mu^1_1 := \left( \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

$$\mathbf{R}(M): 0 \to E(-1)^2 \xrightarrow{\begin{pmatrix} e_0 \ e_1 \ 0 \end{pmatrix}} E(-2)^3 \xrightarrow{\begin{pmatrix} e_0 \ e_1 \ 0 \end{pmatrix}} E(-3)^4 \cdots$$

Take  $S := k[x_0, x_1]$  and

$$M_{\bullet} := S_{\geq 1} = \mathfrak{m} = \langle x_0, x_1 \rangle_S \cong S(-1)^{1 \times 2} / (-x_1, x_0).$$

The indeterminates  $x_0$  and  $x_1$  induce maps between

$$M_1 = \langle x_0, x_1 \rangle_k$$

and

$$M_2 = \langle x_0^2, x_0 x_1, x_1^2 \rangle_k$$

given by

$$\mu_0^1 := \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \text{ and } \mu_1^1 := \left( \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

$$\mathbf{R}(M): 0 \to E(-1)^2 \xrightarrow{\begin{pmatrix} e_0 & e_1 & 0 \\ 0 & e_0 & e_1 \end{pmatrix}} E(-2)^3 \xrightarrow{\begin{pmatrix} e_0 & e_1 & 0 & 0 \\ 0 & e_0 & e_1 & 0 \\ 0 & 0 & e_0 & e_1 \end{pmatrix}} E(-3)^4 \cdots$$

## The R. functor

#### The R. functor

In general we obtain the complex

$$\mathbf{R}(M): \cdots \longrightarrow E(-i) \otimes_k M_i \stackrel{\mu^i}{\longrightarrow} E(-i-1) \otimes_k M_{i+1} \stackrel{\mu^{i+1}}{\longrightarrow} \cdots,$$

where

$$\mu^i := \sum_{j=0}^n e_j \mu_j^i$$

and  $\mu_i^i$  denotes the action of  $x_j: M_i \to M_{i+1}$ .

# The R functor

#### The R. functor

In general we obtain the complex

$$\mathbf{R}(M): \cdots \longrightarrow E(-i) \otimes_k M_i \xrightarrow{\mu^i} E(-i-1) \otimes_k M_{i+1} \xrightarrow{\mu^{i+1}} \cdots,$$

where

$$\mu^i := \sum_{j=0}^n e_j \mu^i_j$$

and  $\mu_i^i$  denotes the action of  $x_j: M_i \to M_{i+1}$ .

# The R. functor

#### The R. functor

In general we obtain the complex

$$\mathbf{R}(M): \cdots \longrightarrow E(-i) \otimes_k M_i \xrightarrow{\mu^i} E(-i-1) \otimes_k M_{i+1} \xrightarrow{\mu^{i+1}} \cdots,$$

where

$$\mu^i := \sum_{j=0}^n e_j \mu^i_j$$

and  $\mu_i^i$  denotes the action of  $x_j: M_i \to M_{i+1}$ .

- The functor R is an equivalence between the category of graded S-modules and the category of linear free complexes over E.
- Finitely generated graded S-modules correspond to left bounded linear free complexes of E which eventually become exact.

set 
$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$$
. Then

- The functor R is an equivalence between the category of graded S-modules and the category of linear free complexes over E.
- Finitely generated graded S-modules correspond to left bounded linear free complexes of E which eventually become exact.

set 
$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$$
. Then

- The functor R is an equivalence between the category of graded S-modules and the category of linear free complexes over E.
- Finitely generated graded S-modules correspond to left bounded linear free complexes of E which eventually become exact.

set 
$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$$
. Then

- The functor R is an equivalence between the category of graded S-modules and the category of linear free complexes over E.
- Finitely generated graded S-modules correspond to left bounded linear free complexes of E which eventually become exact.

$$\operatorname{set} X = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}. \text{ Then }$$

- The functor R is an equivalence between the category of graded S-modules and the category of linear free complexes over E.
- Finitely generated graded S-modules correspond to left bounded linear free complexes of E which eventually become exact.

set 
$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$$
. Then

| $X \otimes I_{r_0}$ | $\begin{array}{c c} -\mu_0^0 \\ \vdots \\ -\mu_n^0 \end{array}$ | 0                                | 0  | 0                                           | 0                                                                                |
|---------------------|-----------------------------------------------------------------|----------------------------------|----|---------------------------------------------|----------------------------------------------------------------------------------|
| 0                   | $X \otimes I_{r_1}$                                             | $-\mu_0^1 \\ \vdots \\ -\mu_n^1$ | 0  | 0                                           | 0                                                                                |
| 0                   | 0                                                               | ٠.                               | ٠. | 0                                           | 0                                                                                |
| 0                   | 0                                                               | 0                                | ٠  |                                             | 0                                                                                |
| 0                   | 0                                                               | 0                                | 0  | $X \otimes I_{r_{\operatorname{reg}(M)-1}}$ | $-\mu_0^{\operatorname{reg}(M)-1} \\ \vdots \\ -\mu_n^{\operatorname{reg}(M)-1}$ |
| 0                   | 0                                                               | 0                                | 0  | 0                                           | $M_{\geq \operatorname{reg} M}$                                                  |

The following exercise shows how to read off the Castelnuovo-Mumford regularity of  $M_{\bullet}$  from  $\mathbf{R}(M)$ .

### **Exercise**

$$H^{j-i}(\mathbf{R}(M))_j = \operatorname{Tor}_i^S(k, M)_j.$$

Hint: Compute Tor by resolving k.

## Corollary

Let  $M_{\bullet}$  be a nontrivial finitely generated graded S-module. Then

$$\operatorname{reg} M := \max\{j - i \mid \beta_{ij} \neq 0\} = \max\{d \mid H^d(\mathbf{R}(M)) \neq 0\}.$$

### Proof.

Recall,  $\beta_{ij} = \dim_k \operatorname{Tor}_i^S(k, M)_j$ .



The following exercise shows how to read off the Castelnuovo-Mumford regularity of  $M_{\bullet}$  from  $\mathbf{R}(M)$ .

#### Exercise

$$H^{j-i}(\mathbf{R}(M))_j = \operatorname{Tor}_i^S(k, M)_j.$$

Hint: Compute Tor by resolving k.

### Corollary

Let  $M_{\bullet}$  be a nontrivial finitely generated graded S-module. Then

$$\operatorname{reg} M := \max\{j - i \mid \beta_{ij} \neq 0\} = \max\{d \mid H^d(\mathbf{R}(M)) \neq 0\}.$$

### Proof

Recall, 
$$\beta_{ij} = \dim_k \operatorname{Tor}_i^S(k, M)_j$$
.



The following exercise shows how to read off the Castelnuovo-Mumford regularity of  $M_{\bullet}$  from  $\mathbf{R}(M)$ .

#### Exercise

$$H^{j-i}(\mathbf{R}(M))_j = \operatorname{Tor}_i^S(k, M)_j.$$

Hint: Compute Tor by resolving k.

## Corollary

Let  $M_{\bullet}$  be a nontrivial finitely generated graded S-module. Then

$$reg M := \max\{j - i \mid \beta_{ij} \neq 0\} = \max\{d \mid H^d(\mathbf{R}(M)) \neq 0\}.$$

### Proof.

Recall,  $\beta_{ij} = \dim_k \operatorname{Tor}_i^S(k, M)_j$ .



#### The TATE functor T

To construct the TATE resolution  $\mathbf{T}(M)$  start with the exact complex  $\mathbf{R}(M)_{>\mathrm{reg}\,M}$  and compute an infinite *minimal* free resolution to the left. The TATE resolution only depends on the sheafification of M and we write  $\mathbf{T}(\mathcal{F})$  for  $\mathcal{F}=\mathrm{Proj}\,M$ .

For 
$$S:=k[x_0,x_1]$$
 and  $M_{\bullet}:=S_{\geq 1}=\mathfrak{m}$ 

$$\mathbf{R}(M_{\bullet}): \ 0 \longrightarrow E(-1)^2 \xrightarrow{\begin{pmatrix} e_0 & e_1 & 0 \\ 0 & e_0 & e_1 \end{pmatrix}} \cdots$$

$$\mathbf{T}(M_{\bullet}): \cdots \to E(3)^{2} \xrightarrow{\begin{pmatrix} e_{0} \\ e_{1} \end{pmatrix}} E(2)^{1} \xrightarrow{\begin{pmatrix} e_{0} \cdot e_{1} \\ 0 \end{pmatrix}} E(0)^{1} \xrightarrow{\begin{pmatrix} e_{0} \ e_{1} \\ 0 \end{pmatrix}} E(-1)^{2} \xrightarrow{\begin{pmatrix} e_{0} \ e_{1} \ 0 \\ 0 \ e_{0} \ e_{1} \end{pmatrix}} \cdots$$

#### The TATE functor T

To construct the TATE resolution  $\mathbf{T}(M)$  start with the exact complex  $\mathbf{R}(M)_{> \mathrm{reg}\,M}$  and compute an infinite *minimal* free resolution to the left. The TATE resolution only depends on the sheafification of M and we write  $\mathbf{T}(\mathcal{F})$  for  $\mathcal{F}=\mathrm{Proj}\,M$ .

For 
$$S:=k[x_0,x_1]$$
 and  $M_{\bullet}:=S_{\geq 1}=\mathfrak{m}$ 

$$\mathbf{R}(M_{\bullet}): \ 0 \longrightarrow E(-1)^2 \xrightarrow{\left( \begin{smallmatrix} e_0 & e_1 & 0 \\ 0 & e_0 & e_1 \end{smallmatrix} \right)} \cdots$$

$$\mathbf{T}(M_{\bullet}): \cdots \to E(3)^{2} \xrightarrow{\begin{pmatrix} e_{0} \\ e_{1} \end{pmatrix}} E(2)^{1} \xrightarrow{\begin{pmatrix} e_{0} \cdot e_{1} \\ 0 \end{pmatrix}} E(0)^{1} \xrightarrow{\begin{pmatrix} e_{0} \ e_{1} \\ 0 \end{pmatrix}} E(-1)^{2} \xrightarrow{\begin{pmatrix} e_{0} \ e_{1} \ 0 \\ 0 \ e_{0} \ e_{1} \end{pmatrix}} \cdots$$

#### The TATE functor T

To construct the TATE resolution  $\mathbf{T}(M)$  start with the exact complex  $\mathbf{R}(M)_{>\mathrm{reg}\,M}$  and compute an infinite *minimal* free resolution to the left. The TATE resolution only depends on the sheafification of M and we write  $\mathbf{T}(\mathcal{F})$  for  $\mathcal{F}=\mathrm{Proj}\,M$ .

For 
$$S:=k[x_0,x_1]$$
 and  $M_{\bullet}:=S_{\geq 1}=\mathfrak{m}$ 

$$\mathbf{R}(M_{\bullet}): \ 0 \longrightarrow E(-1)^2 \xrightarrow{\begin{pmatrix} e_0 \ e_1 \ 0 \end{pmatrix}} \cdots$$

$$\mathbf{T}(M_{\bullet}): \cdots \to E(3)^{2} \xrightarrow{\begin{pmatrix} e_{0} \\ e_{1} \end{pmatrix}} E(2)^{1} \xrightarrow{\begin{pmatrix} e_{0} \cdot e_{1} \\ 0 \end{pmatrix}} E(0)^{1} \xrightarrow{\begin{pmatrix} e_{0} \ e_{1} \\ 0 \end{pmatrix}} E(-1)^{2} \xrightarrow{\begin{pmatrix} e_{0} \ e_{1} \ 0 \\ 0 \ e_{0} \ e_{1} \end{pmatrix}} \cdots$$

#### The TATE functor T

To construct the TATE resolution  $\mathbf{T}(M)$  start with the exact complex  $\mathbf{R}(M)_{>\mathrm{reg}\,M}$  and compute an infinite *minimal* free resolution to the left. The TATE resolution only depends on the sheafification of M and we write  $\mathbf{T}(\mathcal{F})$  for  $\mathcal{F}=\mathrm{Proj}\,M$ .

For 
$$S:=k[x_0,x_1]$$
 and  $M_{ullet}:=S_{\geq 1}=\mathfrak{m}$ 

$$\mathbf{R}(M_{\bullet}): \ 0 \longrightarrow E(-1)^2 \xrightarrow{\begin{pmatrix} e_0 & e_1 & 0 \\ 0 & e_0 & e_1 \end{pmatrix}} \cdots$$

$$\mathbf{T}(M_{\bullet}): \cdots \to E(3)^{2} \xrightarrow{\begin{pmatrix} e_{0} \\ e_{1} \end{pmatrix}} E(2)^{1} \xrightarrow{\begin{pmatrix} e_{0} \cdot e_{1} \\ 0 \end{pmatrix}} E(0)^{1} \xrightarrow{\begin{pmatrix} e_{0} \ e_{1} \\ 0 \end{pmatrix}} E(-1)^{2} \xrightarrow{\begin{pmatrix} e_{0} \ e_{1} \ 0 \\ 0 \ e_{0} \ e_{1} \end{pmatrix}} \cdots$$

# The BETT diagram

### The Betti diagram for cocomplexes is given by

As we have just seen, the TATE resolution is not a linear complex any more. Killing nonlinearities gives rise to the following definition.

#### Definition

Let  $(C,\partial)$  be  $\mathit{minimal}^a$  graded cocomplex of finitely presented graded E-modules. The **linear part**  $\lim C$  of C is defined by keeping the objects and erasing all entries in  $\partial$  not having degree -1.

<sup>&</sup>lt;sup>a</sup>minimal is defined as  $\operatorname{im}(\partial) \subseteq \mathfrak{m}C$ 

### Definition

Let T be the TATE resolution of a graded S-module  $M_{\bullet}$ . Define the  $H^i$ -part of  $T^m$  to be the summand of  $T^m$  having (internal) degree m, i.e., internal degree equal to i + the cohomological degree. Call it the i-th linear strand of the TATE resolution  $\mathbf{H}^i\mathbf{T}(M)$ 

# $\mathbf{T}(M)$ and $\mathbf{H}_{\bullet}^{0}\mathbf{T}(M)$

Let  $S:=k[x_0,x_1]$  and  $M_{\bullet}:=S^{1\times 2}/\begin{pmatrix} x_0 & x_0 \end{pmatrix}$  with  $\operatorname{reg}(M)=0$ :

# $\mathbf{T}(M)$ and $\mathbf{H}_{\bullet}^{0}\mathbf{T}(M)$

Let  $S:=k[x_0,x_1]$  and  $M_{\bullet}:=S^{1\times 2}/\left(x_0 \quad x_0\right)$  with  $\operatorname{reg}(M)=0$ :  $\mathbf{T}(M)$ 

$$\cdots E(3) \oplus E(4)^{3} \xrightarrow{\begin{pmatrix} e_{1} & 0 & 0 \\ 0 & e_{1} & 0 \\ 0 & e_{0} & e_{1} \\ 0 & 0 & e_{0} \end{pmatrix}} E(2) \oplus E(3)^{2} \xrightarrow{\begin{pmatrix} e_{1} & 0 \\ 0 & e_{1} \\ 0 & e_{0} \end{pmatrix}} E(1) \oplus E(2)$$

$$\xrightarrow{\begin{pmatrix} e_{1} & e_{1} \\ e_{0} \cdot e_{1} & 0 \end{pmatrix}} E(1)^{2} \xrightarrow{\begin{pmatrix} e_{1} & 0 - e_{0} & 0 \\ 0 & e_{0} & e_{1} & 0 \\ 0 & 0 & e_{0} & e_{1} \end{pmatrix}} E(-2)^{4} \cdots$$

# $\mathbf{T}(M)$ and $\mathbf{H}_{\bullet}^{0}\mathbf{T}(M)$

Let  $S:=k[x_0,x_1]$  and  $M_{\bullet}:=S^{1\times 2}/\left(x_0 \quad x_0\right)$  with  $\operatorname{reg}(M)=0$ :  $\mathbf{H}^0_{\bullet}\mathbf{T}(M)$ 

$$E(3) \oplus E(4)^{3} \xrightarrow{e_{1} \quad 0 \quad 0 \atop 0 \quad e_{0} \quad e_{1} \quad 0 \atop 0 \quad 0 \quad e_{0} \quad e_{1} \quad 0 \atop 0 \quad 0 \quad e_{0} \quad E(2) \oplus E(3)^{2} \xrightarrow{e_{1} \quad 0 \quad e_{0} \quad e_{1} \quad 0 \atop 0 \quad e_{0} \quad e_{1} \quad 0} E(1) \oplus E(2)$$

$$\xrightarrow{\left(\begin{array}{c} e_{1} \quad e_{1} \\ e_{0} \cdot e_{1} \quad 0 \end{array}\right)} E(1) \oplus E(2)$$

$$\xrightarrow{\left(\begin{array}{c} e_{1} \quad e_{1} \\ e_{0} \cdot e_{1} \quad 0 \end{array}\right)} E(1) \oplus E(2)$$

$$\xrightarrow{\left(\begin{array}{c} e_{1} \quad e_{1} \\ 0 \quad e_{0} \quad e_{1} \quad 0 \end{array}\right)} E(1) \oplus E(2)$$

$$\xrightarrow{\left(\begin{array}{c} e_{1} \quad 0 \quad -e_{0} \quad 0 \\ 0 \quad e_{0} \quad e_{1} \quad 0 \\ 0 \quad 0 \quad e_{0} \quad e_{1} \quad 0 \end{array}\right)} E(-2)^{4} \quad \dots$$

### Theorem ([EFS03, Theorem 4.1])

If  $\mathfrak{F}$  is a coherent sheaf on  $\mathbb{P}(W)$  then

$$\lim \mathbf{T}(\mathfrak{F}) = \bigoplus_{i=0}^{n} \mathbf{R} \left( H_{\bullet}^{i}(\mathfrak{F}) \right) = \bigoplus_{i=0}^{n} \mathbf{R} \left( \bigoplus_{m} H^{i}(\mathfrak{F}(m)) \right).$$

In particular,

$$(\mathbf{T}(\mathfrak{F}))^m = \bigoplus_i E(-m-i) \otimes_K H^i(\mathfrak{F}(m-i)).$$

This yields a method to compute sheaf cohomology.



# Connection between sheaf and local cohomology

# **Summary**

Let  $M_{\bullet}$  be a graded S-module and  $\mathfrak{F} := \operatorname{Proj} M$ , its sheafification.

① The linear free E-complex  $\mathbf{H}^i\mathbf{T}(M)$  corresponds via the  $\mathbf{R}$  functor to then i-th cohomology module

$$H^i_{\bullet}(\mathfrak{F}) := \bigoplus_{d \in \mathbb{Z}} H^i(\mathfrak{F}(d)).$$

- 2  $H^i_{\bullet}(\mathfrak{F}) \cong H^{i+1}_{\mathfrak{m}}(M)$ , the i+1-st local cohomology of  $M_{\bullet}$ .
- The sequence

$$0 \to H^0_{\mathfrak{m}}(M) \to M \to H^0_{\bullet}(\mathfrak{F}) \to H^1_{\mathfrak{m}}(M) \to 0$$

is exact.



The functor  ${\bf R}$  and the Castelnuovo-Mumford regularity The TATE functor  ${\bf T}$ 

Thank you for your attention



David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, *Sheaf cohomology and free resolutions over exterior algebras*, Trans. Amer. Math. Soc. **355** (2003), no. 11, 4397–4426 (electronic). MR MR1990756 (2004f:14031)