SINGULAR Tutorial Exercise Sheet 1

for beginners

Exercise 1. Start a Singular session.

- (1) Define a ring by typing ring R;. Then type R; or basering; to obtain information on the ring R. Observe that R is the polynomial ring $F_{32003}[x, y, z]$ equipped with the degree reverse lexicographic order dp. Define the polynomial $f = x^4 + x^3z + x^2y^2 + yz^4 + z^5$. Print f by typing f;. How are the monomials of f ordered?
- (2) Use the ring command to define a new ring S which differs from R only by the choice of the monomial order: choose the lexicographic order 1p. Use the command fetch to map f from R to S (call the "new" polynomial g). Print g. How are the monomials ordered now?

Exercise 2. Define in SINGULAR the polynomial ring in the two variables a, b over the rational numbers with the ordering dp. Define in this ring the polynomial

$$f = \frac{33375}{100} \cdot b^6 + a^2 \cdot (11a^2b^2 - b^6 - 121b^4 - 2) + \frac{55}{10} \cdot b^8 + \frac{a}{2 \cdot 33096}$$

and substitute for the variable a the value 77617 and for b the value 33096 using the **subst** command. Now define another ring, the polynomial ring in a, b with real coefficients with precision 10. Repeat everything and compare the results. Now define another ring, the polynomial ring in a, b with real coefficients with precision 20. Repeat everything and compare the results. Repeat this with precision 30.

Exercise 3. Generate 10 homogeneous random polynomials in 5 variables of degree 5 over a finite (!) field (of your choice).

- (1) Compute a lexicographic Groebner basis for the ideal generated by the 10 polynomials (use timer to check the computing time).
- (2) How many Groebner basis elements do you get? Print all elements.
- (3) Print the degree of the first and the last element, respectively.
- (4) Write the computed Groebner basis to a file named lexGB.out (use the write command).
- (5) Repeat (1) (3), replacing the lexicographic order 1p by the degree reverse lexicographic order dp. Write the computed Groebner basis to a file named dpGB.out.

Exercise 4. This exercise is concerned with Singular procedures. Check the SIN-GULAR on-line help system for proc.

- (1) Write a Singular procedure which takes as input an ideal I, given by generators f_1, \ldots, f_r , and which returns the maximum degree of the f_i .
- (2) Apply the procedure to the Groebner bases computed in Exercise 3 (read the data from the files lexGB.out, respectively dpGB.out).

Andreas Steenpass

SINGULAR Tutorial Exercise Sheet 2

for beginners

Exercise 1. Write a SINGULAR procedure to sort the generators of an ideal by their leading monomials in increasing order.

Apply your procedure to several non-trivial examples of your own choice.

Exercise 2. Implement the normal form algorithm as a SINGULAR procedure.

Exercise 3. Implement Buchberger's algorithm as a SINGULAR procedure.

Andreas Steenpass

SINGULAR Tutorial Exercise Sheet 3

just for the fun of it

Exercise 1. A well-posed sudoku

	3							
			1	9	5			
	9	8					6	
8				6				
4					3			1
				2				
	6					2	8	
			4	1	9			5
							7	

has a unique solution. In this and further exercises, we will write a SINGULAR library for solving sudokus.

To begin, given a sudoku as above, define

 $E := \{(i, j) | i < j \text{ and } i, j \text{ in the same row, column or } 3 \times 3 - \text{box} \}.$

Write a SINGULAR procedure which creates E.

Exercise 2. In exercise 1, you numbered all the single squares of a sudoku by $1, \ldots, 81$. In order to assure that your procedures are compatible to each other, you should keep this numbering throughout all these exercises.

For each i = 1, ..., 81, let $F_i \in \mathbb{Q}[x_1, ..., x_{81}]$ be the polynomial defined by

$$F_i := \prod_{j=1}^9 (x_i - j) \,,$$

and for each pair $(i, j) \in E$, let $G_{i,j} \in \mathbb{Q}[x_1, \ldots, x_{81}]$ be the polynomial defined by

$$G_{i,j} := \frac{F_i - F_j}{x_i - x_j} \,.$$

Let $F \subset \mathbb{Q}[x_1, \ldots, x_{81}]$ be the ideal generated by the 81 polynomials $\{F_i\}_{i=1,\ldots,81}$ and let $G \subset \mathbb{Q}[x_1, \ldots, x_{81}]$ be the ideal generated by the 810 polynomials $\{G_{i,j}\}_{(i,j)\in E}$. Finally, set $I := F + G \subset \mathbb{Q}[x_1, \ldots, x_{81}]$.

- (1) Write a Singular procedure which returns F.
- (2) Write a Singular procedure which returns G.

(3) Prove that $a = (a_1, \ldots, a_{81}) \in V(I)$ if and only if $a_i \in \{1, \ldots, 9\}$ and $a_i \neq a_j$ for $(i, j) \in E$.

Exercise 3. Let *I* be the ideal defined in ex. 12. Let $L \subset \{1, \ldots, 81\}$ be the set of preassigned places and $\{a_i\}_{i \in L}$ the corresponding numbers of a concrete well posed sudoku *S*. Then

$$I_S := I + < \{x_i - a_i\}_{i \in L} >$$

is the ideal associated to the sudoku S.

Show that the reduced Gröbner basis of I_S with respect to the lexicographical order has the shape $x_1 - a_1, \ldots, x_{81} - a_{81}$ and (a_1, \ldots, a_{81}) is the solution of the sudoku.

Exercise 4. Now put everything together and write a Singular procedure which is capable of solving sudokus where the given sudoku S is represented by a 9×9 -intmat with zero entries at all places which are not preassigned.

As a suggestion, you could split your solution into three procedures, one for creating the ideal I_S , a second one to read off the solution from the reduced Gröbner basis, and a third one to put everything together.

Use your implementation to solve the sudoku from exercise 1.

Andreas Steenpass

SINGULAR Tutorial Exercise Sheet 4

for experts

Exercise 1. Write a SINGULAR library which provides functionality to support research on square-free monomial ideals and Stanley-Reisner rings.