Generic Initial Ideals; Lecture 1

Jürgen Herzog Universität Duisburg-Essen

Workshop on Computational Commutative Algebra,

July 2-7, 2011

University of Tehran and IPM

Outline

Zariski open sets and linear automorphisms

Definition of generic initial ideals

Existence

Outline

Zariski open sets and linear automorphisms

Definition of generic initial ideals

Existence

Outline

Zariski open sets and linear automorphisms

Definition of generic initial ideals

Existence

Zariski open sets

Let K be an infinite field. A subset of the affine space K^m is called Zariski closed if it is the set of common zeroes of a set of polynomials in m variables. A Zariski open subset of K^m is by definition the complement of a Zariski closed subset. The topology so defined on K^m is called the Zariski topology.

Zariski open sets

Let K be an infinite field. A subset of the affine space K^m is called Zariski closed if it is the set of common zeroes of a set of polynomials in m variables. A Zariski open subset of K^m is by definition the complement of a Zariski closed subset. The topology so defined on K^m is called the Zariski topology.

An important property of Zariski open sets is given in

Lemma 1: Let $U_1, \ldots, U_r \subset K^m$ be nonempty Zariski open sets. Then $U_1 \cap \ldots \cap U_r \neq \emptyset$.

Zariski open sets

Let K be an infinite field. A subset of the affine space K^m is called Zariski closed if it is the set of common zeroes of a set of polynomials in m variables. A Zariski open subset of K^m is by definition the complement of a Zariski closed subset. The topology so defined on K^m is called the Zariski topology.

An important property of Zariski open sets is given in

Lemma 1: Let $U_1, \ldots, U_r \subset K^m$ be nonempty Zariski open sets. Then $U_1 \cap \ldots \cap U_r \neq \emptyset$.

It is enough to show that $U \cap U' \neq \emptyset$, if U and U' are nonempty Zariski open sets of K^m . Let $A = K^m \setminus U$ and $A' = K^m \setminus U'$, and assume that A is the common set of zeroes of the polynomials f_1, \ldots, f_r and A' is the common set of zeroes of the polynomials g_1, \ldots, g_s . Let $\mathbf{x} \in U$ and $\mathbf{x}' \in U'$. Then there exist f_i and g_j with $f_i(\mathbf{x}) \neq 0$ and $g_j(\mathbf{x}') \neq 0$.

The Lemma implies that a non-empty Zariski open set U in K^n is a dense subsets of K^n . Thus if we choose a "random" point $\mathbf{x} \in K^n$ then it belongs most likely to U.

The Lemma implies that a non-empty Zariski open set U in K^n is a dense subsets of K^n . Thus if we choose a "random" point $\mathbf{x} \in K^n$ then it belongs most likely to U.

Let $S = K[x_1, \dots, x_n]$ be the polynomial ring in n variables and let $GL_n(K)$ denote the general linear group, that is, the group of all invertible $n \times n$ -matrices with entries in K.

The Lemma implies that a non-empty Zariski open set U in K^n is a dense subsets of K^n . Thus if we choose a "random" point $\mathbf{x} \in K^n$ then it belongs most likely to U.

Let $S = K[x_1, \dots, x_n]$ be the polynomial ring in n variables and let $GL_n(K)$ denote the general linear group, that is, the group of all invertible $n \times n$ -matrices with entries in K.

Any $\alpha \in GL_n(K)$, $\alpha = (a_{ij})$ induces an automorphism

$$\alpha: S \to S, \quad f(x_1, \ldots, x_n) \mapsto f(\sum_{i=1}^n a_{i1}x_i, \ldots, \sum_{i=1}^n a_{in}x_i).$$

The Lemma implies that a non-empty Zariski open set U in K^n is a dense subsets of K^n . Thus if we choose a "random" point $\mathbf{x} \in K^n$ then it belongs most likely to U.

Let $S = K[x_1, ..., x_n]$ be the polynomial ring in n variables and let $GL_n(K)$ denote the general linear group, that is, the group of all invertible $n \times n$ -matrices with entries in K.

Any $\alpha \in GL_n(K)$, $\alpha = (a_{ij})$ induces an automorphism

$$\alpha: S \to S, \quad f(x_1, \ldots, x_n) \mapsto f(\sum_{i=1}^n a_{i1}x_i, \ldots, \sum_{i=1}^n a_{in}x_i).$$

This type of automorphism of *S* is called a linear automorphism.

The set $M_n(K)$ of all $n \times n$ matrices may be identified with the points in $K^{n \times n}$, the coordinates of the points being the entries of the corresponding matrices.

The set $M_n(K)$ of all $n \times n$ matrices may be identified with the points in $K^{n \times n}$, the coordinates of the points being the entries of the corresponding matrices.

It is then clear that $GL_n(K)$ is a Zariski open subset of $M_n(K)$, because $\alpha \in M_n(K)$ belongs to $GL_n(K)$ if and only if $\det \alpha \neq 0$.

The set $M_n(K)$ of all $n \times n$ matrices may be identified with the points in $K^{n \times n}$, the coordinates of the points being the entries of the corresponding matrices.

It is then clear that $GL_n(K)$ is a Zariski open subset of $M_n(K)$, because $\alpha \in M_n(K)$ belongs to $GL_n(K)$ if and only if $\det \alpha \neq 0$.

This is the case if and only if α does not belong to the Zariski closed set which is defined as the set of zeroes of the polynomial $\det(x_{ij}) \in K[\{x_{ij}\}_{i,j=1,...,n}]$.

The set $M_n(K)$ of all $n \times n$ matrices may be identified with the points in $K^{n \times n}$, the coordinates of the points being the entries of the corresponding matrices.

It is then clear that $GL_n(K)$ is a Zariski open subset of $M_n(K)$, because $\alpha \in M_n(K)$ belongs to $GL_n(K)$ if and only if $\det \alpha \neq 0$.

This is the case if and only if α does not belong to the Zariski closed set which is defined as the set of zeroes of the polynomial $\det(x_{ij}) \in K[\{x_{ij}\}_{i,j=1,...,n}]$.

Since $GL_n(K)$ itself is open, a subset of $GL_n(K)$ is open if and only if it is a Zariski open subset of $K^{n\times n}$.

Theorem 1: Let $I \subset S$ be a graded ideal and < a monomial order on S with $x_1 > x_2 > \cdots > x_n$. Then there exists a nonempty open subset $U \subset GL_n(K)$ such that

$$in_{<}(\alpha I) = in_{<}(\alpha' I)$$

for all $\alpha, \alpha' \in U$.

Theorem 1: Let $I \subset S$ be a graded ideal and < a monomial order on S with $x_1 > x_2 > \cdots > x_n$. Then there exists a nonempty open subset $U \subset GL_n(K)$ such that

$$\operatorname{in}_{<}(\alpha I) = \operatorname{in}_{<}(\alpha' I)$$

for all $\alpha, \alpha' \in U$.

Definition: The ideal $\operatorname{in}_{<}(\alpha I)$ with $\alpha \in U$ and $U \subset \operatorname{GL}_n(K)$ as given in Theorem 1 is called the generic initial ideal of I with respect to the monomial order <.

Theorem 1: Let $I \subset S$ be a graded ideal and < a monomial order on S with $x_1 > x_2 > \cdots > x_n$. Then there exists a nonempty open subset $U \subset GL_n(K)$ such that

$$\operatorname{in}_{<}(\alpha I) = \operatorname{in}_{<}(\alpha' I)$$

for all $\alpha, \alpha' \in U$.

Definition: The ideal $\operatorname{in}_{<}(\alpha I)$ with $\alpha \in U$ and $U \subset \operatorname{GL}_n(K)$ as given in Theorem 1 is called the generic initial ideal of I with respect to the monomial order <.

It is denoted $gin_{<}(I)$.

Outline of the proof of Theorem 1.

Outline of the proof of Theorem 1.

Let $d, t \in \mathbb{N}$ with $t \leq \dim_K S_d$. We consider the tth exterior power $\bigwedge^t S_d$ of the K-vector space S_d .

Outline of the proof of Theorem 1.

Let $d, t \in \mathbb{N}$ with $t \leq \dim_K S_d$. We consider the tth exterior power $\bigwedge^t S_d$ of the K-vector space S_d .

Given a monomial order < on S, an element $u_1 \wedge u_2 \wedge \cdots \wedge u_t$ where each u_i is a monomial of degree d and where $u_1 > u_2 > \cdots > u_t$, will be called a standard exterior monomial.

Outline of the proof of Theorem 1.

Let $d, t \in \mathbb{N}$ with $t \leq \dim_K S_d$. We consider the tth exterior power $\bigwedge^t S_d$ of the K-vector space S_d .

Given a monomial order < on S, an element $u_1 \wedge u_2 \wedge \cdots \wedge u_t$ where each u_i is a monomial of degree d and where $u_1 > u_2 > \cdots > u_t$, will be called a standard exterior monomial.

It is clear that the standard exterior monomials form a K-basis of $\bigwedge^t S_d$. In particular, any element $f \in \bigwedge^t S_d$ is a unique linear combination of standard exterior monomials.

Outline of the proof of Theorem 1.

Let $d, t \in \mathbb{N}$ with $t \leq \dim_K S_d$. We consider the tth exterior power $\bigwedge^t S_d$ of the K-vector space S_d .

Given a monomial order < on S, an element $u_1 \wedge u_2 \wedge \cdots \wedge u_t$ where each u_i is a monomial of degree d and where $u_1 > u_2 > \cdots > u_t$, will be called a standard exterior monomial.

It is clear that the standard exterior monomials form a K-basis of $\bigwedge^t S_d$. In particular, any element $f \in \bigwedge^t S_d$ is a unique linear combination of standard exterior monomials.

The support of f is the set supp(f) of standard exterior monomials which appear in f with a nonzero coefficient.

We order the standard exterior monomials lexicographically by setting

$$u_1 \wedge u_2 \wedge \cdots \wedge u_t > v_1 \wedge v_2 \wedge \cdots \wedge v_t$$

if $u_i > v_i$ for the smallest index i with $u_i \neq v_i$.

We order the standard exterior monomials lexicographically by setting

$$u_1 \wedge u_2 \wedge \cdots \wedge u_t > v_1 \wedge v_2 \wedge \cdots \wedge v_t$$

if $u_i > v_i$ for the smallest index i with $u_i \neq v_i$.

This allows us to define the initial monomial $in_{<}(f)$ of a nonzero element $f \in \bigwedge^t S_d$ as the largest standard exterior monomial in the support of f.

We order the standard exterior monomials lexicographically by setting

$$u_1 \wedge u_2 \wedge \cdots \wedge u_t > v_1 \wedge v_2 \wedge \cdots \wedge v_t$$

if $u_i > v_i$ for the smallest index i with $u_i \neq v_i$.

This allows us to define the initial monomial in_<(f) of a nonzero element $f \in \bigwedge^t S_d$ as the largest standard exterior monomial in the support of f.

Now let $\alpha \in \operatorname{GL}_n(K)$ be a linear automorphism of S, $V \subset S_d$ a t-dimensional subspace of S_d and f_1, f_2, \ldots, f_t a K-basis of V. Then $\alpha(f_1), \alpha(f_2), \ldots, \alpha(f_t)$ is a K-basis of the vector subspace $\alpha V \subset S_d$.

Lemma 2: Let $w_1 \wedge \cdots \wedge w_t$ be the largest standard exterior monomial of $\bigwedge^t S_d$ with the property that there exists $\alpha \in GL_n(K)$ with

$$\operatorname{in}_{<}(\alpha(f_1) \wedge \cdots \wedge \alpha(f_t)) = w_1 \wedge \cdots \wedge w_t.$$

Then the set

$$U = \{\alpha \in \mathsf{GL}_n(K) : \mathsf{in}_{<}(\alpha(f_1) \wedge \cdots \wedge \alpha(f_t)) = w_1 \wedge \cdots \wedge w_t\}$$

is a nonempty Zariski open subset of $GL_n(K)$.

Lemma 2: Let $w_1 \wedge \cdots \wedge w_t$ be the largest standard exterior monomial of $\bigwedge^t S_d$ with the property that there exists $\alpha \in GL_n(K)$ with

$$\operatorname{in}_{<}(\alpha(f_1) \wedge \cdots \wedge \alpha(f_t)) = w_1 \wedge \cdots \wedge w_t.$$

Then the set

$$U = \{\alpha \in \mathsf{GL}_n(K) : \mathsf{in}_{<}(\alpha(f_1) \wedge \cdots \wedge \alpha(f_t)) = \mathsf{w}_1 \wedge \cdots \wedge \mathsf{w}_t\}$$

is a nonempty Zariski open subset of $GL_n(K)$.

We observe that if $\operatorname{in}_{<}(\alpha(f_1) \wedge \cdots \wedge \alpha(f_t)) = w_1 \wedge w_2 \wedge \cdots \wedge w_t$, then $\operatorname{in}_{<}(\alpha V)$ has the *K*-basis w_1, \ldots, w_t . In particular, $\operatorname{in}_{<}(\alpha V)$ does not depend on $\alpha \in U$.

The following example demonstrates the lemma.

The following example demonstrates the lemma.

Let $S = K[x_1, x_2]$, and < the lexicographic monomial order on S. Then the standard exterior monomials in $\bigwedge^2 S_2$ are:

$$x_1^2 \wedge x_1 x_2 > x_1^2 \wedge x_2^2 > x_1 x_2 \wedge x_2^2$$
.

Let
$$f_1 = x_1^2$$
, $f_2 = x_2^2$ and $\alpha \in GL_2(K)$. Then

$$\alpha(f_1) = \alpha_{11}^2 \mathbf{x}_1^2 + 2\alpha_{11}\alpha_{21}\mathbf{x}_1\mathbf{x}_2 + \alpha_{21}^2\mathbf{x}_2^2$$

and

$$\alpha(f_2) = \alpha_{12}^2 x_1^2 + 2\alpha_{12}\alpha_{22}x_1x_2 + \alpha_{22}^2 x_2^2$$

. Therefore,

$$\alpha(f_1) \wedge \alpha(f_2) = (2\alpha_{11}^2 \alpha_{12} \alpha_{22} - 2\alpha_{12}^2 \alpha_{11} \alpha_{21}) x_1^2 \wedge x_1 x_2 + \cdots,$$

and so
$$p(\alpha) = 2(\alpha_{11}^2 \alpha_{12} \alpha_{22} - \alpha_{12}^2 \alpha_{11} \alpha_{21}).$$

Let $d \in \mathbb{Z}_+$ with $I_d \neq 0$. We define the nonempty Zariski open subset $U_d \subset \operatorname{GL}_n(K)$ for the linear subspace $I_d \subset \operatorname{S}_d$ similarly to how we defined in Lemma 2 the Zariski open subset $U \subset \operatorname{GL}_n(K)$ for $V \subset \operatorname{S}_d$. For those $d \in \mathbb{Z}_+$ with $I_d = 0$, we set $U_d = \operatorname{GL}_n(K)$.

Let $d \in \mathbb{Z}_+$ with $I_d \neq 0$. We define the nonempty Zariski open subset $U_d \subset \operatorname{GL}_n(K)$ for the linear subspace $I_d \subset \operatorname{S}_d$ similarly to how we defined in Lemma 2 the Zariski open subset $U \subset \operatorname{GL}_n(K)$ for $V \subset \operatorname{S}_d$. For those $d \in \mathbb{Z}_+$ with $I_d = 0$, we set $U_d = \operatorname{GL}_n(K)$.

Let $\alpha \in U_d$ and set $J_d = \operatorname{in}_{<}(\alpha I_d)$. By the definition of U_d , the vector space J_d does not depend on the particular choice of $\alpha \in U_d$. We claim that $J = \bigoplus_d J_d$ is an ideal.

Let $d \in \mathbb{Z}_+$ with $I_d \neq 0$. We define the nonempty Zariski open subset $U_d \subset \operatorname{GL}_n(K)$ for the linear subspace $I_d \subset \operatorname{S}_d$ similarly to how we defined in Lemma 2 the Zariski open subset $U \subset \operatorname{GL}_n(K)$ for $V \subset \operatorname{S}_d$. For those $d \in \mathbb{Z}_+$ with $I_d = 0$, we set $U_d = \operatorname{GL}_n(K)$.

Let $\alpha \in U_d$ and set $J_d = \operatorname{in}_{<}(\alpha I_d)$. By the definition of U_d , the vector space J_d does not depend on the particular choice of $\alpha \in U_d$. We claim that $J = \bigoplus_d J_d$ is an ideal.

In fact, for a given $d \in \mathbb{Z}_+$, we have $U_d \cap U_{d+1} \neq \emptyset$. Then for any $\alpha \in U_d \cap U_{d+1}$ it follows that

$$S_1 J_d = S_1 \operatorname{in}_{<}(\alpha I_d) \subset \operatorname{in}_{<}(\alpha I_{d+1}) = J_{d+1},$$

which shows that J is indeed an ideal.

Let c be the highest degree of a generator of J, and let $U = U_1 \cap U_2 \cap \cdots \cap U_c$. For any $\alpha \in U$ we will show that $J_d = \operatorname{in}_{<}(\alpha I_d)$ for all d.

This is obviously the case for $d \le c$, because $\alpha \in U_d$ for all $d \le c$.

This is obviously the case for $d \le c$, because $\alpha \in U_d$ for all $d \le c$.

Now let $d \ge c$. We show by induction on d, that $J_d = \operatorname{in}_<(\alpha I_d)$. For d = c, there is nothing to prove. Now let d > c. Applying the induction hypothesis we get

$$J_d = S_1 J_{d-1} = S_1 \operatorname{in}_{<}(\alpha I_{d-1}) \subset \operatorname{in}_{<}(\alpha I_d).$$

This is obviously the case for $d \le c$, because $\alpha \in U_d$ for all $d \le c$.

Now let $d \ge c$. We show by induction on d, that $J_d = \text{in}_<(\alpha I_d)$. For d = c, there is nothing to prove. Now let d > c. Applying the induction hypothesis we get

$$J_d = S_1 J_{d-1} = S_1 \operatorname{in}_{<}(\alpha I_{d-1}) \subset \operatorname{in}_{<}(\alpha I_d).$$

Since $\dim_K J_d = \dim_K \operatorname{in}_<(\alpha I_d)$ we conclude that $J_d = \operatorname{in}_<(\alpha I_d)$.

This is obviously the case for $d \le c$, because $\alpha \in U_d$ for all $d \le c$.

Now let $d \ge c$. We show by induction on d, that $J_d = \text{in}_<(\alpha I_d)$. For d = c, there is nothing to prove. Now let d > c. Applying the induction hypothesis we get

$$J_d = S_1 J_{d-1} = S_1 \operatorname{in}_{<}(\alpha I_{d-1}) \subset \operatorname{in}_{<}(\alpha I_d).$$

Since $\dim_K J_d = \dim_K \operatorname{in}_{<}(\alpha I_d)$ we conclude that $J_d = \operatorname{in}_{<}(\alpha I_d)$.

The (nonempty) Zariski open set U just defined, has the desired property. \checkmark

It can be shown that the Zariski open set $U \subset GL(n)$ with $gin_{<}(I) = in_{<}(\alpha I)$ meets non-trivially the group $\mathcal U$ of upper triangular matrices with ones on the diagonal. Thus in practice we may choose a "random" $\alpha \in \mathcal U$ to compute $gin_{<}(I)$ as $in_{<}(\alpha I)$.

It can be shown that the Zariski open set $U \subset \operatorname{GL}(n)$ with $\operatorname{gin}_<(I) = \operatorname{in}_<(\alpha I)$ meets non-trivially the group $\mathcal U$ of upper triangular matrices with ones on the diagonal. Thus in practice we may choose a "random" $\alpha \in \mathcal U$ to compute $\operatorname{gin}_<(I)$ as $\operatorname{in}_<(\alpha I)$.

We compute $gin_{<}(I)$ for $I=(x^2,y^2,z^2)$ and the lexicographic order induced by x>y>z. Let

$$\alpha = \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right).$$

It can be shown that the Zariski open set $U \subset \operatorname{GL}(n)$ with $\operatorname{gin}_<(I) = \operatorname{in}_<(\alpha I)$ meets non-trivially the group $\mathcal U$ of upper triangular matrices with ones on the diagonal. Thus in practice we may choose a "random" $\alpha \in \mathcal U$ to compute $\operatorname{gin}_<(I)$ as $\operatorname{in}_<(\alpha I)$.

We compute $gin_{<}(I)$ for $I=(x^2,y^2,z^2)$ and the lexicographic order induced by x>y>z. Let

$$\alpha = \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right).$$

Then

$$\alpha(I) = (x^2, (ax + y)^2, (bx + cy + z)^2)$$

$$\operatorname{gin}_{<}(I) = (x^2, xy, xz, y^3, y^2z, yz^2, z^4), \quad \text{if}$$
 $\operatorname{char} K \neq 2, 3 \quad \text{and} \quad \operatorname{abc}(\operatorname{ac} - \operatorname{b}) \neq 0,$

$$gin_{<}(I) = (x^2, xy, xz, y^3, y^2z, yz^2, z^4), \quad \text{if}$$
 $char K \neq 2, 3 \quad \text{and} \quad abc(ac - b) \neq 0,$

and

$$gin_{<}(I) = (x^2, xy, xz, y^3, y^2z, z^3), \quad \text{if}$$
 $char K = 3 \quad \text{and} \quad ab(ac + b) \neq 0$

$$gin_{<}(I)=(x^2,xy,xz,y^3,y^2z,yz^2,z^4), \quad \text{if}$$
 $char K \neq 2,3 \quad and \quad abc(ac-b) \neq 0,$

and

$$gin_{<}(I)=(x^2,xy,xz,y^3,y^2z,z^3), \quad \text{if} \ \ \text{char}\, K=3 \quad \text{and} \quad ab(ac+b)\neq 0$$

and finally I if char K = 2.

$$\label{eq:gin} \begin{split} & \operatorname{gin}_<(I) = (x^2, xy, xz, y^3, y^2z, yz^2, z^4), \quad \text{if} \\ & \operatorname{char} K \neq 2, 3 \quad \text{and} \quad abc(ac-b) \neq 0, \end{split}$$

and

$$gin_{<}(I)=(x^2,xy,xz,y^3,y^2z,z^3), \quad \text{if} \\ char\,K=3 \quad \text{and} \quad ab(ac+b)\neq 0$$

and finally I if char K = 2.

One might ask whether the gin of a complete intersection does depend on the specific complete intersection. Not surprisingly it does. In the case d=3 and n=4 the monomial and the generic complete intersection have distinct gins but the two ideals have the same Betti numbers.

In the case d = 3 and n = 4 the monomial and the generic complete intersection have distinct gins but the two ideals have the same Betti numbers.

With CoCoA we get:

$$\begin{aligned} & \text{gin}(a^3, b^3, c^3, d^3) = (a^3, a^2b, ab^2, b^3, a^2c^2, abc^2, ac^3, bc^4, c^5, b^2c^3, \\ & b^2c^2d, bc^3d, c^4d, a^2cd^3, abcd^3, b^2cd^3, ac^2d^3, bc^2d^3, c^3d^3, a^2d^5, \\ & b^2d^5, abd^5, acd^5, bcd^5, c^2d^5, ad^7, bd^7, cd^7, d^9), \end{aligned}$$

In the case d = 3 and n = 4 the monomial and the generic complete intersection have distinct gins but the two ideals have the same Betti numbers.

With CoCoA we get:

$$\begin{aligned} & \text{gin}(\mathbf{a}^3, \mathbf{b}^3, \mathbf{c}^3, \mathbf{d}^3) = (\mathbf{a}^3, \mathbf{a}^2 \mathbf{b}, \mathbf{a} \mathbf{b}^2, \mathbf{b}^3, \mathbf{a}^2 \mathbf{c}^2, \mathbf{a} \mathbf{b} \mathbf{c}^2, \mathbf{a} \mathbf{c}^3, \mathbf{b} \mathbf{c}^4, \mathbf{c}^5, \mathbf{b}^2 \mathbf{c}^3, \\ & \mathbf{b}^2 \mathbf{c}^2 \mathbf{d}, \mathbf{b} \mathbf{c}^3 \mathbf{d}, \mathbf{c}^4 \mathbf{d}, \mathbf{a}^2 \mathbf{c} \mathbf{d}^3, \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d}^3, \mathbf{b}^2 \mathbf{c}^3, \mathbf{a} \mathbf{c}^2 \mathbf{d}^3, \mathbf{b} \mathbf{c}^2 \mathbf{d}^3, \mathbf{c}^3 \mathbf{d}^3, \mathbf{a}^2 \mathbf{d}^5, \\ & \mathbf{b}^2 \mathbf{d}^5, \mathbf{a} \mathbf{b} \mathbf{d}^5, \mathbf{a} \mathbf{c} \mathbf{d}^5, \mathbf{b} \mathbf{c} \mathbf{d}^5, \mathbf{c}^2 \mathbf{d}^5, \mathbf{a} \mathbf{d}^7, \mathbf{b} \mathbf{d}^7, \mathbf{c} \mathbf{d}^7, \mathbf{d}^9), \end{aligned}$$

while for a generic complete intersection *I* we have

$$gin(I) = (a^3, a^2b, ab^2, b^3, a^2c^2, abc^2, b^2c^2, ac^4, bc^4, c^5, ac^3d, bc^3d, \\ c^4d, a^2cd^3, abcd^3, b^2cd^3, ac^2d^3, bc^2d^3, c^3d^3, a^2d^5, abd^5, b^2d^5, acd^5, \\ bcd^5, c^2d^5, ad^7, bd^7, cd^7, d^9)$$

The number of generators of the generic initial ideal of a 0-dimensional generic complete intersection in $K[x_1, \ldots, x_n]$ generated in degree d.

			n→	•		
		2	3	4	5	L
	2	3	6	12	21	Γ
d	3	4	11	29	76	
\forall	4	5	17	60	206	
	5	6	25	108	473	

The same diagram for $gin_{<}(x_1^d, \dots, x_n^d)$.

			n→	•		
		2	3	4	5	
	2	3	6	12	21	Γ
d	3	4	11	29	77	
\forall	4	5	17	60	207	
	5	6	25	108	474	

The same diagram for $gin_{<}(x_1^d, \dots, x_n^d)$.

			n→	•		
		2	3	4	5	L
	2	3	6	12	21	Γ
d ↓	3	4	11	29	77	
	4	5	17	60	207	
	5	6	25	108	474	

Problem: Give an explicit formula for the minimal number of generators $\mu(n, d)$ of $gin_{<}(x_1^d, \dots, x_n^d)$.

I asked the Encyclopedia of Integer Sequences

http://oeis.org/

I asked the Encyclopedia of Integer Sequences

http://oeis.org/

Interpretation of the second column: Index of 5^n within the sequence of numbers of form $3^i 5^j$.

 $1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, \cdots$

I asked the Encyclopedia of Integer Sequences

http://oeis.org/

Interpretation of the second column: Index of 5^n within the sequence of numbers of form 3^i5^j .

$$1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, \cdots$$

Interpretation of the third column:

I'm sorry, but your terms do not match anything in the table.

