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called Zariski closed if it is the set of common zeroes of a set of
polynomials in m variables. A Zariski open subset of K™ is by
definition the complement of a Zariski closed subset. The
topology so defined on K™ is called the Zariski topology.

An important property of Zariski open sets is given in

Lemma 1: LetUy,...,U; € K™ be nonempty Zariski open
sets. ThenU; N ...NU; # 0.

It is enough to show that U N'U’ # (), if U and U’ are nonempty
Zariski open sets of K™. Let A=K™\ U and A’ = K™\ U’, and
assume that A is the common set of zeroes of the polynomials

fi,...,fr and A’ is the common set of zeroes of the polynomials
d1,.-.,0s. Letx € U and x” € U’. Then there exist f; and g; with

fi(x) # 0 and g;(x’) # 0.
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It follows that fig; # 0. Since K is infinite, there exists x” € K™
such that fig;(x”) # 0. This implies f;(x") # 0 and g;j(x") # 0.
Hencex” e UNU'.v/

The Lemma implies that a non-empty Zariski open set U in K"
is a dense subsets of K". Thus if we choose a “random” point
x € K" then it belongs most likely to U.

Let S = K[xy,...,Xn] be the polynomial ring in n variables and
let GL,(K) denote the general linear group, that is, the group of
all invertible n x n-matrices with entries in K.

Any o € GLy(K), a = (@;) induces an automorphism

n n
a:S =S, f(xe,....xn) = FO ainxi,.... ) anx).
i—1 i—1

This type of automorphism of S is called a linear automorphism.
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Definition of generic initial ideals

The set My (K) of all n x n matrices may be identified with the
points in K"<" the coordinates of the points being the entries
of the corresponding matrices.

It is then clear that GL,(K) is a Zariski open subset of My (K),
because a € My(K) belongs to GL,(K) if and only if det« # 0.

This is the case if and only if o does not belong to the Zariski
closed set which is defined as the set of zeroes of the
polynomial det(x;) € K [{X;j }i j=1...n]-

Since GL,(K) itself is open, a subset of GL,(K)) is open if and
only if it is a Zariski open subset of K"*",



Theorem 1: Letl| C S be a graded ideal and < a monomial
order on S with x; > X, > --- > Xn. Then there exists a
nonempty open subset U C GL,(K) such that
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Theorem 1: Letl| C S be a graded ideal and < a monomial
order on S with x; > X, > --- > Xn. Then there exists a
nonempty open subset U C GL,(K) such that

inc(al) =in_ (1)

for all o,/ € U.

Definition: The ideal in.(«al) with o € U and U € GLy(K) as
given in Theorem 1 is called the generic initial ideal of | with
respect to the monomial order <.

It is denoted gin_(1).



Existence

Outline of the proof of Theorem 1.



Existence

Outline of the proof of Theorem 1.

Letd,t € Nwitht < dimk Sq. We consider the tth exterior
power /\t Sy of the K-vector space Sgy.



Existence

Outline of the proof of Theorem 1.

Letd,t € Nwitht < dimk Sq. We consider the tth exterior
power /\t Sy of the K-vector space Sgy.

Given a monomial order < on S, an elementu; Aus A --- A Ut
where each u; is a monomial of degree d and where
U; > Up > --- > U, Will be called a standard exterior monomial.



Existence

Outline of the proof of Theorem 1.

Letd,t € Nwitht < dimk Sq. We consider the tth exterior
power /\t Sy of the K-vector space Sgy.

Given a monomial order < on S, an elementu; Aus A --- A Ut
where each u; is a monomial of degree d and where
U; > Up > --- > U, Will be called a standard exterior monomial.

It is clear that the standard exterior monomials form a K -basis
of \' Sq. In particular, any element f € \' Sy is a unique linear
combination of standard exterior monomials.



Existence

Outline of the proof of Theorem 1.

Letd,t € Nwitht < dimk Sq. We consider the tth exterior
power /\t Sy of the K-vector space Sgy.

Given a monomial order < on S, an elementu; Aus A --- A Ut
where each u; is a monomial of degree d and where
U; > Up > --- > U, Will be called a standard exterior monomial.

It is clear that the standard exterior monomials form a K -basis
of \' Sq. In particular, any element f € \' Sy is a unique linear
combination of standard exterior monomials.

The support of f is the set supp(f) of standard exterior
monomials which appear in f with a nonzero coefficient.
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We order the standard exterior monomials lexicographically by
setting
Ug AU A--- AUt >Vy AVo A+ AV,

if u; > v; for the smallest index i with u; # v;.

This allows us to define the initial monomial in(f) of a nonzero
element f € \'Sy as the largest standard exterior monomial in
the support of f.

Now let o € GLy(K) be a linear automorphismof S,V C Sy a
t-dimensional subspace of Sy and f,f,, ..., f a K-basis of V.
Then «a(f1), a(f2), ..., a(ft) is a K-basis of the vector subspace
aV C Sqy.



Lemma 2: Letw; A --- AWy be the largest standard exterior
monomial of /\t Sy with the property that there exists
a € GLp(K) with

inc(a(fi) A Aa(ft)) =wg A Awg.
Then the set
U={aeGLy(K): inc(a(fi)A---ANa(ft)) =W A--- AW}
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Lemma 2: Letw; A --- AWy be the largest standard exterior
monomial of /\t Sy with the property that there exists
a € GLp(K) with

inc(a(fi) A Aa(ft)) =wg A Awg.
Then the set
U={acGLy(K): inc(a(fy) A---Aa(fi)) =wi A Aw}
is a nonempty Zariski open subset of GL,(K).

We observe that if in(a(f1) A+ Aa(ft)) =wg Awa A Awg,
then in.(aV) has the K-basis wy, ..., w;. In particular, in-(aV)
does not depend on o € U.
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The following example demonstrates the lemma.

Let S = K|[x1,X2], and < the lexicographic monomial order on
S. Then the standard exterior monomials in \? S, are:

X2 A X1Xp > XZ A X3 > X1Xp A X3,

Letf; = x2, f, = xZ and a € GL,(K). Then

2 2 2 2
a(fl) = a1X] + 200110021 X1 X2 + a51X5
and
2 2 2 2
Oé(fz) = 79Xy + 200100092X1 X2 + Q59X5
. Therefore,

Oé(f]_) AN Oé(fz) = (20[%104120422 — 20[%20[110421)Xf AN XX 4 -+,

and so p(Oé) = 2(0[%10[120422 — 0432()[110421).
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Letd € Z, with Iy # 0. We define the nonempty Zariski open
subset Uy C GL,(K) for the linear subspace Iy C Sy similarly
to how we defined in Lemma 2 the Zariski open subset

U C GL,(K) for V C Sy. For those d € Z with Iy = 0, we set
Ug = GLn(K).

Let o € Uy and set Jg = in-(aly). By the definition of Uy, the
vector space Jyq does not depend on the particular choice of
a € Ug. We claim that J = @ Jq is an ideal.

In fact, for a givend € Z., we have Uy N Uqy,1 # 0. Then for
any o € Ug NUq, it follows that

S]_Jd = S]_ in<(ald) C in<(ald+1) = Jd+1,

which shows that J is indeed an ideal.
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Let ¢ be the highest degree of a generator of J, and let
U=U;NnU,N---NU;. Forany a € U we will show that
Jqg =inc(aly) foralld.

This is obviously the case for d < ¢, because a € Uy for all
d<c.

Now letd > c. We show by induction on d, that Jg = in-(alg).
For d = c, there is nothing to prove. Now let d > c. Applying
the induction hypothesis we get

Ja =S1d4-1 = S1inc(alg-1) C inc(alg).
Since dimg Jg = dimg in-(aly) we conclude that

Jq = in<(ald).
The (nonempty) Zariski open set U just defined, has the
desired property.v’
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It can be shown that the Zariski open set U C GL(n) with
gin_(1) = in-(«l) meets non-trivially the group ¢/ of upper
triangular matrices with ones on the diagonal. Thus in practice
we may choose a “random” o € U to compute gin_(l) as

in<(al).
We compute gin_(1) for | = (x2,y?,z2) and the lexicographic
order induced by x >y > z. Let

¥

a(l) = (x2, (ax +y)?, (bx 4+ cy +z)?)

o O
O r o
= O T

Then
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and we get
gin_(1) = (x%,xy,xz,y3,y?z,yz? z%), if
charK #2,3 and abc(ac —b) # 0,
and

gin_(1) = (x3,xy,xz,y%,y%z,2%), if

charKk =3 and ab(ac+b)#0

and finally | if charK = 2.

One might ask whether the gin of a complete intersection does
depend on the specific complete intersection. Not surprisingly it
does.
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In the case d = 3 and n = 4 the monomial and the generic
complete intersection have distinct gins but the two ideals have
the same Betti numbers.

With CoCoA we get:
gin(a®, b3, ¢c3,d%) = (a®,a?b,ab?, b3 a%c?, abc?, ac®, bc?, ¢, b%c?,
b?c?d,bc3d, c*d,a’cd?, abcd®, b2cd?, ac?d®, bc?d 3, c3d?3, a’d>,
b2d®,abd®, acd®, bed®, c2d®,ad’,bd’, cd’,d®),

while for a generic complete intersection | we have

gin(l) = (a%,a%b,ab? b3 a%c?, abc?, b?c?, ac*, be?, ¢, ac®d, be3d,
c*d,a’cd®, abcd?, b%cd3, ac?d®, bc?d?, c3d?3, a%d®, abd®, b?d®, acd”®,
bed®, c2d® ad’,bd’, cd’,d®)



The number of generators of the generic initial ideal of a
0-dimensional generic complete intersection in K[Xy, ..., Xq]
generated in degree d.

n -
| 2|3 ]4]|5 ]
21 3|6 |12 21
d 3| 4 |11 |29 ]| 76
vV 4| 5 | 17 | 60 | 206
5| 6 | 25 | 108|473
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The same diagram for gin_(x{,...,xd).

n -
| 2|3 ]4]|5 ]
21 3|6 |12] 21
d 3| 4 |11 29| 77
v 4| 5 | 17 | 60 | 207
5| 6 | 25 | 108|474

Problem : Give an explicit formula for the minimal number of

generators u(n,d) of gin_(x?,...,x3).
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| asked the Encyclopedia of Integer Sequences

http://oeis.org/

Interpretation of the second column: o
Index of 5" within the sequence of numbers of form 3'5/.

1,3,5,9,15,25,27,45,75,81,125, - - -

Interpretation of the third column:

I’'m sorry, but your terms do not match anything in the table.
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