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called Zariski closed if it is the set of common zeroes of a set of
polynomials in m variables. A Zariski open subset of K m is by
definition the complement of a Zariski closed subset. The
topology so defined on K m is called the Zariski topology.

An important property of Zariski open sets is given in

Lemma 1: Let U1, . . . , Ur ⊂ K m be nonempty Zariski open
sets. Then U1 ∩ . . . ∩ Ur 6= ∅.

It is enough to show that U ∩ U ′ 6= ∅, if U and U ′ are nonempty
Zariski open sets of K m. Let A = K m \ U and A′ = K m \ U ′, and
assume that A is the common set of zeroes of the polynomials
f1, . . . , fr and A′ is the common set of zeroes of the polynomials
g1, . . . , gs. Let x ∈ U and x′ ∈ U ′. Then there exist fi and gj with
fi(x) 6= 0 and gj(x′) 6= 0.



It follows that figj 6= 0. Since K is infinite, there exists x′′ ∈ K m
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It follows that figj 6= 0. Since K is infinite, there exists x′′ ∈ K m

such that figj(x′′) 6= 0. This implies fi(x′′) 6= 0 and gj(x′′) 6= 0.
Hence x′′ ∈ U ∩ U ′.X

The Lemma implies that a non-empty Zariski open set U in K n

is a dense subsets of K n. Thus if we choose a “random” point
x ∈ K n then it belongs most likely to U.

Let S = K [x1, . . . , xn] be the polynomial ring in n variables and
let GLn(K ) denote the general linear group, that is, the group of
all invertible n × n-matrices with entries in K .

Any α ∈ GLn(K ), α = (aij) induces an automorphism

α : S → S, f (x1, . . . , xn) 7→ f (
n

∑

i=1

ai1xi , . . . ,

n
∑

i=1

ainxi).

This type of automorphism of S is called a linear automorphism.
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Definition of generic initial ideals

The set Mn(K ) of all n × n matrices may be identified with the
points in K n×n, the coordinates of the points being the entries
of the corresponding matrices.

It is then clear that GLn(K ) is a Zariski open subset of Mn(K ),
because α ∈ Mn(K ) belongs to GLn(K ) if and only if det α 6= 0.

This is the case if and only if α does not belong to the Zariski
closed set which is defined as the set of zeroes of the
polynomial det(xij) ∈ K [{xij}i ,j=1,...,n].

Since GLn(K ) itself is open, a subset of GLn(K ) is open if and
only if it is a Zariski open subset of K n×n.
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Theorem 1: Let I ⊂ S be a graded ideal and < a monomial
order on S with x1 > x2 > · · · > xn. Then there exists a
nonempty open subset U ⊂ GLn(K ) such that

in<(αI) = in<(α′I)

for all α,α′ ∈ U.

Definition: The ideal in<(αI) with α ∈ U and U ⊂ GLn(K ) as
given in Theorem 1 is called the generic initial ideal of I with
respect to the monomial order <.

It is denoted gin<(I).
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Let d , t ∈ N with t ≤ dimK Sd . We consider the t th exterior
power

∧t Sd of the K -vector space Sd .

Given a monomial order < on S, an element u1 ∧ u2 ∧ · · · ∧ ut

where each ui is a monomial of degree d and where
u1 > u2 > · · · > ut , will be called a standard exterior monomial.

It is clear that the standard exterior monomials form a K -basis
of

∧t Sd . In particular, any element f ∈
∧t Sd is a unique linear

combination of standard exterior monomials.

The support of f is the set supp(f ) of standard exterior
monomials which appear in f with a nonzero coefficient.
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We order the standard exterior monomials lexicographically by
setting

u1 ∧ u2 ∧ · · · ∧ ut > v1 ∧ v2 ∧ · · · ∧ vt ,

if ui > vi for the smallest index i with ui 6= vi .

This allows us to define the initial monomial in<(f ) of a nonzero
element f ∈

∧t Sd as the largest standard exterior monomial in
the support of f .

Now let α ∈ GLn(K ) be a linear automorphism of S, V ⊂ Sd a
t-dimensional subspace of Sd and f1, f2, . . . , ft a K -basis of V .
Then α(f1), α(f2), . . . , α(ft ) is a K -basis of the vector subspace
αV ⊂ Sd .



Lemma 2: Let w1 ∧ · · · ∧ wt be the largest standard exterior
monomial of

∧t Sd with the property that there exists
α ∈ GLn(K ) with

in<(α(f1) ∧ · · · ∧ α(ft )) = w1 ∧ · · · ∧ wt .

Then the set

U = {α ∈ GLn(K ) : in<(α(f1) ∧ · · · ∧ α(ft)) = w1 ∧ · · · ∧ wt}

is a nonempty Zariski open subset of GLn(K ).



Lemma 2: Let w1 ∧ · · · ∧ wt be the largest standard exterior
monomial of

∧t Sd with the property that there exists
α ∈ GLn(K ) with

in<(α(f1) ∧ · · · ∧ α(ft )) = w1 ∧ · · · ∧ wt .

Then the set

U = {α ∈ GLn(K ) : in<(α(f1) ∧ · · · ∧ α(ft)) = w1 ∧ · · · ∧ wt}

is a nonempty Zariski open subset of GLn(K ).

We observe that if in<(α(f1) ∧ · · · ∧ α(ft)) = w1 ∧ w2 ∧ · · · ∧ wt ,
then in<(αV ) has the K -basis w1, . . . , wt . In particular, in<(αV )
does not depend on α ∈ U.
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Let S = K [x1, x2], and < the lexicographic monomial order on
S. Then the standard exterior monomials in

∧2 S2 are:

x2
1 ∧ x1x2 > x2

1 ∧ x2
2 > x1x2 ∧ x2

2 .

Let f1 = x2
1 , f2 = x2

2 and α ∈ GL2(K ). Then

α(f1) = α
2
11x2

1 + 2α11α21x1x2 + α
2
21x2

2

and
α(f2) = α

2
12x2

1 + 2α12α22x1x2 + α
2
22x2

2

. Therefore,

α(f1) ∧ α(f2) = (2α
2
11α12α22 − 2α

2
12α11α21)x

2
1 ∧ x1x2 + · · · ,

and so p(α) = 2(α2
11α12α22 − α2

12α11α21).
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Let d ∈ Z+ with Id 6= 0. We define the nonempty Zariski open
subset Ud ⊂ GLn(K ) for the linear subspace Id ⊂ Sd similarly
to how we defined in Lemma 2 the Zariski open subset
U ⊂ GLn(K ) for V ⊂ Sd . For those d ∈ Z+ with Id = 0, we set
Ud = GLn(K ).

Let α ∈ Ud and set Jd = in<(αId ). By the definition of Ud , the
vector space Jd does not depend on the particular choice of
α ∈ Ud . We claim that J =

⊕

d Jd is an ideal.

In fact, for a given d ∈ Z+, we have Ud ∩ Ud+1 6= ∅. Then for
any α ∈ Ud ∩ Ud+1 it follows that

S1Jd = S1 in<(αId ) ⊂ in<(αId+1) = Jd+1,

which shows that J is indeed an ideal.
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Let c be the highest degree of a generator of J, and let
U = U1 ∩ U2 ∩ · · · ∩ Uc . For any α ∈ U we will show that
Jd = in<(αId ) for all d .

This is obviously the case for d ≤ c, because α ∈ Ud for all
d ≤ c.

Now let d ≥ c. We show by induction on d , that Jd = in<(αId ).
For d = c, there is nothing to prove. Now let d > c. Applying
the induction hypothesis we get

Jd = S1Jd−1 = S1 in<(αId−1) ⊂ in<(αId ).

Since dimK Jd = dimK in<(αId ) we conclude that

Jd = in<(αId ).

The (nonempty) Zariski open set U just defined, has the
desired property.X
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gin<(I) = in<(αI) meets non-trivially the group U of upper
triangular matrices with ones on the diagonal. Thus in practice
we may choose a “random” α ∈ U to compute gin<(I) as
in<(αI).

We compute gin<(I) for I = (x2, y2, z2) and the lexicographic
order induced by x > y > z. Let

α =





1 a b
0 1 c
0 0 1



 .

Then

α(I) = (x2
, (ax + y)2

, (bx + cy + z)2)
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and we get

gin<(I) = (x2
, xy , xz, y3

, y2z, yz2
, z4), if

char K 6= 2, 3 and abc(ac − b) 6= 0,

and

gin<(I) = (x2
, xy , xz, y3

, y2z, z3), if

char K = 3 and ab(ac + b) 6= 0

and finally I if char K = 2.

One might ask whether the gin of a complete intersection does
depend on the specific complete intersection. Not surprisingly it
does.
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In the case d = 3 and n = 4 the monomial and the generic
complete intersection have distinct gins but the two ideals have
the same Betti numbers.

With CoCoA we get:

gin(a3
, b3

, c3
, d3) = (a3

, a2b, ab2
, b3

, a2c2
, abc2

, ac3
, bc4

, c5
, b2c3

,

b2c2d , bc3d , c4d , a2cd3
, abcd3

, b2cd3
, ac2d3

, bc2d3
, c3d3

, a2d5
,

b2d5
, abd5

, acd5
, bcd5

, c2d5
, ad7

, bd7
, cd7

, d9),

while for a generic complete intersection I we have

gin(I) = (a3
, a2b, ab2

, b3
, a2c2

, abc2
, b2c2

, ac4
, bc4

, c5
, ac3d , bc3d ,

c4d , a2cd3
, abcd3

, b2cd3
, ac2d3

, bc2d3
, c3d3

, a2d5
, abd5

, b2d5
, acd5

,

bcd5
, c2d5

, ad7
, bd7

, cd7
, d9)



The number of generators of the generic initial ideal of a
0-dimensional generic complete intersection in K [x1, . . . , xn]
generated in degree d .

n

d
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4
5

2 3 4 5

3
4
5
6
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The same diagram for gin<(xd
1 , . . . , xd

n ).

n

d
2
3
4
5

2 3 4 5

3
4
5
6

6
11
17
25

12
29
60
108

21
77
207
474

Problem : Give an explicit formula for the minimal number of
generators µ(n, d) of gin<(xd

1 , . . . , xd
n ).
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I asked the Encyclopedia of Integer Sequences

http://oeis.org/

Interpretation of the second column:
Index of 5n within the sequence of numbers of form 3i5j .

1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 125, · · ·

Interpretation of the third column:

I’m sorry, but your terms do not match anything in the table.
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