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The theorem of Galligo and Bayer–Stillman

The subgroup B ⊂ GLn(K ) of all nonsingular upper triangular
matrices is called the Borel subgroup of GLn(K ).

A matrix α = (aij) ∈ B is called an upper elementary matrix, if
aii = 1 for all i and if there exist integers1 ≤ k < l ≤ n such that
akl 6= 0 while aij = 0 for all i 6= j with {i , j} 6= {k , l} .

Recall from linear algebra that the subgroup D ⊂ B of all
nonsingular diagonal matrices together with the set of all upper
elementary matrices generate B.
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Theorem 1: (Galligo, Bayer–Stillman) Let I ⊂ S be a graded
ideal and < a monomial order on S. Then gin<(I) is a
Borel-fixed ideal, that is, α(gin<(I)) = gin<(I) for all α ∈ B.
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Reduction to the upper triangular elementary matrices: Notice
that an invertible diagonal matrix δ keeps monomial ideals
fixed, because if d1, . . . , dn is the diagonal of δ and u is a
monomial, then δ(u) = u(d1, . . . , dn)u and
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The following theorem gives us information about generic initial
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Theorem 1: (Galligo, Bayer–Stillman) Let I ⊂ S be a graded
ideal and < a monomial order on S. Then gin<(I) is a
Borel-fixed ideal, that is, α(gin<(I)) = gin<(I) for all α ∈ B.

Reduction to the upper triangular elementary matrices: Notice
that an invertible diagonal matrix δ keeps monomial ideals
fixed, because if d1, . . . , dn is the diagonal of δ and u is a
monomial, then δ(u) = u(d1, . . . , dn)u and
u(d1, . . . , dn) ∈ K \ {0}. Here u(d1, . . . , dn) denotes the
evaluation of the monomial u at the point (d1, . . . , dn), that is, if
u = xa1

1 xa2
2 · · · xan

n , then u(d1, . . . , dn) = da1
1 da2

2 · · · dan
n .

Suppose now there is an element α ∈ B with
α(gin<(I)) 6= gin<(I). Then, since B is generated by invertible
diagonal matrices (which fix gin<(I)) and by upper elementary
matrices, we may assume that α is an upper elementary matrix.
This leads to a contradiction. X
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strongly stable if one has xi(u/xj ) ∈ I for all monomials u ∈ I
and all i < j such that xj divides u.
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Strongly stable and Borel fixed ideals

Definition: Let I ⊂ S be a monomial ideal. Then I is called
strongly stable if one has xi(u/xj ) ∈ I for all monomials u ∈ I
and all i < j such that xj divides u.

It is enough to check the defining property of strongly stable
ideals on the generators of I.

Why are we interested in strongly stable ideals?

Here is the answer:

Proposition 1: (a) Let I ⊂ S be a graded ideal. Then I is a
monomial ideal, if I is Borel-fixed.

(b) Let I be a Borel-fixed ideal and a the largest exponent
appearing among the monomial generators of I. If char K = 0
or char K > a, then I is strongly stable.

(c) If I is strongly stable, then I is Borel-fixed.



Proof (a) We show that if f ∈ I is a nonzero homogeneous
polynomial, and u ∈ supp(f ), then there exists a homogeneous
polynomial g ∈ I with supp(g) = supp(f ) \ {u}.
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Proof (a) We show that if f ∈ I is a nonzero homogeneous
polynomial, and u ∈ supp(f ), then there exists a homogeneous
polynomial g ∈ I with supp(g) = supp(f ) \ {u}.

Suppose f = auu +
∑

v 6=u avv , and α ∈ B is a diagonal matrix
with diagonal c1, c2, . . . , cn. Then
α(f ) = auu(c1, . . . , cn)u +

∑

v 6=u avv(c1, . . . , cn)v .

Since K is infinite, we may choose c1, . . . , cn such that
u(c1, . . . , cn) 6= v(c1, . . . , cn) for all v 6= u. Let
g = u(c1, . . . , cn)f − α(f ). Then, indeed, we have
supp(g) = supp(f ) \ {u}.



(b) Let u ∈ I be a monomial, xj a variable which divides u and
1 ≤ i < j a number.



(b) Let u ∈ I be a monomial, xj a variable which divides u and
1 ≤ i < j a number.

Let α ∈ B be the upper elementary matrix which induces the
linear automorphism on S with xk 7→ xk for k 6= j and
xj 7→ xi + xj .



(b) Let u ∈ I be a monomial, xj a variable which divides u and
1 ≤ i < j a number.

Let α ∈ B be the upper elementary matrix which induces the
linear automorphism on S with xk 7→ xk for k 6= j and
xj 7→ xi + xj .

Suppose that u = xa1
1 xa2

2 · · · xan
n ; then

α(u) = xa1
1 xa2

2 · · · (xi + xj)
aj · · · xan

n = u + ajxi(u/xj) + · · · .

Since I is Borel-fixed, it follows that α(u) ∈ I, and since I is a
monomial ideal, we have supp(α(u)) ⊂ I. The assumption on
the characteristic on K and the above calculation then shows
that xi(u/xj ) ∈ I. X



Let u, v ∈ Sd be two monomials, u = xi1xi2 · · · xid and
v = xj1xj2 · · · xjd with i1 ≤ i2 ≤ · · · ≤ id and j1 ≤ j2 ≤ · · · ≤ jd .
We define the partial order: u � v ⇔ ik ≤ jk for all k .
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v = xj1xj2 · · · xjd with i1 ≤ i2 ≤ · · · ≤ id and j1 ≤ j2 ≤ · · · ≤ jd .
We define the partial order: u � v ⇔ ik ≤ jk for all k .

This order is called Borel order. A monomial ideal I is strongly
stable, if for all d , and all monomials v ∈ Id and u ∈ Sd with
u � v , one has that u ∈ Id .

Moreover, if u � v , then u > v with respect to any monomial
order > on S with x1 > x2 > · · · > xn.

Proposition 2: Let I ⊂ S be a graded ideal and < a monomial
order on S. Then:

(a) gin<(I) is strongly stable, if char K = 0.

(b) (Conca) gin<(I) = I if and only if I is Borel-fixed.
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For the other direction we use the fact that a matrix α whose
principal minors are all nonzero, can be written as a product βγ
where β is an invertible lower triangular matrix and γ an
invertible upper triangular matrix. This is an open condition.
Thus we may choose α ∈ GLn(K ) with gin<(I) = in<(αI) and
which has a product presentation α = βγ, as described above.
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Theorem 1.

For the other direction we use the fact that a matrix α whose
principal minors are all nonzero, can be written as a product βγ
where β is an invertible lower triangular matrix and γ an
invertible upper triangular matrix. This is an open condition.
Thus we may choose α ∈ GLn(K ) with gin<(I) = in<(αI) and
which has a product presentation α = βγ, as described above.

For the invertible lower triangular matrix β and any monomial u
one has β(u) = au + · · · with a ∈ K \ {0} and with u � v for all
v ∈ supp(β(u)) such that v 6= u.



Proof: (a) follows from Theorem 1 and Proposition 1.

(b) One direction of the assertion is a consequence of
Theorem 1.

For the other direction we use the fact that a matrix α whose
principal minors are all nonzero, can be written as a product βγ
where β is an invertible lower triangular matrix and γ an
invertible upper triangular matrix. This is an open condition.
Thus we may choose α ∈ GLn(K ) with gin<(I) = in<(αI) and
which has a product presentation α = βγ, as described above.

For the invertible lower triangular matrix β and any monomial u
one has β(u) = au + · · · with a ∈ K \ {0} and with u � v for all
v ∈ supp(β(u)) such that v 6= u.

It follows therefore that for every homogeneous polynomial f ,
one has in<(β(f )) = in<(f ). This implies that in<(βI) = in<(I).



Therefore,

gin<(I) = in<(βγI) = in<(γI) = in<(I) = I.

Here we used that γI = I, since by assumption, I is Borel-fixed.
The last equation holds, since I is a monomial ideal. X



Therefore,

gin<(I) = in<(βγI) = in<(γI) = in<(I) = I.

Here we used that γI = I, since by assumption, I is Borel-fixed.
The last equation holds, since I is a monomial ideal. X

Corollary 1: Let I ⊂ S be a graded ideal and < a monomial
order on S. Then gin<(gin<(I)) = gin<(I).
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Definition: A monomial ideal I ⊂ S = K [x1, . . . , xn] is of Borel
type if

I : x∞
i = I : (x1, . . . , xi)

∞ for i = 1, . . . , n.

Theorem 2: (Bayer–Stillman) Borel-fixed ideals are of Borel
type.

For the proof of the theorem we need the following
characterization of Borel-fixed ideals.
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Proposition 3: Let I ⊂ S be a monomial ideal. The following
conditions are equivalent:

(a) I is of Borel type.

(b) For each monomial u ∈ I and all integers i , j , s with
1 ≤ j < i ≤ n and s > 0 such that xs

i |u there exists an integer
t ≥ 0 such that xj

t(u/xs
i ) ∈ I.

(c) For each monomial u ∈ I and all integers i , j with
1 ≤ j < i ≤ n there exists an integer t ≥ 0 such that
xj

t(u/xνi(u)
i ) ∈ I.

(d) If P ∈ Ass(S/I), then P = (x1, . . . , xj) for some j .
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exists an integer t ≥ 0 such that x t
j (u/xs

i ) = x t
j v ∈ I.
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Proof of Theorem 2: We know that I is a monomial ideal. We
will show that I satisfies condition (c) of Proposition 3.
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will show that I satisfies condition (c) of Proposition 3.

Let u ∈ I with a = νi(u), and let 1 ≤ j < i . We want to find an
integer t such that x t

j (u/xa
i ) ∈ I. If a = 0, there is nothing to

show.
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some s > 0, and let j < i . Then u = xs
i v with v ∈ I : x∞

i .
Condition (a) implies that I : x∞

i ⊂ I : x∞
j . Therefore, there

exists an integer t ≥ 0 such that x t
j (u/xs

i ) = x t
j v ∈ I.

(b) ⇒ (c) it trivial.

Proof of Theorem 2: We know that I is a monomial ideal. We
will show that I satisfies condition (c) of Proposition 3.

Let u ∈ I with a = νi(u), and let 1 ≤ j < i . We want to find an
integer t such that x t

j (u/xa
i ) ∈ I. If a = 0, there is nothing to

show.

Suppose now that a > 0. Since I is Borel-fixed, the polynomial
∑a

k=0

(a
k

)

xk
j (u/xk

i ) belongs to I (xi 7→ xj + xi ). Thus, since I is a

monomial ideal, it follows that xk
j (u/xk

i ) ∈ I for all k with
(a

k

)

6= 0

in K . Hence if char K = 0, then xk
j (u/xk

i ) ∈ I for all k = 0, . . . , a.



Now assume that char K = p > 0, and let a =
∑

i aipi be the
p-adic expansion of a. Let j be an index such that aj 6= 0, and
let k = pj . Then

(a
k

)

= aj 6= 0 in K . This follows from the
following identity

(

a
k

)

=
∏

i

(

ai

ki

)

mod p,

of Lucas, where k =
∑

i kipi is the p-adic expansion of k .
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following identity

(

a
k

)

=
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(
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of Lucas, where k =
∑

i kipi is the p-adic expansion of k .

Therefore in all cases there exists an integer k with 1 ≤ k ≤ a
such that xk

j (u/xk
i ) ∈ I. Set a′ = a − k and u′ = xk

j (u/xk
i ).

Then νi(u′) = a′ < a.



Now assume that char K = p > 0, and let a =
∑

i aipi be the
p-adic expansion of a. Let j be an index such that aj 6= 0, and
let k = pj . Then

(a
k

)

= aj 6= 0 in K . This follows from the
following identity

(

a
k

)

=
∏

i

(

ai

ki

)

mod p,

of Lucas, where k =
∑

i kipi is the p-adic expansion of k .

Therefore in all cases there exists an integer k with 1 ≤ k ≤ a
such that xk

j (u/xk
i ) ∈ I. Set a′ = a − k and u′ = xk

j (u/xk
i ).

Then νi(u′) = a′ < a.

Arguing by induction on a, we may assume that there exists an
integer t ′ such that x t ′

j (u′/xa′

i ) ∈ I. Thus if set t = t ′ + k , then
x t

j (u/xa
i ) ∈ I, as desired. X
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A more precise statement concerning Borel fixed ideals is due
to Pardue.

Let K be a field of characteristic > 0. Write x l
i ||u to express that

x l
i divides u but x l+1

i does not, and for non-negative integers k
and l with p-adic expansion k =

∑

i kipi and l =
∑

i lipi , set
k ≤p l if ki ≤ li for all i .

Then a monomial ideal I is Borel-fixed if and only if it satisfies
the following condition: if u is a monomial in I and x l

j ||u, then

(xi/xj)
k u ∈ I for all i < j , and all k ≤p l .

Pardue calls a monomial ideal satisfying this combinatorial
condition p-Borel, regardless of the characteristic of K .
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While the homological properties of strongly stable ideals are
well understood, as we shall see in later lectures, those of
general Borel type are difficult to understand.

Among the p-Borel ideals the principal ones are the most
simple. Let u be a monomial; then 〈u〉 denotes the smallest
p-Borel ideal which contains u. The ideal 〈u〉 is called principal
p-Borel with Borel generator u.

Proposition 4: (Pardue) Let u =
∏n

i=1 xµi
i , and let µi =

∑

j µijpj

for i = 1, . . . , n be the p-adic expansion of the exponents of u.
Then

〈u〉 =
n

∏

i=1

∏

j

((x1, . . . , xj)
µij )[p

j ].

In particular, 〈u〉 =
∏n

i=1〈x
µi
i 〉.
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For every k such that µk 6= 0, let sk = ⌊logp µk⌋. Set

Dk = dksk
(µ)psk + (k − 1)(psk − 1).

The following result was conjectured by Pardue in his thesis.
Theorem 3: (Aramova–H–Popescu) If x1 does not divide xµ,
then

reg〈xµ〉 = max
k µk 6=0

{Dk}.



Problem: Give a formula for the projective dimension of a
principal p-Borel ideal.
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