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Let M be a finitely generated graded S-module, where
S = K [x1, . . . , xn] is the polynomial ring and K is an infinite field.

Let y ∈ S1 be a linear form. Then multiplication with y induces
the homogeneous homomorphism M(−1) → M, m 7→ ym.

Let
0 :M y = {m ∈ M : ym = 0}.

Then
Ker(M(−1) → M) = (0 :M y)(−1)

.

The linear form y ∈ S1 is called almost regular on M, if 0 :M y
has finite length.
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Proof: The submodule N = 0 :M m
∞ ⊂ M is of finite length and

M/N has positive depth. It follows that any nonzero divisor
y ∈ S1 is almost regular on M. Let Ass(M/N) = {P1, . . . , Pr}.
Since depth M/N > 0 and since K is infinite, it follows that
Pi ∩ S1 is a proper linear subspace of S1 for all i . Thus
U = S1 \

⋃r
i=1(S1 ∩ Pi) is a nonempty Zariski open subset of

S1. Any y ∈ U is regular on M/N and hence almost regular on
M. X

Definition: A sequence y = y1, . . . , yr with yi ∈ S1 an almost
regular sequence on M, if yi is an almost regular element on
M/(y1, . . . , yi−1)M for all i = 1, . . . , r .
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Then there exists K -basis of S1 which is an almost regular
sequence on M.

Example: Let I ⊂ S be a monomial ideal of Borel type. Then
xn, xn−1, . . . , x1 is an almost regular sequence on S/I.

Indeed, by using an induction argument it suffices to show that
xn is almost regular. But this is obvious since for each
P ∈ Ass(S/I) we have P = (x1, . . . , xi) for some i . Thus the
element xn does not belong to any associated prime ideal of
S/I which is different from m = (x1, . . . , xn).

Let y be an almost regular sequence.
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We denote by Ai(y; M) the graded module 0 :M/(y1 ,...,yi)M yi+1

and call the numbers

αij(y; M) =

{

dimK Ai(y; M)j , if i < n,
β0j(M), if i = n.

the annihilator numbers of M with respect to the sequence y.

Problem: Let I ⊂ S be an ideal of Borel type. Compute the
annihilator numbers of S/I with respect to the almost regular
sequence y = xn, xn−1, . . . , x1.

We set αi(y; M) =
∑

j αij(y; M).

Proposition 1: Let y a K -basis of S1 which is almost regular
on M. Then αi(y; M) = 0 if and only if i < depth M.
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module is of finite length by assumption.
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Proof: (a) ⇒ (b): We prove the assertion by induction on i . We
have Hj(y1; M) = 0 for j > 1 and H1(y1; M) ≃ 0 :M y1. This
module is of finite length by assumption.

Now let i > 1. Then there is the long exact sequence of graded
Koszul homology

→ Hj+1(y1, . . . , yi−1; M) → Hj+1(y1, . . . , yi ; M) → Hj(y1, . . . , yi−1; M)(−1

· · · → H1(y1, . . . , yi−1; M) → H1(y1, . . . , yi ; M) → Ai−1(y; M)(−1)

Since Ai−1(y; M) has finite length and since by induction

hypothesis the modules Hj(y1, . . . , yi−1; M) have finite length for
all j > 0, the exact sequence implies that also Hj(y1, . . . , yi ; M)
has finite length for all j > 0. X
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Theorem 1: Let I ⊂ S be a graded ideal. With each
γ = (gij) ∈ GLn(K ) we associate the sequence y = γ(x) with
yj =

∑n
i=1 gijxi for j = 1, . . . , n. Then there exists a nonempty

Zariski open subset U ⊂ GLn(K ) such that γ(x) is almost
regular for all γ ∈ U.

Moreover, the open set U has the property that

dimK Ai−1(γ(x); S/I)j = dimK Ai−1(xn, xn−1, . . . , x1; S/ gin<rev
(I))j

for all i and j and all γ ∈ U.

Definition: A sequence y = γ(x) with γ ∈ U and U ⊂ GLn(K )
as in Theorem 1 is called a generic sequence on S/I.

We set αij(S/I) = αij(y; S/I) for all i and j , where y is a generic
sequence on S/I. The numbers αij(S/I) are called the generic
annihilator numbers.
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Lemma 2: Let I ⊂ S be a graded ideal. Then for all i one has

in<rev (I, xi+1, . . . , xn) = (in<rev (I), xi+1, . . . , xn),

and

in<rev ((I, xi+1, . . . , xn) : xi) = (in<rev (I), xi+1, . . . , xn) : xi .

Proof: We only prove the statements for the colon ideals. That
the left-hand side is contained in the right-hand side is easy to
see and true not only for the reverse lexicographic order but for
any other monomial order as well.

For the converse inclusion it suffices to show that each
monomial u in (in<rev (I), xi+1, . . . , xn) : xi belongs to
in<rev ((I, xi+1, . . . , xn) : xi).
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We may assume that no xj with j > i divides u. Then there
exists a homogeneous element f ∈ I with uxi = in<rev (f ).
Because we use the reverse lexicographic order it follows that
f = cuxi + h with h ∈ (xi , . . . , xn) and c ∈ K \ {0}. Write
h = gixi + · · · + gnxn, and set f1 = cu + gi . Then
f1xi ∈ (I, xi+1, . . . , xn) and in<rev (f1) = u . This shows that
u ∈ in<rev ((I, xi+1, . . . , xn) : xi).X

Corollary 1: Let I ⊂ S be a graded ideal. Then

αij(S/I) = αij(S/ gin<rev
(I)).

Proof: We have
αij(S/I) = dimK Ai(xn, xn−1, . . . , x1; S/ gin<rev

(I)),
and
αij(S/ gin<rev

(I)) =
dimK Ai(xn, xn−1, . . . , x1; S/ gin<rev

(gin<rev
(I))) =

dimK Ai(xn, xn−1, . . . , x1; S/ gin<rev
(I)). Hence the conclusion.

X
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By using the long exact sequences of Koszul homology
attached to a sequence one obtains

Proposition 3: Let M be a graded S-module and let
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By using the long exact sequences of Koszul homology
attached to a sequence one obtains

Proposition 3: Let M be a graded S-module and let
y = y1, . . . , yn be a K -basis of S1 which is almost regular on
M. Then

βi ,i+j(M) ≤

n−i
∑

k=0

(

n − k − 1
i − 1

)

αkj(y; M) for all i ≥ 0 and all j .

We say that M has maximal Betti numbers if equality holds.

This is the case if and only if mHj(y1, . . . , yi ; M) = 0 for all j > 0
and all i .

M = S/I satisfies this condition, if I is a stable ideal.
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Definition. Let M be a finitely generated graded S-module and
let y be a K -basis of S1 which is almost regular on M. Let αij be
the annihilator numbers of M with respect to y and βij be the
graded Betti numbers of M.

(a) An annihilator number αij 6= 0 is called extremal if αkℓ = 0
for all pairs (k , ℓ) 6= (i , j) with k ≤ i and ℓ ≥ j .

(b) A Betti number βi ,i+j 6= 0 is called extremal if βk ,k+ℓ = 0 for
all pairs (k , ℓ) 6= (i , j) with k ≥ i and ℓ ≥ j .

The next picture illustrates this concept.
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The Figure reflects the result of the next theorem
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Theorem 2: (Aramova-H) Let M be a graded S -module and let
y be a K -basis of S1 which is almost regular on M . Let αij be
the annihilator numbers of M with respect to y and βij be the
graded Betti numbers of M.

Then βi ,i+j is an extremal Betti number of M if and only if αn−i ,j

is an extremal annihilator number of M.

Moreover, if the equivalent conditions hold, then

βi ,i+j = αn−i ,j .
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Theorem 2 together with Corollary 1 yields

Theorem 3: (Bayer, Charalambous, Popescu) Let I ⊂ S be a
graded ideal. Then for any two numbers i , j ∈ N one has:

(a) βi ,i+j(I) is extremal if and only if βi ,i+j(gin<rev
(I)) is extremal;

(b) if βi ,i+j(I) is extremal, then βi ,i+j(I) = βi ,i+j(gin<rev
(I)).

This theorem has the following consequence
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Corollary 2: (Bayer, Stillman) Let I ⊂ S be a graded ideal. Then

(a) proj dim(I) = proj dim(gin<rev
(I));

(b) depth(S/I) = depth(S/ gin<rev
(I));

(c) S/I is Cohen–Macaulay if and only if S/ gin<rev
(I) is

Cohen–Macaulay;

(d) reg(I) = reg(gin<rev
(I)). In particular I has a linear resolution

if and only if gin<rev
(I) has a linear resolution.
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Problem: Given coordinates (i1, j1), . . . , (ir , jr ) with
i1 < i2 < · · · < ir and j1 > j2 > · · · > jr and positive integers
a1, . . . , ar .

Does there exist a graded ideal I whose extremal Betti numbers
are βik ,jk (I) = ak for k = 1, . . . , r? Or are there any restrictions?

There are some special case known by Crupi and Utano:

A lexsegment ideal can have at most 2 extremal Betti numbers.
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3 , x2x2

3 x5, x5
3 ).
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1 , x1x2, x1x3, x1x4, x1x5, x1x6, x3
2 , x2

2 x3, x2x3
3 , x2x2

3 x5, x5
3 ).

I has the three extremal Betti numbers β2,2+5 = 1, β3,3+4 = 1
and β5,5+2 = 1. But I is only strongly stable and not a
lexsegment.
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and β5,5+2 = 1. But I is only strongly stable and not a
lexsegment.

Example: Let I ⊂ K [x1, x2, x3, x4, x5] be the lexsegment ideal
I = (x2

1 , x1x2, x1x3, x1x4, x1x5, x2
2 , x2x3, x2x4, x2x5, x3

3 ).



Example: Let I ⊂ K [x1, x2, x3, x4, x5, x6] be the ideal
I = (x2

1 , x1x2, x1x3, x1x4, x1x5, x1x6, x3
2 , x2

2 x3, x2x3
3 , x2x2

3 x5, x5
3 ).

I has the three extremal Betti numbers β2,2+5 = 1, β3,3+4 = 1
and β5,5+2 = 1. But I is only strongly stable and not a
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Example: Let I ⊂ K [x1, x2, x3, x4, x5] be the lexsegment ideal
I = (x2

1 , x1x2, x1x3, x1x4, x1x5, x2
2 , x2x3, x2x4, x2x5, x3

3 ).

I has two extremal Betti numbers: β2,2+3 = 1 and β4,4+2(I) = 2.
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