Generic Initial Ideals; Lecture 5

Jürgen Herzog Universität Duisburg-Essen

Workshop on Computational Commutative Algebra,

July 2–7, 2011

University of Tehran and IPM

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Shifting operations

Kalai's squarefree operator

Symmetric algebraic shifting

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Shifting operations

Kalai's squarefree operator

Symmetric algebraic shifting

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Outline

Shifting operations

Kalai's squarefree operator

Symmetric algebraic shifting

Definition: A simplicial complex Δ on [n] is shifted if, for $F \in \Delta$, $i \in F$ and $j \in [n]$ with j > i, one has $(F \setminus \{i\}) \cup \{j\} \in \Delta$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Definition: A simplicial complex Δ on [n] is shifted if, for $F \in \Delta$, $i \in F$ and $j \in [n]$ with j > i, one has $(F \setminus \{i\}) \cup \{j\} \in \Delta$.

Note that Δ is shifted if and only if I_{Δ} is squarefree strongly stable.

Definition: A simplicial complex Δ on [n] is shifted if, for $F \in \Delta$, $i \in F$ and $j \in [n]$ with j > i, one has $(F \setminus \{i\}) \cup \{j\} \in \Delta$.

Note that Δ is shifted if and only if I_{Δ} is squarefree strongly stable.

Definition: A shifting operation on [n] is a map which associates each simplicial complex Δ on [n] with a simplicial complex Shift(Δ) on [n] and which satisfies the following conditions:

(ロ) (同) (三) (三) (三) (三) (○) (○)

 (S_1) Shift(Δ) is shifted;

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ○ ○ ○ ○

- (S_1) Shift(Δ) is shifted;
- (S_2) Shift(Δ) = Δ , if Δ is shifted;

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- (S_1) Shift(Δ) is shifted;
- (S_2) Shift(Δ) = Δ , if Δ is shifted;

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 $(S_3) f(\Delta) = f(\mathsf{Shift}(\Delta));$

- (S_1) Shift(Δ) is shifted;
- (S_2) Shift(Δ) = Δ , if Δ is shifted;
- $(S_3) f(\Delta) = f(\text{Shift}(\Delta));$
- (S_4) Shift $(\Delta') \subset$ Shift (Δ) , if $\Delta' \subset \Delta$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- (S_1) Shift(Δ) is shifted;
- (S_2) Shift(Δ) = Δ , if Δ is shifted;
- $(S_3) f(\Delta) = f(\text{Shift}(\Delta));$
- (S_4) Shift $(\Delta') \subset$ Shift (Δ) , if $\Delta' \subset \Delta$.

In classical combinatorics of finite sets, Erdös, Ko and Rado introduced combinatorial shifting.

 $C_{ij}(F) = \begin{cases} (F \setminus \{i\}) \cup \{j\}, & \text{if } i \in F, \ j \notin F \text{ and } (F \setminus \{i\}) \cup \{j\} \notin \Delta, \\ F, & \text{otherwise.} \end{cases}$

 $C_{ij}(F) = \begin{cases} (F \setminus \{i\}) \cup \{j\}, & \text{if } i \in F, \ j \notin F \text{ and } (F \setminus \{i\}) \cup \{j\} \notin \Delta, \\ F, & \text{otherwise.} \end{cases}$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Proposition 1: (a) $\text{Shift}_{ij}(\Delta)$ is a simplicial complex on [n], and the operation $\Delta \rightarrow \text{Shift}_{ij}(\Delta)$ satisfies the conditions (S_2) , (S_3) and (S_4) .

 $C_{ij}(F) = \begin{cases} (F \setminus \{i\}) \cup \{j\}, & \text{if } i \in F, \ j \notin F \text{ and } (F \setminus \{i\}) \cup \{j\} \notin \Delta, \\ F, & \text{otherwise.} \end{cases}$

Proposition 1: (a) $\text{Shift}_{ij}(\Delta)$ is a simplicial complex on [n], and the operation $\Delta \rightarrow \text{Shift}_{ij}(\Delta)$ satisfies the conditions (S_2) , (S_3) and (S_4) .

(b) There exists a finite sequence of pairs of integers $(i_1, j_1), (i_2, j_2), \ldots, (i_q, j_q)$ with each $1 \le i_k < j_k \le n$ such that

 $\text{Shift}_{i_q j_q}(\text{Shift}_{i_{q-1} j_{q-1}}(\cdots(\text{Shift}_{i_1 j_1}(\Delta))\cdots))$

is shifted.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Example: Let Δ be the simplicial complex with facets $\{1, 2\}, \{2, 3, 4\}.$

Example: Let Δ be the simplicial complex with facets $\{1,2\}, \{2,3,4\}.$

 Δ is not shifted because $\{1,4\} \notin \Delta$. We apply the operator Shift_{2,4}. Then Shift_{2,4}(Δ) has the facets $\{1,4\}, \{2,3,4\}$. Since Shift_{2,4}(Δ) is already shifted, we see that $\Delta^c = \text{Shift}_{2,4}(\Delta)$.

Example: Let Δ be the simplicial complex with facets $\{1,2\}, \{2,3,4\}.$

 Δ is not shifted because $\{1,4\} \notin \Delta$. We apply the operator Shift_{2,4}. Then Shift_{2,4}(Δ) has the facets $\{1,4\}, \{2,3,4\}$. Since Shift_{2,4}(Δ) is already shifted, we see that $\Delta^c = \text{Shift}_{2,4}(\Delta)$.

In general, Δ^c depends on its construction by the sequence of the operators Shift_{ij}.

Kalai's squarefree operator

Let *K* be a field of characteristic 0 and $S = K[x_1, ..., x_n]$ the polynomial ring in *n* variables over *K*. We work with the reverse lexicographic order $<_{rev}$ on *S* induced by the ordering $x_1 > \cdots > x_n$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Kalai's squarefree operator

Let *K* be a field of characteristic 0 and $S = K[x_1, ..., x_n]$ the polynomial ring in *n* variables over *K*. We work with the reverse lexicographic order $<_{rev}$ on *S* induced by the ordering $x_1 > \cdots > x_n$.

Let $I \subset S$ be a squarefree monomial ideal and $gin_{<_{rev}}(I)$ its generic initial ideal with respect to $<_{rev}$. Since K is of characteristic 0, it follows that $gin_{<_{rev}}(I)$ is strongly stable. However, $gin_{<_{rev}}(I)$ is no longer squarefree.

Kalai's squarefree operator

Let *K* be a field of characteristic 0 and $S = K[x_1, ..., x_n]$ the polynomial ring in *n* variables over *K*. We work with the reverse lexicographic order $<_{rev}$ on *S* induced by the ordering $x_1 > \cdots > x_n$.

Let $I \subset S$ be a squarefree monomial ideal and $gin_{<_{rev}}(I)$ its generic initial ideal with respect to $<_{rev}$. Since K is of characteristic 0, it follows that $gin_{<_{rev}}(I)$ is strongly stable. However, $gin_{<_{rev}}(I)$ is no longer squarefree.

Lemma 1: Let $I \subset S$ be a squarefree monomial ideal. Then

 $m(u) + \deg u \le n+1$

for all monomials u belonging to $G(gin_{< rev}(I))$.

・ロト・西ト・モート 一回・クタウ

Proof: Since $gin_{<_{rev}}(I)$ is strongly stable, the Eliahou-Kervaire formulas yield

$$\beta_{ii+j}(I) = \sum_{u \in G(gin_{< rev}(I))_j} \binom{m(u) - 1}{i},$$

where $G(gin_{<_{rev}}(I))_j$ is the set of monomials $u \in G(gin_{<_{rev}}(I))$ of degree *j*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof: Since $gin_{<_{rev}}(I)$ is strongly stable, the Eliahou-Kervaire formulas yield

$$\beta_{ii+j}(I) = \sum_{u \in G(gin_{< rev}(I))_j} \binom{m(u) - 1}{i},$$

where $G(gin_{<_{rev}}(I))_j$ is the set of monomials $u \in G(gin_{<_{rev}}(I))$ of degree *j*.

Thus in particular

 $\max\{m(u) + \deg u - 1 : u \in G(gin_{<_{rev}}(I))\}$

is the highest shift in the resolution of $gin_{<_{rev}}(I)$. Since *I* is a squarefree monomial ideal, and since by Hochster the resolutions of squarefree ideals have only squarefee shifts it follows that the highest shift in the resolution of *I* is at most *n*.

Since the Betti number with the highest shift in the resolution on l is extremal, it follows from the theorem of Bayer-Charalambous-Popescu that the highest shift in the resolution of l and that of $gin_{< rev}(l)$ coincides.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Since the Betti number with the highest shift in the resolution on l is extremal, it follows from the theorem of Bayer-Charalambous-Popescu that the highest shift in the resolution of l and that of $gin_{< rev}(l)$ coincides.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Hence $m(u) + \deg u - 1 \le n$ for all $u \in G(gin_{< rev}(I))$.

・ロト・日本・モト・モー しょうくぐ

(ロ) (同) (三) (三) (三) (三) (○) (○)

Let $u = x_{i_1} x_{i_2} \cdots x_{i_d}$ be a monomial of *S*, where $i_1 \le i_2 \le \cdots \le i_d$.

Let $u = x_{i_1} x_{i_2} \cdots x_{i_d}$ be a monomial of *S*, where $i_1 \le i_2 \le \cdots \le i_d$.

We set

$$\boldsymbol{u}^{\sigma} = \boldsymbol{x}_{i_1} \boldsymbol{x}_{i_2+1} \cdots \boldsymbol{x}_{i_j+(j-1)} \cdots \boldsymbol{x}_{i_d+(d-1)}.$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Let $u = x_{i_1} x_{i_2} \cdots x_{i_d}$ be a monomial of *S*, where $i_1 \le i_2 \le \cdots \le i_d$.

We set

$$\boldsymbol{u}^{\sigma} = \boldsymbol{x}_{i_1} \boldsymbol{x}_{i_2+1} \cdots \boldsymbol{x}_{i_j+(j-1)} \cdots \boldsymbol{x}_{i_d+(d-1)}.$$

One has

$$m(u^{\sigma}) - \deg u^{\sigma} = m(u) - 1. \tag{1}$$

The operator $u \rightarrow u^{\sigma}$ is called squarefree operator.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Proof: Since $m(u^{\sigma}) - \deg u^{\sigma} = m(u) - 1$ and $m(u) + \deg u - 1 \le n$ for all $u \in G(gin_{<_{rev}}(I))$, the assertion follows.

Proof: Since $m(u^{\sigma}) - \deg u^{\sigma} = m(u) - 1$ and $m(u) + \deg u - 1 \le n$ for all $u \in G(gin_{<_{rev}}(I))$, the assertion follows.

Let $I \subset S$ be strongly stable ideal with $G(I) = \{u_1, \ldots, u_s\}$. We write I^{σ} for the squarefree monomial ideal generated by the monomials $u_1^{\sigma}, \ldots, u_s^{\sigma}$.

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

Proof: Since $m(u^{\sigma}) - \deg u^{\sigma} = m(u) - 1$ and $m(u) + \deg u - 1 \le n$ for all $u \in G(gin_{<_{rev}}(I))$, the assertion follows.

Let $I \subset S$ be strongly stable ideal with $G(I) = \{u_1, \ldots, u_s\}$. We write I^{σ} for the squarefree monomial ideal generated by the monomials $u_1^{\sigma}, \ldots, u_s^{\sigma}$.

Lemma 2: If $I \subset S$ is strongly stable with $G(I) = \{u_1, \ldots, u_s\}$, then I^{σ} is squarefree strongly stable with $G(I^{\sigma}) = \{u_1^{\sigma}, \ldots, u_s^{\sigma}\}$.

Proof: First one shows that $G(I^{\sigma}) = \{u_1^{\sigma}, \dots, u_s^{\sigma}\}$.

<□ > < @ > < E > < E > E のQ @
Proof: First one shows that $G(I^{\sigma}) = \{u_1^{\sigma}, \dots, u_s^{\sigma}\}.$

Next we show why I^{σ} is squarefree strongly stable. We take a monomial $u = x_{i_1} \cdots x_{i_d} \in G(I)$ together with $u_0 = (x_b u^{\sigma})/x_{i_a+(a-1)}$, where x_b does not divide u^{σ} and where $b < i_a + (a - 1)$ and $a \in [d]$. We claim $u_0 \in I^{\sigma}$.

Proof: First one shows that $G(I^{\sigma}) = \{u_1^{\sigma}, \dots, u_s^{\sigma}\}$.

Next we show why I^{σ} is squarefree strongly stable. We take a monomial $u = x_{i_1} \cdots x_{i_d} \in G(I)$ together with $u_0 = (x_b u^{\sigma})/x_{i_a+(a-1)}$, where x_b does not divide u^{σ} and where $b < i_a + (a - 1)$ and $a \in [d]$. We claim $u_0 \in I^{\sigma}$.

Choose p < a such that $i_p + (p - 1) < b < i_{p+1} + p$. (Here $i_0 = 1$). Let

$$v = (\prod_{j=1}^{p} x_{i_j}) x_{b-p} (\prod_{j=p+1}^{a-1} x_{i_j-1}) (\prod_{j=a+1}^{d} x_{i_j}).$$

Proof: First one shows that $G(I^{\sigma}) = \{u_1^{\sigma}, \dots, u_s^{\sigma}\}$.

Next we show why I^{σ} is squarefree strongly stable. We take a monomial $u = x_{i_1} \cdots x_{i_d} \in G(I)$ together with $u_0 = (x_b u^{\sigma})/x_{i_a+(a-1)}$, where x_b does not divide u^{σ} and where $b < i_a + (a - 1)$ and $a \in [d]$. We claim $u_0 \in I^{\sigma}$.

Choose p < a such that $i_p + (p - 1) < b < i_{p+1} + p$. (Here $i_0 = 1$). Let

$$v = (\prod_{j=1}^{p} x_{i_j}) x_{b-p} (\prod_{j=p+1}^{a-1} x_{i_j-1}) (\prod_{j=a+1}^{d} x_{i_j})$$

Since $b - p < i_{p+1} \le i_a$ and since *I* is strongly stable, the monomial *v* belongs to *I*. One has $v^{\sigma} = (x_b u^{\sigma})/x_{i_a+(a-1)} = u_0$. Let, say, $v = x_{\ell_1} \cdots x_{\ell_d}$ with $\ell_1 \le \cdots \le \ell_d$.

Again, since *I* is strongly stable, it follows that $w = x_{\ell_1} \cdots x_{\ell_c} \in G(I)$ for some $c \leq d$. Since w^{σ} divides $v^{\sigma} = u_0$, one has $u_0 \in I^{\sigma}$, as desired. \checkmark

Again, since *I* is strongly stable, it follows that $w = x_{\ell_1} \cdots x_{\ell_c} \in G(I)$ for some $c \leq d$. Since w^{σ} divides $v^{\sigma} = u_0$, one has $u_0 \in I^{\sigma}$, as desired. \checkmark

Let Δ be a simplicial complex on [*n*]. Since the base field *K* is of characteristic 0, we have that $gin_{<_{rev}}(I_{\Delta})$ is strongly stable. Thus $(gin_{<_{rev}}(I_{\Delta}))^{\sigma}$ is a squarefree strongly stable ideal of *S*.

(日) (日) (日) (日) (日) (日) (日) (日)

Again, since *I* is strongly stable, it follows that $w = x_{\ell_1} \cdots x_{\ell_c} \in G(I)$ for some $c \leq d$. Since w^{σ} divides $v^{\sigma} = u_0$, one has $u_0 \in I^{\sigma}$, as desired. \checkmark

Let Δ be a simplicial complex on [*n*]. Since the base field *K* is of characteristic 0, we have that $gin_{<_{rev}}(I_{\Delta})$ is strongly stable. Thus $(gin_{<_{rev}}(I_{\Delta}))^{\sigma}$ is a squarefree strongly stable ideal of *S*.

Definition: The symmetric algebraic shifted complex of Δ is defined to be the shifted complex Δ^s on [*n*] with

 $I_{\Delta^s} = (\operatorname{gin}_{<_{\operatorname{rev}}}(I_{\Delta}))^{\sigma}.$

Proof: The formula follows from the identity $m(u^{\sigma}) - \deg u^{\sigma} = m(u) - 1$ and the formulas for the Betti numbers of strongly stable and squarefree strongly stable ideals.

(日) (日) (日) (日) (日) (日) (日) (日)

Proof: The formula follows from the identity $m(u^{\sigma}) - \deg u^{\sigma} = m(u) - 1$ and the formulas for the Betti numbers of strongly stable and squarefree strongly stable ideals.

It is clear that the operation $\Delta \rightarrow \Delta^s$ satisfies condition (S_1) . Lemma 3 implies that it satisfies also condition (S_3) . Condition (S_4) is easy to see. That condition (S_2) is satisfied follows from

Proof: The formula follows from the identity $m(u^{\sigma}) - \deg u^{\sigma} = m(u) - 1$ and the formulas for the Betti numbers of strongly stable and squarefree strongly stable ideals.

It is clear that the operation $\Delta \rightarrow \Delta^s$ satisfies condition (S_1) . Lemma 3 implies that it satisfies also condition (S_3) . Condition (S_4) is easy to see. That condition (S_2) is satisfied follows from

Theorem 1: Let $I \subset S$ be a squarefree strongly stable ideal. Then

 $I = \operatorname{gin}_{<_{\operatorname{rev}}}(I)^{\sigma}.$

Proof: Let $J = gin_{\leq_{rev}}(I^{\sigma})$. Then *J* is strongly stable and by Theorem 1 one has $J^{\sigma} = I^{\sigma}$. Therefore $G(J^{\sigma}) = G(I^{\sigma})$. By Lemma 2 it follows that G(J) = G(I).

Proof: Let $J = gin_{<_{rev}}(l^{\sigma})$. Then *J* is strongly stable and by Theorem 1 one has $J^{\sigma} = l^{\sigma}$. Therefore $G(J^{\sigma}) = G(l^{\sigma})$. By Lemma 2 it follows that G(J) = G(l).

Theorem 2: Let Δ be a simplicial complex and $I_{\Delta} \subset K[x_1, \dots, x_n]$ its Stanley–Reisner ideal, where *K* is a field of characteristic 0. Then:

Proof: Let $J = gin_{<_{rev}}(l^{\sigma})$. Then *J* is strongly stable and by Theorem 1 one has $J^{\sigma} = l^{\sigma}$. Therefore $G(J^{\sigma}) = G(l^{\sigma})$. By Lemma 2 it follows that G(J) = G(l).

Theorem 2: Let Δ be a simplicial complex and $I_{\Delta} \subset K[x_1, \dots, x_n]$ its Stanley–Reisner ideal, where *K* is a field of characteristic 0. Then:

(a) the *ij*th Betti number of I_{Δ} is extremal if and only if the *ij*th Betti number of I_{Δ^s} is extremal;

Proof: Let $J = gin_{<_{rev}}(l^{\sigma})$. Then *J* is strongly stable and by Theorem 1 one has $J^{\sigma} = l^{\sigma}$. Therefore $G(J^{\sigma}) = G(l^{\sigma})$. By Lemma 2 it follows that G(J) = G(l).

Theorem 2: Let Δ be a simplicial complex and $I_{\Delta} \subset K[x_1, \dots, x_n]$ its Stanley–Reisner ideal, where *K* is a field of characteristic 0. Then:

(a) the *ij*th Betti number of I_{Δ} is extremal if and only if the *ij*th Betti number of I_{Δ^s} is extremal;

(b) The corresponding extremal Betti numbers of I_{Δ} and I_{Δ^s} are equal.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Corollary 2: Let \triangle be a simplicial complex and let *K* be a field of characteristic 0. Then the following conditions are equivalent:

(日)

Corollary 2: Let \triangle be a simplicial complex and let *K* be a field of characteristic 0. Then the following conditions are equivalent:

(ロ) (同) (三) (三) (三) (○) (○)

(a) Δ is Cohen–Macaulay over K;

Corollary 2: Let \triangle be a simplicial complex and let *K* be a field of characteristic 0. Then the following conditions are equivalent:

- (a) Δ is Cohen–Macaulay over K;
- (b) Δ^{s} is Cohen–Macaulay;

Corollary 2: Let \triangle be a simplicial complex and let *K* be a field of characteristic 0. Then the following conditions are equivalent:

- (a) Δ is Cohen–Macaulay over K;
- (b) Δ^{s} is Cohen–Macaulay;
- (c) Δ^s is pure.

Corollary 2: Let \triangle be a simplicial complex and let *K* be a field of characteristic 0. Then the following conditions are equivalent:

- (a) Δ is Cohen–Macaulay over K;
- (b) Δ^{s} is Cohen–Macaulay;

(c) Δ^{s} is pure.

.

Proof: Since shifting operators preserve *f*-vectors, it follows that dim $K[\Delta] = \dim K[\Delta^s]$. Now Theorem 2 implies that

proj dim $K[\Delta] = \operatorname{proj} \operatorname{dim} K[\Delta^s]$

Corollary 2: Let \triangle be a simplicial complex and let *K* be a field of characteristic 0. Then the following conditions are equivalent:

(a) Δ is Cohen–Macaulay over K;

(b) Δ^{s} is Cohen–Macaulay;

(c) Δ^{s} is pure.

.

Proof: Since shifting operators preserve *f*-vectors, it follows that dim $K[\Delta] = \dim K[\Delta^s]$. Now Theorem 2 implies that

proj dim $K[\Delta] = \operatorname{proj} \dim K[\Delta^s]$

Thus depth $K[\Delta] = \text{depth } K[\Delta^s]$ by the Auslander–Buchbaum theorem. This shows the equivalence of statements (a) and (b).

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

The ideal *I* is the Stanley–Reisner ideal of a simplicial complex Γ . We denote by I^{\vee} the Stanley–Reisner ideal of Alexander dual Γ^{\vee} of Γ .

(日) (日) (日) (日) (日) (日) (日) (日)

The ideal *I* is the Stanley–Reisner ideal of a simplicial complex Γ . We denote by I^{\vee} the Stanley–Reisner ideal of Alexander dual Γ^{\vee} of Γ .

It is easily seen that I^{\vee} is again squarefree strongly stable. All minimal prime ideals of *I* have the same height if and only if I^{\vee} is generated in one degree.

The ideal *I* is the Stanley–Reisner ideal of a simplicial complex Γ . We denote by I^{\vee} the Stanley–Reisner ideal of Alexander dual Γ^{\vee} of Γ .

It is easily seen that I^{\vee} is again squarefree strongly stable. All minimal prime ideals of *I* have the same height if and only if I^{\vee} is generated in one degree.

Since I^{\vee} is squarefree strongly stable, this is the case if and only if I^{\vee} has linear resolution. By the Theorem of Eagon–Reiner this is equivalent to saying that I is a Cohen–Macaulay ideal.

(b) In the definition of Δ^s we must assume that char K = 0.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

(b) In the definition of Δ^s we must assume that char K = 0. Really?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

(b) In the definition of Δ^s we must assume that char K = 0. Really?

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

char K = 0 was required to make sure that $gin_{<_{rev}}(I_{\Delta})$ is strongly stable.

(b) In the definition of Δ^s we must assume that char K = 0. Really?

char K = 0 was required to make sure that $gin_{<_{rev}}(I_{\Delta})$ is strongly stable.

Here is my question: Let *I* be a monomial ideal and let *a* be the highest exponent appearing among the generators of *I*. Is it true that $gin_{<_{rev}}(I)$ is independent of char *K* for char K > a?

(b) In the definition of Δ^s we must assume that char K = 0. Really?

char K = 0 was required to make sure that $gin_{<_{rev}}(I_{\Delta})$ is strongly stable.

Here is my question: Let *I* be a monomial ideal and let *a* be the highest exponent appearing among the generators of *I*. Is it true that $gin_{<_{rev}}(I)$ is independent of char *K* for char K > a?

If yes, then Δ^s is defined in all characteristics.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

For a given simplicial complex Δ one defines the face ideal $J_{\Delta} \subset E$ in the same way as one defines the Stanley-Reisner ideal of Δ .

For a given simplicial complex Δ one defines the face ideal $J_{\Delta} \subset E$ in the same way as one defines the Stanley-Reisner ideal of Δ .

(ロ) (同) (三) (三) (三) (○) (○)

One defines generic initial ideals for ideals in the exterior algebra similarly as for ideals in the symmetric algebra.

For a given simplicial complex Δ one defines the face ideal $J_{\Delta} \subset E$ in the same way as one defines the Stanley-Reisner ideal of Δ .

One defines generic initial ideals for ideals in the exterior algebra similarly as for ideals in the symmetric algebra.

The exterior shifted simplicial complex Δ^e is defined by the equation

 $J_{\Delta^e} = \operatorname{gin}_{<_{\operatorname{rev}}}(J_\Delta).$

<ロト < @ ト < E ト < E ト E の < @</p>
One expects the following inequalities

 $\beta_{ij}(I_{\Delta}) \leq \beta_{ij}(I_{\Delta^s}) \leq \beta_{ij}(I_{\Delta^e}) \leq \beta_{ij}(I_{\Delta^c}) \leq \beta_{ij}(I_{\Delta^{lex}}),$

where Δ^{lex} is the simplicial complex whose Stanley–Reisner ideal is the unique squarefree lexsegment ideal with the same Hilbert function as l_{Δ} .

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

One expects the following inequalities

 $\beta_{ij}(I_{\Delta}) \leq \beta_{ij}(I_{\Delta^s}) \leq \beta_{ij}(I_{\Delta^e}) \leq \beta_{ij}(I_{\Delta^c}) \leq \beta_{ij}(I_{\Delta^{lex}}),$

where Δ^{lex} is the simplicial complex whose Stanley–Reisner ideal is the unique squarefree lexsegment ideal with the same Hilbert function as I_{Δ} .

In this chain of inequalities, the inequality $\beta_{ij}(I_{\Delta^s}) \leq \beta_{ij}(I_{\Delta^e})$ and even the inequality $\beta_{ij}(I_{\Delta}) \leq \beta_{ij}(I_{\Delta^e})$ is not known.