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Definition: A simplicial complex ∆ on [n] is shifted if, for
F ∈ ∆, i ∈ F and j ∈ [n] with j > i , one has (F \ {i}) ∪ {j} ∈ ∆.

Note that ∆ is shifted if and only if I∆ is squarefree strongly
stable.

Definition: A shifting operation on [n] is a map which
associates each simplicial complex ∆ on [n] with a simplicial
complex Shift(∆) on [n] and which satisfies the following
conditions:
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(S1) Shift(∆) is shifted;

(S2) Shift(∆) = ∆, if ∆ is shifted;

(S3) f (∆) = f (Shift(∆));

(S4) Shift(∆′) ⊂ Shift(∆), if ∆′ ⊂ ∆.

In classical combinatorics of finite sets, Erdös, Ko and Rado
introduced combinatorial shifting.
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Let ∆ be a simplicial complex on [n]. Let 1 ≤ i < j ≤ n. Write
Shiftij(∆) for the collection of subsets of [n] consisting of the
sets Cij(F ) ⊂ [n], where F ∈ ∆ and where

Cij(F ) =

{

(F \ {i}) ∪ {j}, if i ∈ F , j 6∈ F and (F \ {i}) ∪ {j} 6∈ ∆,
F , otherwise.

Proposition 1: (a) Shiftij(∆) is a simplicial complex on [n], and
the operation ∆ → Shiftij(∆) satisfies the conditions (S2), (S3)
and (S4).

(b) There exists a finite sequence of pairs of integers
(i1, j1), (i2, j2), . . . , (iq , jq) with each 1 ≤ ik < jk ≤ n such that

Shiftiq jq(Shiftiq−1jq−1
(· · · (Shifti1j1(∆)) · · · ))

is shifted.
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A shifted complex which is obtained by a finite number of
sequences of operations as described before will be denoted
by ∆c and is called a combinatorial shifted complex of ∆.

Example: Let ∆ be the simplicial complex with facets
{1, 2}, {2, 3, 4}.

∆ is not shifted because {1, 4} 6∈ ∆. We apply the operator
Shift2,4. Then Shift2,4(∆) has the facets {1, 4}, {2, 3, 4}. Since
Shift2,4(∆) is already shifted, we see that ∆c = Shift2,4(∆).

In general, ∆c depends on its construction by the sequence of
the operators Shiftij .
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polynomial ring in n variables over K . We work with the reverse
lexicographic order <rev on S induced by the ordering
x1 > · · · > xn.

Let I ⊂ S be a squarefree monomial ideal and gin<rev
(I) its

generic initial ideal with respect to <rev . Since K is of
characteristic 0, it follows that gin<rev

(I) is strongly stable.
However, gin<rev

(I) is no longer squarefree.

Lemma 1: Let I ⊂ S be a squarefree monomial ideal. Then

m(u) + deg u ≤ n + 1

for all monomials u belonging to G(gin<rev
(I)).
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formulas yield

βii+j(I) =
∑

u∈G(gin
<rev

(I))j

(

m(u) − 1
i

)

,

where G(gin<rev
(I))j is the set of monomials u ∈ G(gin<rev

(I))
of degree j .

Thus in particular

max{m(u) + deg u − 1 : u ∈ G(gin<rev
(I))}

is the highest shift in the resolution of gin<rev
(I). Since I is a

squarefree monomial ideal, and since by Hochster the
resolutions of squarefree ideals have only squarefee shifts it
follows that the highest shift in the resolution of I is at most n.



Since the Betti number with the highest shift in the resolution on
I is extremal, it follows from the theorem of
Bayer-Charalambous-Popescu that the highest shift in the
resolution of I and that of gin<rev

(I) coincides.



Since the Betti number with the highest shift in the resolution on
I is extremal, it follows from the theorem of
Bayer-Charalambous-Popescu that the highest shift in the
resolution of I and that of gin<rev

(I) coincides.

Hence m(u) + deg u − 1 ≤ n for all u ∈ G(gin<rev
(I)). X
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In order to define symmetric algebraic shifting, we must
introduce a certain operator, called the squarefree operator,
which transfers ginrev (I) into a squarefree strongly stable ideal.

Let u = xi1xi2 · · · xid be a monomial of S, where
i1 ≤ i2 ≤ · · · ≤ id .

We set
uσ = xi1xi2+1 · · · xij+(j−1) · · · xid+(d−1).

One has

m(uσ) − deg uσ = m(u) − 1. (1)

The operator u → uσ is called squarefree operator.
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Let I ⊂ S be strongly stable ideal with G(I) = {u1, . . . , us}. We
write Iσ for the squarefree monomial ideal generated by the
monomials uσ

1 , . . . , uσ
s .

Lemma 2: If I ⊂ S is strongly stable with G(I) = {u1, . . . , us},
then Iσ is squarefree strongly stable with G(Iσ) = {uσ

1 , . . . , uσ
s }.
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Next we show why Iσ is squarefree strongly stable. We take a
monomial u = xi1 · · · xid ∈ G(I) together with
u0 = (xbuσ)/xia+(a−1), where xb does not divide uσ and where
b < ia + (a − 1) and a ∈ [d ]. We claim u0 ∈ Iσ.
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j=1
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a−1
∏
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Since b − p < ip+1 ≤ ia and since I is strongly stable, the
monomial v belongs to I. One has vσ = (xbuσ)/xia+(a−1) = u0.
Let, say, v = xℓ1 · · · xℓd with ℓ1 ≤ · · · ≤ ℓd .
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Again, since I is strongly stable, it follows that
w = xℓ1 · · · xℓc ∈ G(I) for some c ≤ d . Since wσ divides
vσ = u0, one has u0 ∈ Iσ, as desired. X

Let ∆ be a simplicial complex on [n]. Since the base field K is
of characteristic 0, we have that gin<rev

(I∆) is strongly stable.
Thus (gin<rev

(I∆))σ is a squarefree strongly stable ideal of S.

Definition: The symmetric algebraic shifted complex of ∆ is
defined to be the shifted complex ∆s on [n] with

I∆s = (gin<rev
(I∆))σ .
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βii+j(I) = βii+j(Iσ) for all i and j .

Proof: The formula follows from the identity
m(uσ) − deg uσ = m(u) − 1 and the formulas for the Betti
numbers of strongly stable and squarefree strongly stable
ideals.X

It is clear that the operation ∆ → ∆s satisfies condition (S1).
Lemma 3 implies that it satisfies also condition (S3). Condition
(S4) is easy to see. That condition (S2) is satisfied follows from

Theorem 1: Let I ⊂ S be a squarefree strongly stable ideal.
Then

I = gin<rev
(I)σ.
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Proof: Let J = gin<rev
(Iσ). Then J is strongly stable and by

Theorem 1 one has Jσ = Iσ. Therefore G(Jσ) = G(Iσ). By
Lemma 2 it follows that G(J) = G(I). X

Theorem 2: Let ∆ be a simplicial complex and
I∆ ⊂ K [x1, . . . , xn] its Stanley–Reisner ideal, where K is a field
of characteristic 0. Then:

(a) the ij th Betti number of I∆ is extremal if and only if the ij th
Betti number of I∆s is extremal;

(b) The corresponding extremal Betti numbers of I∆ and I∆s are
equal.
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The proof of the theorem follows from Lemma 3 and the
theorem of Bayer- Charalambous-Popescu.

Corollary 2: Let ∆ be a simplicial complex and let K be a field
of characteristic 0. Then the following conditions are equivalent:

(a) ∆ is Cohen–Macaulay over K ;

(b) ∆s is Cohen–Macaulay;

(c) ∆s is pure.

Proof: Since shifting operators preserve f -vectors, it follows
that dim K [∆] = dim K [∆s]. Now Theorem 2 implies that

proj dim K [∆] = proj dim K [∆s]

.

Thus depth K [∆] = depth K [∆s] by the Auslander–Buchbaum
theorem. This shows the equivalence of statements (a) and (b).
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(b) ⇔ (c): We first observe that I∆s is squarefree strongly
stable. Thus we have to show that a squarefree strongly stable
ideal I is Cohen–Macaulay if and only if all minimal prime ideals
of I have the same height.

The ideal I is the Stanley–Reisner ideal of a simplicial complex
Γ. We denote by I∨ the Stanley–Reisner ideal of Alexander dual
Γ∨ of Γ.

It is easily seen that I∨ is again squarefree strongly stable. All
minimal prime ideals of I have the same height if and only if I∨

is generated in one degree.

Since I∨ is squarefree strongly stable, this is the case if and
only if I∨ has linear resolution. By the Theorem of
Eagon–Reiner this is equivalent to saying that I is a
Cohen–Macaulay ideal.X
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Problems: (a) Is it true that (∆s)∨ = (∆∨)s?

(b) In the definition of ∆s we must assume that char K = 0.

Really?

char K = 0 was required to make sure that gin<rev
(I∆) is

strongly stable.

Here is my question: Let I be a monomial ideal and let a be the
highest exponent appearing among the generators of I. Is it
true that gin<rev

(I) is independent of char K for char K > a?

If yes, then ∆s is defined in all characteristics.
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To avoid the assumption char K = 0, Kalai defined exterior
algebraic shifting.

For a given simplicial complex ∆ one defines the face ideal
J∆ ⊂ E in the same way as one defines the Stanley-Reisner
ideal of ∆.

One defines generic initial ideals for ideals in the exterior
algebra similarly as for ideals in the symmetric algebra.

The exterior shifted simplicial complex ∆e is defined by the
equation

J∆e = gin<rev
(J∆).
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βij(I∆) ≤ βij(I∆s) ≤ βij(I∆e) ≤ βij(I∆c ) ≤ βij(I∆lex ),

where ∆lex is the simplicial complex whose Stanley–Reisner
ideal is the unique squarefree lexsegment ideal with the same
Hilbert function as I∆.



One expects the following inequalities

βij(I∆) ≤ βij(I∆s) ≤ βij(I∆e) ≤ βij(I∆c ) ≤ βij(I∆lex ),

where ∆lex is the simplicial complex whose Stanley–Reisner
ideal is the unique squarefree lexsegment ideal with the same
Hilbert function as I∆.

In this chain of inequalities, the inequality βij(I∆s) ≤ βij(I∆e) and
even the inequality βij(I∆) ≤ βij(I∆e) is not known.
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