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Shifting operations

Definition: A simplicial complex A on [n] is shifted if, for
FeA/ieFandje[nwithj>i,onehas (F\{i})U{j} € A.
Note that A is shifted if and only if |5 is squarefree strongly
stable.

Definition: A shifting operation on [n] is a map which
associates each simplicial complex A on [n] with a simplicial

complex Shift(A) on [n] and which satisfies the following
conditions:



(S1) Shift(A) is shifted;
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S1) Shift(A) is shifted;
S,) Shift(A) = A, if A is shifted,;
Ss) f(A) = f(Shift(A));

(
(
(
(S4) Shift(A’) c Shift(A), if A’ C A.



(S1) Shift(A) is shifted;

(S2) Shift(A) = A, if A is shifted;
(S3) F(2) = f(Shift(A));

(S4) Shift(A’) C Shift(A), if A’ C A.

In classical combinatorics of finite sets, Erdos, Ko and Rado
introduced combinatorial shifting.
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and (Sy).



Let A be a simplicial complex on [n]. Let 1 <i <] < n. Write
Shift;; (A) for the collection of subsets of [n] consisting of the
sets C;j(F) C [n], where F € A and where

_J BN{ipudi}, ifier, j¢F and (F\{i})U{j} £A,
Ci(F) _{ F otherwise.

)

Proposition 1:  (a) Shiftj(A) is a simplicial complex on [n], and
the operation A — Shift;(A) satisfies the conditions (S,), (S3)
and (Sy).

(b) There exists a finite sequence of pairs of integers
(i1,)1), (i2,]2), - - -, (ig,Jq) with each 1 < iy < jx < n such that

Shiftiqjq (Shiftiqfqufl(' o (Shiftiljl(A)) T ))

is shifted.
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A shifted complex which is obtained by a finite number of
sequences of operations as described before will be denoted
by A€ and is called a combinatorial shifted complex of A.

Example: Let A be the simplicial complex with facets
{1,2},{2,3,4}.

A is not shifted because {1,4} ¢ A. We apply the operator
Shifty 4. Then Shift; 4(A) has the facets {1,4},{2,3,4}. Since
Shift; 4(A) is already shifted, we see that A = Shift; 4(A).

In general, A® depends on its construction by the sequence of
the operators Shift;.
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Kalai's squarefree operator

Let K be a field of characteristic 0 and S = K|[xy, ..., Xx,] the
polynomial ring in n variables over K. We work with the reverse
lexicographic order <y 0n S induced by the ordering

X1 > - > Xp.

Let| C S be a squarefree monomial ideal and gin__ (1) its
generic initial ideal with respect to <ey. Since K is of
characteristic 0, it follows that gin_,_ (1) is strongly stable.
However, gin__ (1) is no longer squarefree.

Lemma 1: Letl C S be a squarefree monomial ideal. Then
m(u) +degu <n+1

for all monomials u belonging to G(gin__ (1))



Proof: Since gin__ (1) is strongly stable, the Eliahou-Kervaire
formulas yield
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of degree j.



Proof: Since gin__ (1) is strongly stable, the Eliahou-Kervaire
formulas yield

_1
Gig( = > <m(ui) >’
ueG(gin_ ., (1);

where G(gin__ (1)); is the set of monomials u € G(gin__ (1))
of degree j.

Thus in particular
max{m(u) +degu —1:u e G(gin__ (1))}

is the highest shift in the resolution of gin__ (I). Since | is a
squarefree monomial ideal, and since by Hochster the

resolutions of squarefree ideals have only squarefee shifts it
follows that the highest shift in the resolution of | is at most n.



Since the Betti number with the highest shift in the resolution on
| is extremal, it follows from the theorem of
Bayer-Charalambous-Popescu that the highest shift in the
resolution of I and that of gin_ _ (1) coincides.



Since the Betti number with the highest shift in the resolution on
| is extremal, it follows from the theorem of
Bayer-Charalambous-Popescu that the highest shift in the
resolution of I and that of gin_ _ (1) coincides.

Hence m(u) +degu — 1 < nforallu € G(gin__, (1)). v
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In order to define symmetric algebraic shifting, we must
introduce a certain operator, called the squarefree operator,
which transfers gin,, (1) into a squarefree strongly stable ideal.

Letu = Xx;,Xi, - - - X, be a monomial of S, where
ip <ip <+ <lig.

We set
U7 = X Xip 1+ X (1) Xig +(d—1)-

One has

m(u?) — degu’ =m(u) — 1. (1)

The operator u — u? is called squarefree operator.
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Corollary 1. Let| be a squarefree ideal of S. Then u? belongs
to S for all u € G(ging, (1))).

Proof: Since m(u?) — degu? =m(u) — 1 and
m(u) +degu —1 <nforallu e G(gin__ (I)), the assertion
follows. v’

Let | C S be strongly stable ideal with G(1) = {ug,...,us}. We
write 19 for the squarefree monomial ideal generated by the
monomials uf, ..., ud.

Lemma 2: If | C S is strongly stable with G(I) = {uy,...,us},
then 17 is squarefree strongly stable with G(17) = {uf,...,ud}.



Proof: First one shows that G(17) = {uf,...,ud}.



Proof: First one shows that G(17) = {uf,...,ud}.

Next we show why |7 is squarefree strongly stable. We take a
monomial u = x;, - - - X;, € G(I) together with

Uo = (XpU?)/Xi,+(a—1), Where X does not divide u” and where
b <ia+(a—1)anda € [d]. We claim ug € 1.



Proof: First one shows that G(17) = {uf,...,ud}.

Next we show why |7 is squarefree strongly stable. We take a
monomial u = x;, - - - X;, € G(I) together with

Uo = (XpU?)/Xi,+(a—1), Where X does not divide u” and where
b <ia+(a—1)anda € [d]. We claim ug € 1.

Choose p < asuchthati, +(p —1) <b <iy;1 +p. (Here

ig = 1) Let

d
HX'J Xo— p H Xij—1 H Xij)'

j=p+1 j=a+1



Proof: First one shows that G(17) = {uf,...,ud}.

Next we show why |7 is squarefree strongly stable. We take a
monomial u = x;, - - - X;, € G(I) together with

Uo = (XpU?)/Xi,+(a—1), Where X does not divide u” and where
b <ia+(a—1)anda € [d]. We claim ug € 1.

Choose p < asuchthati, +(p —1) <b <iy;1 +p. (Here
ig = 1) Let

d
HX'J Xb— p H Xj—1 H Xij)'

j=p+1 j=a+1

Since b — p <iy;1 <ia and since | is strongly stable, the
monomial v belongs to I. One has v7 = (xpU”)/X;,4(a—1) = Uo-
Let, say, v = Xey = Xey with {1 <. < /y.
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Again, since | is strongly stable, it follows that
W = Xy, -+ X, € G(I) for some ¢ < d. Since w? divides
v? = ug, one has ug € 17, as desired. v

Let A be a simplicial complex on [n]. Since the base field K is
of characteristic 0, we have that gin_ _ (Ia) is strongly stable.
Thus (gin_,, (Ia))? is a squarefree strongly stable ideal of S.

Definition: The symmetric algebraic shifted complex of A is
defined to be the shifted complex A® on [n] with

las = (gin_.,, (1))°.
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Lemma 3: If | C S is a strongly stable ideal, then

Bii+i(1) = Bi+;(17) for alli and j.

Proof: The formula follows from the identity

m(u?) —degu’ = m(u) — 1 and the formulas for the Betti
numbers of strongly stable and squarefree strongly stable
ideals.v’

It is clear that the operation A — AS satisfies condition (S;).
Lemma 3 implies that it satisfies also condition (Sz). Condition
(S4) is easy to see. That condition (S,) is satisfied follows from

Theorem 1: Let| C S be a squarefree strongly stable ideal.
Then

| = gin<rev(l)".
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Proposition 2: Let | be a strongly stable monomial ideal. Then
one has gin__ (1?) = I. In particular, the squarefree operator
establishes a bijection between the strongly stable ideals and
the squarefree strongly stable ideals.

Proof: LetJ =gin__ (I7). Then J is strongly stable and by
Theorem 1 one has J7 = 19. Therefore G(J7) = G(I?). By
Lemma 2 it follows that G(J) = G(I). v

Theorem 2: Let A be a simplicial complex and
In € K[Xg,...,Xy] its Stanley—Reisner ideal, where K is a field
of characteristic 0. Then:

(a) the ijth Betti number of |5 is extremal if and only if the ijth
Betti number of |5s is extremal;

(b) The corresponding extremal Betti numbers of Ix and Ias are
equal.



The proof of the theorem follows from Lemma 3 and the
theorem of Bayer- Charalambous-Popescu.



The proof of the theorem follows from Lemma 3 and the
theorem of Bayer- Charalambous-Popescu.

Corollary 2: Let A be a simplicial complex and let K be a field
of characteristic 0. Then the following conditions are equivalent:



The proof of the theorem follows from Lemma 3 and the
theorem of Bayer- Charalambous-Popescu.

Corollary 2: Let A be a simplicial complex and let K be a field
of characteristic 0. Then the following conditions are equivalent:

(&) A is Cohen—Macaulay over K;



The proof of the theorem follows from Lemma 3 and the
theorem of Bayer- Charalambous-Popescu.

Corollary 2: Let A be a simplicial complex and let K be a field
of characteristic 0. Then the following conditions are equivalent:

(&) A is Cohen—Macaulay over K;

(b) A® is Cohen—Macaulay;



The proof of the theorem follows from Lemma 3 and the
theorem of Bayer- Charalambous-Popescu.

Corollary 2: Let A be a simplicial complex and let K be a field
of characteristic 0. Then the following conditions are equivalent:

(&) A is Cohen—Macaulay over K;
(b) A® is Cohen—Macaulay;
(c) AS is pure.



The proof of the theorem follows from Lemma 3 and the
theorem of Bayer- Charalambous-Popescu.

Corollary 2: Let A be a simplicial complex and let K be a field
of characteristic 0. Then the following conditions are equivalent:

(&) A is Cohen—Macaulay over K;
(b) A® is Cohen—Macaulay;
(c) AS is pure.

Proof: Since shifting operators preserve f-vectors, it follows
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The proof of the theorem follows from Lemma 3 and the
theorem of Bayer- Charalambous-Popescu.

Corollary 2: Let A be a simplicial complex and let K be a field
of characteristic 0. Then the following conditions are equivalent:

(&) A is Cohen—Macaulay over K;
(b) A® is Cohen—Macaulay;
(c) AS is pure.

Proof: Since shifting operators preserve f-vectors, it follows
that dim K[A] = dimK[A®]. Now Theorem 2 implies that

projdim K [A] = projdim K [A®]

Thus depth K [A] = depth K[A®] by the Auslander—Buchbaum
theorem. This shows the equivalence of statements (a) and (b).
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(b) < (c): We first observe that | s is squarefree strongly
stable. Thus we have to show that a squarefree strongly stable
ideal | is Cohen—Macaulay if and only if all minimal prime ideals
of | have the same height.

The ideal | is the Stanley—Reisner ideal of a simplicial complex
. We denote by |V the Stanley—Reisner ideal of Alexander dual
v ofrl.

It is easily seen that 1V is again squarefree strongly stable. All
minimal prime ideals of | have the same height if and only if 1V
is generated in one degree.

Since 1 is squarefree strongly stable, this is the case if and
only if IV has linear resolution. By the Theorem of
Eagon—Reiner this is equivalent to saying that | is a
Cohen—Macaulay ideal.v/
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Problems: (a) Is it true that (AS)Y = (AY)3?
(b) In the definition of AS we must assume that charK = 0.
Really?

charK = 0 was required to make sure that gin__ (Ia) is
strongly stable.

Here is my question: Let | be a monomial ideal and let a be the
highest exponent appearing among the generators of I. Is it
true that gin__ (1) is independent of charK for charK > a?

If yes, then AS is defined in all characteristics.
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To avoid the assumption charK = 0, Kalai defined exterior
algebraic shifting.

For a given simplicial complex A one defines the face ideal
Ja C E in the same way as one defines the Stanley-Reisner
ideal of A.

One defines generic initial ideals for ideals in the exterior
algebra similarly as for ideals in the symmetric algebra.

The exterior shifted simplicial complex A® is defined by the
equation
Jpe = gin<rev(JA).



One expects the following inequalities
Bi(la) < Bij(las) < Bij(lae) < Gi(lac) < Bij(lawex),

where A'®* is the simplicial complex whose Stanley—Reisner
ideal is the unique squarefree lexsegment ideal with the same
Hilbert function as Ix.



One expects the following inequalities

Bi(la) < Bij(las) < Bij(lae) < Gi(lac) < Bij(lawex),

where A'®* is the simplicial complex whose Stanley—Reisner
ideal is the unique squarefree lexsegment ideal with the same
Hilbert function as Ix.

In this chain of inequalities, the inequality 5;(las) < G;j(lae) and
even the inequality 3;(1a) < G;j(lae) is not known.
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