Computational Commutative Algebra Castelnuovo-Mumford regularity

Maria Evelina Rossi

Università di Genova Dipartimento di Matematica

Tehran, 2-7 July 2011

The Castelnuovo Mumford regularity

- is one of the most important invariants of a graded module.
- is related to the theory of syzygies which connects the qualitative study of algebraic varieties and commutative rings with the study of their defining equations.
- is related to the local cohomology theory
- is a good measure of the complexity of computing Gröbner bases.

• is a very active area of research which involves specialists working in commutative algebra, algebraic geometry and computational algebra.

The Castelnuovo Mumford regularity

- is one of the most important invariants of a graded module.
- is related to the theory of syzygies which connects the qualitative study of algebraic varieties and commutative rings with the study of their defining equations.
- is related to the local cohomology theory
- is a good measure of the complexity of computing Gröbner bases.
- is a very active area of research which involves specialists working in commutative algebra, algebraic geometry and computational algebra.

The Castelnuovo Mumford regularity

- is one of the most important invariants of a graded module.
- is related to the theory of syzygies which connects the qualitative study of algebraic varieties and commutative rings with the study of their defining equations.
- is related to the local cohomology theory
- is a good measure of the complexity of computing Gröbner bases.

 is a very active area of research which involves specialists working in commutative algebra, algebraic geometry and computational algebra.

The Castelnuovo Mumford regularity

- is one of the most important invariants of a graded module.
- is related to the theory of syzygies which connects the qualitative study of algebraic varieties and commutative rings with the study of their defining equations.
- is related to the local cohomology theory
- is a good measure of the complexity of computing Gröbner bases.

 is a very active area of research which involves specialists working in commutative algebra, algebraic geometry and computational algebra.

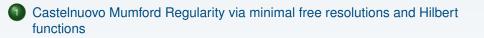
The Castelnuovo Mumford regularity

- is one of the most important invariants of a graded module.
- is related to the theory of syzygies which connects the qualitative study of algebraic varieties and commutative rings with the study of their defining equations.
- is related to the local cohomology theory
- is a good measure of the complexity of computing Gröbner bases.
- is a very active area of research which involves specialists working in commutative algebra, algebraic geometry and computational algebra.

- Castelnuovo Mumford Regularity via minimal free resolutions and Hilbert functions
- Castelnuovo Mumford Regularity and local cohomology: its behavior relative to Hyperplane sections, Sums, Products, Intersections of ideals
- Castelnuovo Mumford regularity: computational aspects
- Finiteness of Hilbert Functions and regularity: Kleiman's result
- Sounds on the regularity and Open Problems

References

Contents



Notations

Denote

$$\boldsymbol{P} = \boldsymbol{k}[\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n]$$

a polynomial ring over a field k with deg $x_i = 1$

 $P_j := k$ -vector space generated by the forms of P of degree j.

• *M* a finitely generated graded *P*-module (such as an homogeneous ideal *I* or *P*/*I*), i.e.

 $M = \oplus_i M_i$

as abelian groups and $P_jM_i \subseteq M_{i+j}$ for every *i*, *j*.

Let $d \in \mathbb{Z}$, the *d*-th twist of *M*

$$M(d)_i := M_{i+d}.$$

Notations

Denote

$$P = k[x_1, \ldots, x_n]$$

a polynomial ring over a field k with deg $x_i = 1$

 $P_j := k$ -vector space generated by the forms of P of degree j.

 M a finitely generated graded P-module (such as an homogeneous ideal I or P/I), i.e.

 $M = \oplus_i M_i$

as abelian groups and $P_jM_i \subseteq M_{i+j}$ for every i, j.

Let $d \in \mathbb{Z}$, the *d*-th twist of *M*

 $M(d)_i := M_{i+d}.$

Notations

Denote

$$P = k[x_1,\ldots,x_n]$$

a polynomial ring over a field k with deg $x_i = 1$

 $P_j := k$ -vector space generated by the forms of P of degree j.

• *M* a finitely generated graded *P*-module (such as an homogeneous ideal *I* or P/I), i.e.

 $M = \oplus_i M_i$

as abelian groups and $P_jM_i \subseteq M_{i+j}$ for every i, j.

Let $d \in \mathbb{Z}$, the *d*-th twist of *M*

$$M(d)_i := M_{i+d}$$

Definition

The numerical function

$$HF_M(j) := \dim_k M_j$$

is called the Hilbert function of *M*.

Assume M = P/I where I is an homogeneous ideal of P. Then

 $HF_{P/I}(j) = \dim_k (P/I)_j$

An important motivation arises in projective geometry: let $X \subseteq \mathbb{P}^r$ be a projective variety defined by $I = I(X) \subseteq P = k[x_0, ..., x_r]$.

If we write A(X) = P/I(X) for the homogeneous coordinate ring of X :

$$HF_X(j) = \dim_k A(X)_j = \dim_k P_j - \dim_k l_j = \binom{r+j}{r} - \dim_k l_j$$

$\dim_k I_j \longrightarrow$ the "number" of hypersurfaces of degree j vanishing on X.

Definition

The numerical function

$$HF_M(j) := \dim_k M_j$$

is called the Hilbert function of *M*.

Assume M = P/I where I is an homogeneous ideal of P. Then

 $HF_{P/I}(j) = \dim_k (P/I)_j$

An important motivation arises in projective geometry: let $X \subseteq \mathbb{P}^r$ be a projective variety defined by $I = I(X) \subseteq P = k[x_0, ..., x_r]$.

If we write A(X) = P/I(X) for the homogeneous coordinate ring of X :

$$HF_X(j) = \dim_k A(X)_j = \dim_k P_j - \dim_k I_j = \binom{r+j}{r} - \dim_k I_j$$

$\dim_k I_j \longrightarrow$ the "number" of hypersurfaces of degree j vanishing on X.

Definition

The numerical function

$$HF_M(j) := \dim_k M_j$$

is called the Hilbert function of M.

Assume M = P/I where I is an homogeneous ideal of P. Then

$$HF_{P/I}(j) = \dim_k (P/I)_j$$

An important motivation arises in projective geometry: let $X \subseteq \mathbb{P}^r$ be a projective variety defined by $I = I(X) \subseteq P = k[x_0, ..., x_r]$.

If we write A(X) = P/I(X) for the homogeneous coordinate ring of X :

$$HF_X(j) = \dim_k A(X)_j = \dim_k P_j - \dim_k I_j = inom{r+j}{r} - \dim_k I_j$$

dim_k $I_j \rightarrow the$ "number" of hypersurfaces of degree j vanishing on X.

Definition

The numerical function

$$HF_M(j) := \dim_k M_j$$

is called the Hilbert function of M.

Assume M = P/I where I is an homogeneous ideal of P. Then

$$HF_{P/I}(j) = \dim_k (P/I)_j$$

An important motivation arises in projective geometry: let $X \subseteq \mathbb{P}^r$ be a projective variety defined by $I = I(X) \subseteq P = k[x_0, ..., x_r]$.

If we write A(X) = P/I(X) for the homogeneous coordinate ring of X :

$$HF_X(j) = \dim_k A(X)_j = \dim_k P_j - \dim_k I_j = \binom{r+j}{r} - \dim_k I_j$$

 $\dim_k I_j \longrightarrow$ the "number" of hypersurfaces of degree *j* vanishing on *X*.

Let τ be a term ordering on \mathbb{T}^n , then $G = \{f_1, \ldots, f_s\}$ is a τ -Gröbner basis of *I* if

$$\mathsf{Lt}_{\tau}(I) := < \mathsf{Lt}_{\tau}(f) : f \in I > = \{\mathsf{Lt}_{\tau}(f_1), \dots, \mathsf{Lt}_{\tau}(f_s)\}$$

The residue classes of the elements of $\mathbb{T}^n \setminus Lt_{\tau}(I)$ form a *k*-basis of *P*/*I*.

Proposition (Macaulay) For every $j \ge 0$ $HF_{P/I}(j) = HF_{P/I}$

Let τ be a term ordering on \mathbb{T}^n , then $G = \{f_1, \ldots, f_s\}$ is a τ -Gröbner basis of *I* if

$$\mathsf{Lt}_{\tau}(I) := < \mathsf{Lt}_{\tau}(f) : f \in I > = \{\mathsf{Lt}_{\tau}(f_1), \dots, \mathsf{Lt}_{\tau}(f_s)\}$$

The residue classes of the elements of $\mathbb{T}^n \setminus Lt_{\tau}(I)$ form a *k*-basis of *P*/*I*.

Proposition (Macaulay)

For every $j \ge 0$

 $HF_{P/I}(j) = HF_{P/\operatorname{Lt}_{\tau}(I)}(j)$

Hilbert Polynomial, Hilbert Series

Castelladvo Malliola negularity via millima nee resolution

• $HF_M(j)$ for $j \gg 0$ agrees with $HP_M(X)$ a polynomial of degree d - 1 where d = Krull dimension of M (> 0).

 $HP_M(j)$ is called Hilbert Polynomial and it encodes several asymptotic information on M.

A more compact information can be encoded by the Hilbert Series

$$HS_M(z) := \sum_{j \ge 0} HF_M(j) z^j = \frac{h_M(z)}{(1-z)^d} \quad (\text{Hilbert} - \text{Serre})$$

where $h_M(1) = e > 0$ is the multiplicity of M and $d = \dim M$.

Define

 $\operatorname{reg-index}(M) := \max\{j : HF_M(j) \neq HP_M(j)\}$

Hilbert Polynomial, Hilbert Series

Castelladvo Marilora negularity via minimar nee resolutione

• $HF_M(j)$ for $j \gg 0$ agrees with $HP_M(X)$ a polynomial of degree d - 1 where d = Krull dimension of M (> 0).

 $HP_M(j)$ is called Hilbert Polynomial and it encodes several asymptotic information on M.

A more compact information can be encoded by the Hilbert Series

$$HS_M(z) := \sum_{j \ge 0} HF_M(j) z^j = \frac{h_M(z)}{(1-z)^d}$$
 (Hilbert – Serre)

where $h_M(1) = e > 0$ is the multiplicity of M and $d = \dim M$.

Define

 $\operatorname{reg-index}(M) := \max\{j : HF_M(j) \neq HP_M(j)\}$

Hilbert Polynomial, Hilbert Series

Castemacyo Marnora negularity via minimar nee resolution

• $HF_M(j)$ for $j \gg 0$ agrees with $HP_M(X)$ a polynomial of degree d - 1 where d = Krull dimension of M (> 0).

 $HP_M(j)$ is called Hilbert Polynomial and it encodes several asymptotic information on M.

• A more compact information can be encoded by the Hilbert Series

$$HS_{M}(z) := \sum_{j \ge 0} HF_{M}(j)z^{j} = \frac{h_{M}(z)}{(1-z)^{d}} \quad (\text{Hilbert} - \text{Serre})$$

where $h_M(1) = e > 0$ is the multiplicity of M and $d = \dim M$.

Define

 $\operatorname{reg-index}(M) := \max\{j : HF_M(j) \neq HP_M(j)\}$

(CoCoA)

```
-- The current ring is R := Q[x, y, z];
I:=Ideal(x^2, xy, xz, y^3);
H:=Hilbert(R/I);
Η;
H(0) = 1
H(t) = 3 for t >= 1
HilbertPoly(R/I);
3
Poincare(R/I); (or HilbertSeries(R/I);)
(1 + 2x) / (1-x)
```

functions

Minimal free resolutions

• A graded free resolution of *M* as a graded *P*-module is an exact complex (ker $f_{j-1} = \text{Im } f_j$ for every *j*)

$$\mathbb{F}: \quad \dots \in F_h \xrightarrow{f_h} F_{h-1} \xrightarrow{f_{h-1}} \dots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \to 0$$

where F_i are free *P*-modules and f_i are homogeneous homomorphisms (of degree 0).

• \mathbb{F} is minimal if for every $i \geq 1$

Im $f_i \subseteq mF_{i-1}$

where $m = (x_1, ..., x_n)$.

functions

Minimal free resolutions

• A graded free resolution of *M* as a graded *P*-module is an exact complex (ker $f_{j-1} = \text{Im } f_j$ for every *j*)

$$\mathbb{F}: \quad \dots \in F_h \xrightarrow{f_h} F_{h-1} \xrightarrow{f_{h-1}} \dots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \to 0$$

where F_i are free *P*-modules and f_i are homogeneous homomorphisms (of degree 0).

• \mathbb{F} is minimal if for every $i \ge 1$

Im $f_i \subseteq mF_{i-1}$

where
$$m = (x_1, ..., x_n)$$
.

Castellatore Manifold Hegalarity via minimal neer resolutions fur the

Existence of minimal graded free resolutions

• Every finitely generated *P*-module admits a minimal free resolution: $\mathbb{F}: \dots F_h \xrightarrow{h} F_{h-1} \xrightarrow{f_{h-1}} \dots \to F_1 \xrightarrow{h} F_0 \xrightarrow{h} M \to 0$

• We are interested in building a graded minimal *P*-free resolution:

 $M = < m_1, ..., m_t >_P$ minimally generated with deg $m_l = a_{0l}$. Define the homogeneous epimorphism:

$$F_0 = \oplus_j P(-a_{0j}) \stackrel{t_0}{
ightarrow} M
ightarrow 0$$

 $e_j \sim m_j$

By the minimality of the system of generators

Ker $f_0 \subseteq mF_0$

We can iterate the procedure

$0 o {\mathsf{Ker}} \, {\mathit{f}}_i o {\mathit{F}}_i = \oplus_i {\mathit{P}}(-{\mathit{a}}_{ij}) \stackrel{{\mathit{f}}_i}{ o} {\mathit{Kerf}}_{i-1} o 0$

Castellatore manifer neglicing via minimal nee resolutions and minor

Existence of minimal graded free resolutions

• Every finitely generated *P*-module admits a minimal free resolution: $\mathbb{F}: \dots F_h \xrightarrow{f_h} F_{h-1} \xrightarrow{f_{h-1}} \dots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \to 0$

• We are interested in building a graded minimal P-free resolution:

 $M = < m_1, \ldots, m_t >_P$ minimally generated with deg $m_t = a_{0t}$. Define the homogeneous epimorphism:

$$F_0 = \oplus_j P(-a_{0j}) \stackrel{t_0}{
ightarrow} M
ightarrow 0$$

G C II

By the minimality of the system of generators

Ker $f_0 \subseteq mF_0$

We can iterate the procedure

$0 o {\mathsf{Ker}} \, {\mathit{f}}_i o {\mathit{F}}_i = \oplus_i {\mathit{P}}(-{\mathit{a}}_{ij}) \stackrel{{\mathit{f}}_i}{ o} {\mathit{Kerf}}_{i-1} o 0$

Castellatore manifer neglicing via minimal nee resolutions and minor

Existence of minimal graded free resolutions

- Every finitely generated *P*-module admits a minimal free resolution: $\mathbb{F}: \dots F_h \xrightarrow{f_h} F_{h-1} \xrightarrow{f_{h-1}} \dots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \to 0$
- We are interested in building a graded minimal *P*-free resolution:

 $M = < m_1, \ldots, m_t >_P$ minimally generated with deg $m_t = a_{0t}$. Define the homogeneous epimorphism:

 $F_0 = \oplus_j P(-a_{0j}) \stackrel{t_0}{
ightarrow} M
ightarrow 0$

By the minimality of the system of generators

Ker $f_0 \subseteq mF_0$

We can iterate the procedure

 $0 o {\mathsf{Ker}} \, {\mathit{f}}_i o {\mathit{F}}_i = \oplus_i {\mathit{P}}(-a_{ij}) \stackrel{{\mathit{f}}_i}{ o} {\mathit{Kerf}}_{i-1} o 0$

Casternative maniford negatarity via minimal nee resolutions and miser

Existence of minimal graded free resolutions

- Every finitely generated *P*-module admits a minimal free resolution: $\mathbb{F}: \dots \in E_h \xrightarrow{f_h} E_{h-1} \xrightarrow{f_{h-1}} \dots \to E_1 \xrightarrow{f_1} E_0 \xrightarrow{f_0} M \to 0$
- We are interested in building a graded minimal *P*-free resolution:

 $M = \langle m_1, \ldots, m_l \rangle_P$ minimally generated with deg $m_j = a_{0j}$. Define the homogeneous epimorphism:

$$F_0 = \oplus_j P(-a_{0j}) \stackrel{f_0}{\to} M \to 0$$

 $e_i \rightsquigarrow m_i$

By the minimality of the system of generators

Ker $f_0 \subseteq mF_0$

We can iterate the procedure

$0 o {\mathsf{Ker}} \, {\mathit{f}}_i o {\mathit{F}}_i = \oplus_i {\mathit{P}}(-a_{ij}) \stackrel{{\mathit{f}}_i}{ o} {\mathit{Ker}} {\mathit{f}}_{i-1} o 0$

Castellador Manifer Tegularly Via minimal recercisorations and theory

Existence of minimal graded free resolutions

- Every finitely generated *P*-module admits a minimal free resolution: $\mathbb{F} := \dots \xrightarrow{F_h} \xrightarrow{f_h} \xrightarrow{F_{h-1}} \dots \xrightarrow{F_{h-1}} \xrightarrow{F_{h-1}} \xrightarrow{F_{h-1}} \xrightarrow{F_{h-1}} M \xrightarrow{0} 0$
- We are interested in building a graded minimal *P*-free resolution:

 $M = \langle m_1, \ldots, m_l \rangle_P$ minimally generated with deg $m_j = a_{0j}$. Define the homogeneous epimorphism:

$$F_0 = \oplus_j P(-a_{0j}) \stackrel{f_0}{\to} M \to 0$$

By the minimality of the system of generators

 $\operatorname{Ker} f_0 \subseteq mF_0$

 $e_i \rightsquigarrow m_i$

We can iterate the procedure

 $0 o \mathsf{Ker}\, f_i o F_i = \oplus_i P(-a_{ij}) \stackrel{I_i}{ o} \mathit{Kerf}_{i-1} o 0$

Castellador Manifer Tegularly Via minimal recercisorations and theory

Existence of minimal graded free resolutions

- Every finitely generated *P*-module admits a minimal free resolution: $\mathbb{F}: \dots \in F_h \xrightarrow{f_h} F_{h-1} \xrightarrow{f_{h-1}} \dots \to F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \to 0$
- We are interested in building a graded minimal *P*-free resolution:

 $M = \langle m_1, \ldots, m_l \rangle_P$ minimally generated with deg $m_j = a_{0j}$. Define the homogeneous epimorphism:

$$F_0 = \oplus_j P(-a_{0j}) \stackrel{f_0}{\to} M \to 0$$

 $e_j \rightsquigarrow m_j$

By the minimality of the system of generators

$$\operatorname{Ker} f_0 \subseteq mF_0$$

We can iterate the procedure

$$0 \rightarrow \text{Ker } f_i \rightarrow F_i = \oplus_i P(-a_{ij}) \stackrel{f_i}{\rightarrow} Kerf_{i-1} \rightarrow 0$$

$P(-2)^3 \oplus P(-3) \stackrel{f_0}{\rightarrow} I \rightarrow 0$

$$\begin{array}{ccc} e_1 & \longrightarrow & x^2 \\ e_2 & \longrightarrow & xy \\ e_3 & \longrightarrow & xz \\ e_4 & \longrightarrow & y^3 \end{array}$$

 $Syz_1(l) = \text{Ker } f_0 \text{ is generated by } s_1 = ye_1 - xe_2; \ s_2 = ze_1 - xe_3; \ s_3 = ze_2 - ye_3; \ s_4 = y^2e_2 - xe_4.$ Define

$$\mathsf{P}(-3)^3\oplus\mathsf{P}(-4)\stackrel{f_1}{ o}\mathsf{Syz}_1(I) o 0$$

 $Syz_2(I) = \text{Ker } f_1 \text{ is generated by } s = ze'_1 - ye'_2 + xe'_3.$ A minimal free resolution of I as P-module is given by:

$$0 \to P(-4) \xrightarrow{f_2} P(-3)^3 \oplus P(-4) \xrightarrow{f_1} P(-2)^3 \oplus P(-3) \xrightarrow{f_0} I \to 0.$$

 $I = (x^2, xy, xz, y^3)$ in P = k[x, y, z]. Define $P(-2)^3 \oplus P(-3) \stackrel{f_0}{\to} I \to 0$

$$\begin{array}{rcl} e_1 & \rightsquigarrow & x^2 \\ e_2 & \rightsquigarrow & xy \\ e_3 & \rightsquigarrow & xz \\ e_4 & \rightsquigarrow & y^3 \end{array}$$

 $Syz_1(l) = \text{Ker } f_0 \text{ is generated by } s_1 = ye_1 - xe_2; \ s_2 = ze_1 - xe_3; \ s_3 = ze_2 - ye_3; \ s_4 = y^2e_2 - xe_4.$ Define

$$\mathsf{P}(-3)^3\oplus\mathsf{P}(-4)\stackrel{\scriptscriptstyle{f_1}}{ o} Syz_1(I) o 0$$

 $Syz_2(I) = \text{Ker } f_1 \text{ is generated by } s = ze'_1 - ye'_2 + xe'_3.$ A minimal free resolution of *I* as *P*-module is given by:

$$0 \to P(-4) \xrightarrow{f_2} P(-3)^3 \oplus P(-4) \xrightarrow{f_1} P(-2)^3 \oplus P(-3) \xrightarrow{f_0} I \to 0.$$

 $I = (x^2, xy, xz, y^3)$ in P = k[x, y, z]. Define $P(-2)^3 \oplus P(-3) \stackrel{f_0}{\to} I \to 0$

$$e_1 \rightsquigarrow x^2$$

$$e_2 \rightsquigarrow xy$$

$$e_3 \rightsquigarrow xz$$

$$e_4 \rightsquigarrow y^3$$

 $Syz_1(I) = \text{Ker } f_0 \text{ is generated by } s_1 = ye_1 - xe_2; \ s_2 = ze_1 - xe_3; \ s_3 = ze_2 - ye_3; \ s_4 = y^2e_2 - xe_4.$ Define

 $P(-3)^3 \oplus P(-4) \stackrel{_{h_1}}{
ightarrow} Syz_1(I)
ightarrow 0$

 $Syz_2(I) = \text{Ker } f_1 \text{ is generated by } s = ze'_1 - ye'_2 + xe'_3.$ A minimal free resolution of *I* as *P*-module is given by:

 $0 \to P(-4) \xrightarrow{f_2} P(-3)^3 \oplus P(-4) \xrightarrow{f_1} P(-2)^3 \oplus P(-3) \xrightarrow{f_0} I \to 0.$

 $I = (x^2, xy, xz, y^3)$ in P = k[x, y, z]. Define $P(-2)^3 \oplus P(-3) \stackrel{f_0}{\to} I \to 0$

$$e_1 \rightsquigarrow x^2$$

$$e_2 \rightsquigarrow xy$$

$$e_3 \rightsquigarrow xz$$

$$e_4 \rightsquigarrow y^3$$

 $Syz_1(I) = \text{Ker } f_0 \text{ is generated by } s_1 = ye_1 - xe_2; \ s_2 = ze_1 - xe_3; \ s_3 = ze_2 - ye_3; \ s_4 = y^2e_2 - xe_4. \text{ Define}$

$$P(-3)^3 \oplus P(-4) \stackrel{f_1}{
ightarrow} Syz_1(I)
ightarrow 0$$

 $e'_i \rightsquigarrow S_i$ $Syz_2(I) = \text{Ker } f_1 \text{ is generated by } s = ze'_1 - ye'_2 + xe'_3.$ A minimal free resolution of I as P-module is given by:

 $0 \to P(-4) \xrightarrow{f_2} P(-3)^3 \oplus P(-4) \xrightarrow{f_1} P(-2)^3 \oplus P(-3) \xrightarrow{f_0} I \to 0.$

 $I = (x^2, xy, xz, y^3)$ in P = k[x, y, z]. Define $P(-2)^3 \oplus P(-3) \stackrel{f_0}{\to} I \to 0$

$$e_1 \rightsquigarrow x^2$$

$$e_2 \rightsquigarrow xy$$

$$e_3 \rightsquigarrow xz$$

$$e_4 \rightsquigarrow y^3$$

 $Syz_1(I) = \text{Ker } f_0 \text{ is generated by } s_1 = ye_1 - xe_2; \ s_2 = ze_1 - xe_3; \ s_3 = ze_2 - ye_3; \ s_4 = y^2e_2 - xe_4. \text{ Define}$

$$P(-3)^3 \oplus P(-4) \stackrel{f_1}{
ightarrow} Syz_1(I)
ightarrow 0$$

 $e'_i \rightsquigarrow s_i$ $Syz_2(I) = \text{Ker } f_1 \text{ is generated by } s = ze'_1 - ye'_2 + xe'_3.$ A minimal free resolution of I as P-module is given by

 $0 \to P(-4) \xrightarrow{f_2} P(-3)^3 \oplus P(-4) \xrightarrow{f_1} P(-2)^3 \oplus P(-3) \xrightarrow{f_0} I \to 0.$

 $I = (x^2, xy, xz, y^3)$ in P = k[x, y, z]. Define $P(-2)^3 \oplus P(-3) \stackrel{f_0}{\to} I \to 0$

$$e_1 \rightsquigarrow x^2$$

$$e_2 \rightsquigarrow xy$$

$$e_3 \rightsquigarrow xz$$

$$e_4 \rightsquigarrow y^3$$

 $Syz_1(I) = \text{Ker } f_0 \text{ is generated by } s_1 = ye_1 - xe_2; \ s_2 = ze_1 - xe_3; \ s_3 = ze_2 - ye_3; \ s_4 = y^2e_2 - xe_4. \text{ Define}$

$$P(-3)^3\oplus P(-4)\stackrel{f_1}{
ightarrow}Syz_1(I)
ightarrow 0$$

 $e'_i \rightsquigarrow s_i$ $Syz_2(I) = \text{Ker } f_1 \text{ is generated by } s = ze'_1 - ye'_2 + xe'_3.$ A minimal free resolution of *I* as *P*-module is given by:

$$0 \to P(-4) \stackrel{f_2}{\to} P(-3)^3 \oplus P(-4) \stackrel{f_1}{\to} P(-2)^3 \oplus P(-3) \stackrel{f_0}{\to} I \to 0.$$

functions functions

Minimal graded free resolution

A minimal graded free resolution of *M* as *P*-module can be presented as follows:

$$\mathbb{F}: \cdots \oplus_{j=1}^{\beta_h} P(-a_{hj}) \xrightarrow{f_h} \oplus_{j=1}^{\beta_{h-1}} P(-a_{h-1j}) \xrightarrow{f_{h-1}} \dots \xrightarrow{f_1} \oplus_{j=1}^{\beta_0} P(-a_{0j}) \xrightarrow{f_0} M \to 0$$

It will be useful rewrite the resolution as follows:

$$\cdots \to F_i = \oplus_{j \ge 0} P(-j)^{\beta_{ij}} \to \cdots \to \oplus_{j \ge 0} P(-j)^{\beta_{0j}} \to M$$

1) $\beta_{ij} \ge 0$ 2) $\beta_{ij} = \text{cardinality of the shift } (-j) \text{ in position } i \ (\beta_i = \sum \beta_{ij})$

Question. Does β_{ij} (hence a_{ij}) depend on the maps f_i of the resolution?

We remind that in proving the existence of a minimal free resolution we can choose different system of generators of the kernels, hence different maps.

functions functions

Minimal graded free resolution

A minimal graded free resolution of *M* as *P*-module can be presented as follows:

$$\mathbb{F}: \cdots \oplus_{j=1}^{\beta_h} P(-a_{hj}) \xrightarrow{f_h} \oplus_{j=1}^{\beta_{h-1}} P(-a_{h-1j}) \xrightarrow{f_{h-1}} \dots \xrightarrow{f_1} \oplus_{j=1}^{\beta_0} P(-a_{0j}) \xrightarrow{f_0} M \to 0$$

It will be useful rewrite the resolution as follows:

$$\cdots \rightarrow F_i = \oplus_{j \ge 0} P(-j)^{\beta_{ij}} \rightarrow \cdots \rightarrow \oplus_{j \ge 0} P(-j)^{\beta_{0j}} \rightarrow M$$

1) $\beta_{ij} \ge 0$ 2) $\beta_{ij} = \text{cardinality of the shift } (-j) \text{ in position } i \ (\beta_i = \sum \beta_{ij})$

Question. Does β_{ij} (hence a_{ij}) depend on the maps f_i of the resolution?

We remind that in proving the existence of a minimal free resolution we can choose different system of generators of the kernels, hence different maps.

Maria Evelina Rossi (Università di Genova)

Castelnuovo-Mumford regularity and applications

Minimal graded free resolution

A minimal graded free resolution of *M* as *P*-module can be presented as follows:

$$\mathbb{F}: \cdots \oplus_{j=1}^{\beta_h} P(-a_{hj}) \xrightarrow{f_h} \oplus_{j=1}^{\beta_{h-1}} P(-a_{h-1j}) \xrightarrow{f_{h-1}} \dots \xrightarrow{f_1} \oplus_{j=1}^{\beta_0} P(-a_{0j}) \xrightarrow{f_0} M \to 0$$

It will be useful rewrite the resolution as follows:

$$\cdots \rightarrow F_i = \oplus_{j \ge 0} P(-j)^{\beta_{ij}} \rightarrow \cdots \rightarrow \oplus_{j \ge 0} P(-j)^{\beta_{0j}} \rightarrow M$$

Question. Does β_{ij} (hence a_{ij}) depend on the maps f_i of the resolution?

We remind that in proving the existence of a minimal free resolution we can choose different system of generators of the kernels, hence different maps.

Minimal graded free resolution

A minimal graded free resolution of M as P-module can be presented as follows:

$$\mathbb{F}: \quad \cdots \oplus_{j=1}^{\beta_h} P(-a_{hj}) \xrightarrow{f_h} \oplus_{j=1}^{\beta_{h-1}} P(-a_{h-1j}) \xrightarrow{f_{h-1}} \dots \xrightarrow{f_1} \oplus_{j=1}^{\beta_0} P(-a_{0j}) \xrightarrow{f_0} M \to 0$$

It will be useful rewrite the resolution as follows:

$$\cdots \rightarrow F_i = \oplus_{j \ge 0} P(-j)^{\beta_{ij}} \rightarrow \cdots \rightarrow \oplus_{j \ge 0} P(-j)^{\beta_{0j}} \rightarrow M$$

1)
$$\beta_{ij} \ge 0$$

2) $\beta_{ij} = \text{cardinality of the shift } (-j) \text{ in position } i (\beta_i = \sum \beta_{ij})$

Question. Does β_{ij} (hence a_{ij}) depend on the maps f_i of the resolution?

We remind that in proving the existence of a minimal free resolution we can choose different system of generators of the kernels, hence different maps.

Basic facts

We prove that the graded Betti numbers are uniquely determined by M.

Proposition

$$\beta_{ij} = \beta_{ij}(M) = dim_k Tor_i^P(M, k)_j$$

and we call these integers graded Betti numbers of M.

In fact

$$Tor_i^P(M,k) = H_i(\mathbb{F} \otimes P/m)$$

By the minimality of $\mathbb F$ the maps of the new complex $\mathbb F\otimes P/m$ are trivial, hence we have

$$Tor_i^P(M,k)_j = [\oplus_{m \ge 0} P(-m)^{\beta_{im}} \otimes P/m]_j = [\oplus_{m \ge 0} k(-m)^{\beta_{im}}]_j =$$

$$=\oplus_{m\geq 0}(k_{j-m})^{\beta_{im}}\underset{m=j}{=}k^{\beta_{ij}}$$

Basic facts

We prove that the graded Betti numbers are uniquely determined by M.

Proposition

$$\beta_{ij} = \beta_{ij}(M) = dim_k Tor_i^P(M, k)_j$$

and we call these integers graded Betti numbers of M.

In fact

$$Tor_i^P(M,k) = H_i(\mathbb{F} \otimes P/m)$$

By the minimality of $\mathbb F$ the maps of the new complex $\mathbb F\otimes P/m$ are trivial, hence we have

$$Tor_i^P(M,k)_j = [\oplus_{m \ge 0} P(-m)^{\beta_{im}} \otimes P/m]_j = [\oplus_{m \ge 0} k(-m)^{\beta_{im}}]_j =$$

$$=\oplus_{m\geq 0}(k_{j-m})^{eta_{im}} = k^{eta_{ij}}$$

Basic facts

We prove that the graded Betti numbers are uniquely determined by M.

Proposition

$$\beta_{ij} = \beta_{ij}(M) = dim_k Tor_i^P(M, k)_j$$

and we call these integers graded Betti numbers of M.

In fact

$$Tor_i^P(M,k) = H_i(\mathbb{F} \otimes P/m)$$

By the minimality of \mathbb{F} the maps of the new complex $\mathbb{F} \otimes P/m$ are trivial hence we have

 $Tor_i^P(M,k)_j = [\oplus_{m \ge 0} P(-m)^{\beta_{im}} \otimes P/m]_j = [\oplus_{m \ge 0} k(-m)^{\beta_{im}}]_j =$

$$=\oplus_{m\geq 0}(k_{j-m})^{eta_{im}} = k^{eta_{ij}}$$

Basic facts

We prove that the graded Betti numbers are uniquely determined by M.

Proposition

$$\beta_{ij} = \beta_{ij}(M) = dim_k Tor_i^P(M, k)_j$$

and we call these integers graded Betti numbers of M.

In fact

$$Tor_i^P(M,k) = H_i(\mathbb{F} \otimes P/m)$$

By the minimality of $\mathbb F$ the maps of the new complex $\mathbb F\otimes P/m$ are trivial, hence we have

$$\mathit{Tor}_i^{\mathcal{P}}(\mathcal{M},k)_j = [\oplus_{m\geq 0}\mathcal{P}(-m)^{eta_{im}}\otimes \mathcal{P}/m]_j = [\oplus_{m\geq 0}k(-m)^{eta_{im}}]_j =$$

$$=\oplus_{m\geq 0}(k_{j-m})^{\beta_{im}} \stackrel{=}{\underset{m=j}{=}} k^{\beta_{ij}}$$

Castelladvo Malliord Regularly via mininal nee resolutions and rinor

The resolution fixes the Hilbert Function

Let I be an homogeneous ideal of P.

Proposition

If $\beta_{ij} = \beta_{ij}(P/I)$ are the graded Betti numbers of P/I, then the Hilbert series of P/I is given by

$$HS_{P/I}(z) = \frac{1 + \sum_{ij} (-1)^{i+1} \beta_{ij} z_{ij}}{(1-z)^n}$$

If we consider the previous example $I = (x^2, xy, xz, y^3)$ in P = k[x, y, z]. We have seen that a minimal free resolution of I as P-module is given by:

 $0 \rightarrow P(-4) \rightarrow P(-3)^3 \oplus P(-4) \rightarrow P(-2)^3 \oplus P(-3) \rightarrow P \rightarrow P/I \rightarrow 0.$

Since $HS_{P(-d)^{\beta}}(z) = \frac{\beta z^{d}}{(1-z)^{n}}$, then $HS_{P/I}(z) = \frac{1-3z^{2}-z^{3}+3z^{3}+z^{4}-z^{4}}{(1-z)^{3}} = \frac{1+2z}{1-z}$ Castelladvo Malliora ricgularly via filinina rice resolutions and filiper

The resolution fixes the Hilbert Function

Let I be an homogeneous ideal of P.

Proposition

If $\beta_{ij} = \beta_{ij}(P/I)$ are the graded Betti numbers of P/I, then the Hilbert series of P/I is given by

$$HS_{P/I}(z) = \frac{1 + \sum_{ij} (-1)^{i+1} \beta_{ij} z}{(1-z)^n}$$

If we consider the previous example $I = (x^2, xy, xz, y^3)$ in P = k[x, y, z]. We have seen that a minimal free resolution of I as P-module is given by:

$$0
ightarrow P(-4)
ightarrow P(-3)^3 \oplus P(-4)
ightarrow P(-2)^3 \oplus P(-3)
ightarrow P
ightarrow P/I
ightarrow 0.$$

Since $HS_{P(-d)^{\beta}}(z) = \frac{\beta z^{d}}{(1-z)^{n}}$, then $HS_{P/I}(z) = \frac{1 - 3z^{2} - z^{3} + 3z^{3} + z^{4} - z^{4}}{(1-z)^{3}} = \frac{1 + 2z}{1-z}$

Castelladvo Malliord Regularly via mininal nee resolutions and rinor

The resolution fixes the Hilbert Function

Let I be an homogeneous ideal of P.

Proposition

If $\beta_{ij} = \beta_{ij}(P/I)$ are the graded Betti numbers of P/I, then the Hilbert series of P/I is given by

$$HS_{P/I}(z) = \frac{1 + \sum_{ij} (-1)^{i+1} \beta_{ij} z}{(1-z)^n}$$

If we consider the previous example $I = (x^2, xy, xz, y^3)$ in P = k[x, y, z]. We have seen that a minimal free resolution of I as P-module is given by:

$$0 o P(-4) o P(-3)^3 \oplus P(-4) o P(-2)^3 \oplus P(-3) o P o P/I o 0.$$

Since $HS_{P(-d)^{\beta}}(z) = \frac{\beta z^{d}}{(1-z)^{n}}$, then $HS_{P/l}(z) = \frac{1-3z^{2}-z^{3}+3z^{3}+z^{4}-z^{4}}{(1-z)^{3}} = \frac{1+2z}{1-z}$ Castelladvo Malliord Regularly via mininal nee resolutions and rinor

The resolution fixes the Hilbert Function

Let I be an homogeneous ideal of P.

Proposition

If $\beta_{ij} = \beta_{ij}(P/I)$ are the graded Betti numbers of P/I, then the Hilbert series of P/I is given by

$$HS_{P/I}(z) = \frac{1 + \sum_{ij} (-1)^{i+1} \beta_{ij} z}{(1-z)^n}$$

If we consider the previous example $I = (x^2, xy, xz, y^3)$ in P = k[x, y, z]. We have seen that a minimal free resolution of I as P-module is given by:

$$0 o P(-4) o P(-3)^3 \oplus P(-4) o P(-2)^3 \oplus P(-3) o P o P/I o 0.$$

Since $HS_{P(-d)^{\beta}}(z) = \frac{\beta z^{d}}{(1-z)^{n}}$, then $HS_{P/I}(z) = \frac{1 - 3z^{2} - z^{3} + 3z^{3} + z^{4} - z^{4}}{(1-z)^{3}} = \frac{1 + 2z}{1-z}$

Consider

$$X = \{P_1, \ldots, P_4\} \subseteq \mathbb{P}^2$$

four distinct points in the plane.

- the Hilbert polynomial of a set of four points, no matter what the configuration, is a constant polynomial $HP_X(n) = 4$.
- the Hilbert function of X depends only on whether all four points lie on a line.
- The graded Betti numbers of the minimal resolution, in contrast, capture all the remaining geometry: they tell us whether any three of the points are collinear as well.

Consider

$$X = \{P_1, \ldots, P_4\} \subseteq \mathbb{P}^2$$

four distinct points in the plane.

- the Hilbert polynomial of a set of four points, no matter what the configuration, is a constant polynomial $HP_X(n) = 4$.
- the Hilbert function of X depends only on whether all four points lie on a line.
- The graded Betti numbers of the minimal resolution, in contrast, capture all the remaining geometry: they tell us whether any three of the points are collinear as well.

Consider

$$X = \{P_1, \ldots, P_4\} \subseteq \mathbb{P}^2$$

four distinct points in the plane.

- the Hilbert polynomial of a set of four points, no matter what the configuration, is a constant polynomial $HP_X(n) = 4$.
- the Hilbert function of X depends only on whether all four points lie on a line.
- The graded Betti numbers of the minimal resolution, in contrast, capture all the remaining geometry: they tell us whether any three of the points are collinear as well.

Consider

$$X = \{P_1, \ldots, P_4\} \subseteq \mathbb{P}^2$$

four distinct points in the plane.

- the Hilbert polynomial of a set of four points, no matter what the configuration, is a constant polynomial $HP_X(n) = 4$.
- the Hilbert function of X depends only on whether all four points lie on a line.
- The graded Betti numbers of the minimal resolution, in contrast, capture all the remaining geometry: they tell us whether any three of the points are collinear as well.

functione

Hilbert's Syzygy Theorem

Theorem (Hilbert's Syzygy Theorem)

Every finitely generated *P*-module has a finite free resolution (of length $\leq n$)

We remind that $Tor_i(k, M) = H_i(\mathbb{K} \otimes M)$ where \mathbb{K} is a minimal free resolution of $k = P/(x_1, \ldots, x_n)$ as *P*-module.

Hence we consider the Koszul complex of (x_1, \ldots, x_n) .

$$\mathbb{K}: \mathbf{0} \to P(-n)^{\binom{n}{n}} \to P(-n+1)^{\binom{n}{n-1}} \to \cdots \to P(-1)^{\binom{n}{1}} \to P$$

We deduce

$$Tor_i(k, M) = H_i(\mathbb{K} \otimes M) = 0$$

functione

Hilbert's Syzygy Theorem

Theorem (Hilbert's Syzygy Theorem)

Every finitely generated *P*-module has a finite free resolution (of length $\leq n$)

We remind that $Tor_i(k, M) = H_i(\mathbb{K} \otimes M)$ where \mathbb{K} is a minimal free resolution of $k = P/(x_1, ..., x_n)$ as *P*-module.

Hence we consider the Koszul complex of (x_1, \ldots, x_n) .

$$\mathbb{K}: \mathbf{0} \to P(-n)^{\binom{n}{n}} \to P(-n+1)^{\binom{n}{n-1}} \to \cdots \to P(-1)^{\binom{n}{1}} \to P$$

We deduce

$$Tor_i(k, M) = H_i(\mathbb{K} \otimes M) = 0$$

Hilbert's Syzygy Theorem

Theorem (Hilbert's Syzygy Theorem)

Every finitely generated *P*-module has a finite free resolution (of length $\leq n$)

We remind that $Tor_i(k, M) = H_i(\mathbb{K} \otimes M)$ where \mathbb{K} is a minimal free resolution of $k = P/(x_1, ..., x_n)$ as *P*-module.

Hence we consider the Koszul complex of (x_1, \ldots, x_n) .:

$$\mathbb{K}: \mathbf{0} \to P(-n)^{\binom{n}{n}} \to P(-n+1)^{\binom{n}{n-1}} \to \cdots \to P(-1)^{\binom{n}{1}} \to P$$

We deduce

$$Tor_i(k, M) = H_i(\mathbb{K} \otimes M) = 0$$

Hilbert's Syzygy Theorem

Theorem (Hilbert's Syzygy Theorem)

Every finitely generated *P*-module has a finite free resolution (of length $\leq n$)

We remind that $Tor_i(k, M) = H_i(\mathbb{K} \otimes M)$ where \mathbb{K} is a minimal free resolution of $k = P/(x_1, ..., x_n)$ as *P*-module.

Hence we consider the Koszul complex of (x_1, \ldots, x_n) .

$$\mathbb{K}: \mathbf{0} \to P(-n)^{\binom{n}{n}} \to P(-n+1)^{\binom{n}{n-1}} \to \cdots \to P(-1)^{\binom{n}{1}} \to P$$

We deduce

$$Tor_i(k, M) = H_i(\mathbb{K} \otimes M) = 0$$

Auslander-Buchsbaum formula

If M has the following minimal P-free resolution:

$$0
ightarrow F_h = \oplus_{j \ge 0} P(-j)^{\beta_{h_j}}
ightarrow \cdots
ightarrow \oplus_{j \ge 0} P(-j)^{\beta_{0j}}
ightarrow M$$

Define the Projective dimension (or Homological dimension) of M

$$pd(M) := \max\{i : \beta_{ij}(M) \neq 0 \text{ for some } j\}$$

that is h = length of the resolution.

Theorem (Auslander-Buchsbaum)

 $pd_P(M) = n - \operatorname{depth}(M)$

where depth(M) = length of a (indeed any) maximal M-regular sequence in $m = (x_1, \ldots, x_n)$.

M is Cohen-Macaulay \iff depth $M = \dim M \iff \operatorname{pd}_P(M) = n - \dim M$.

Auslander-Buchsbaum formula

If *M* has the following minimal *P*-free resolution:

$$0 \to F_h = \oplus_{j \ge 0} P(-j)^{\beta_{hj}} \to \cdots \to \oplus_{j \ge 0} P(-j)^{\beta_{0j}} \to M$$

Define the Projective dimension (or Homological dimension) of M

$$pd(M) := \max\{i : \beta_{ij}(M) \neq 0 \text{ for some } j\}$$

that is h = length of the resolution.

Theorem (Auslander-Buchsbaum)

 $pd_P(M) = n - \operatorname{depth}(M)$

where depth(M) = length of a (indeed any) maximal M-regular sequence in $m = (x_1, \ldots, x_n)$.

M is Cohen-Macaulay \iff depth $M = \dim M \iff$ pd_P $(M) = n - \dim M$.

Auslander-Buchsbaum formula

If *M* has the following minimal *P*-free resolution:

$$0 \to F_h = \oplus_{j \ge 0} P(-j)^{\beta_{hj}} \to \cdots \to \oplus_{j \ge 0} P(-j)^{\beta_{0j}} \to M$$

Define the Projective dimension (or Homological dimension) of M

$$pd(M) := \max\{i : \beta_{ij}(M) \neq 0 \text{ for some } j\}$$

that is h = length of the resolution.

Theorem (Auslander-Buchsbaum)

 $pd_P(M) = n - \operatorname{depth}(M)$

where depth(M) = length of a (indeed any) maximal M-regular sequence in $m = (x_1, \ldots, x_n)$.

M is Cohen-Macaulay \iff depth $M = \dim M \iff$ pd_P $(M) = n - \dim M$.

Auslander-Buchsbaum formula

If *M* has the following minimal *P*-free resolution:

$$0 \to F_h = \oplus_{j \ge 0} P(-j)^{\beta_{hj}} \to \cdots \to \oplus_{j \ge 0} P(-j)^{\beta_{0j}} \to M$$

Define the Projective dimension (or Homological dimension) of M

$$pd(M) := \max\{i : \beta_{ij}(M) \neq 0 \text{ for some } j\}$$

that is h = length of the resolution.

Theorem (Auslander-Buchsbaum)

 $pd_P(M) = n - \operatorname{depth}(M)$

where depth(M) = length of a (indeed any) maximal M-regular sequence in $m = (x_1, \ldots, x_n)$.

M is Cohen-Macaulay \iff depth $M = \dim M \iff$ pd_P $(M) = n - \dim M$.

Betti Diagram

The numerical invariants in a minimal free resolution can presented by using "a piece of notation" introduced by Bayer and Stillman: the Betti diagram.

This is a table displaying the numbers β_{ii} in the pattern

	0	1	2		i
0:	β_{00}	β_{11}	β22		β_{ii}
1:	β_{01}	β_{12}	β_{23}		β_{ii+1}
÷	÷	:	÷	:	÷
S :	β_{0s}	β_{1s+1}	β_{2s+2}	• • •	β_{ii+s}
\sum	β_0	β_1	β_2		β_i

with β_{ij} in the *i*-th column and (j - i)-th row.

Thus the *i*-th column corresponds to the *i*-th free module

$$F_i = \oplus_j P(-j)^{\beta_{ij}}.$$

Example

(CoCoA)

```
Use R ::= QQ[t, x, y, z];
  I := Ideal(x^2-yt,xy-zt,xy);
 Res(I);
0 \longrightarrow R^{2}(-5) \longrightarrow R^{4}(-4) \longrightarrow R^{3}(-2)
 BettiDiagram(I);
         0 1 2
    _____
 2: 3 -
 3: - 4 2
   _____
 Tot: 3 4 2
```

Definition

Given a minimal P-free resolution of M:

$$\mathbb{F}: \dots \to F_i = \oplus P(-j)^{\beta_{ij}(M)} \to \dots \to F_0 = \oplus P(-j)^{\beta_{0j}(M)}$$

the Castelnuovo-Mumford regularity of M

$$reg(M) = \max_{i} \{j - i : \beta_{ij}(M) \neq 0\}$$

Equivalently if we write

$$\mathbb{F}: \cdots \oplus_{j=1}^{\beta_h} P(-a_{hj}) \xrightarrow{f_h} \oplus_{j=1}^{\beta_{h-1}} P(-a_{h-1j}) \xrightarrow{f_{h-1}} \cdots \xrightarrow{f_1} \oplus_{j=1}^{\beta_0} P(-a_{0j}) \xrightarrow{f_0} M \to 0$$

Define

$$a_i := \max_i \{a_{ij} - i\} (\geq 0)$$

then

$$reg(M) = \max_i \{a_i\}$$

Definition

Given a minimal P-free resolution of M:

$$\mathbb{F}: \dots \to F_i = \oplus P(-j)^{\beta_{ij}(M)} \to \dots \to F_0 = \oplus P(-j)^{\beta_{0j}(M)}$$

the Castelnuovo-Mumford regularity of M

$$reg(M) = \max_{i} \{j - i : \beta_{ij}(M) \neq 0\}$$

Equivalently if we write

$$\mathbb{F}: \cdots \oplus_{j=1}^{\beta_h} P(-a_{hj}) \xrightarrow{f_h} \oplus_{j=1}^{\beta_{h-1}} P(-a_{h-1j}) \xrightarrow{f_{h-1}} \dots \xrightarrow{f_1} \oplus_{j=1}^{\beta_0} P(-a_{0j}) \xrightarrow{f_0} M \to 0$$

Define

$$a_i := \max_i \{a_{ij} - i\} (\geq 0)$$

then

$$reg(M) = \max_i \{a_i\}$$

$$I = (x^2, xy, xz, y^3) \subseteq P = k[x, y, z].$$

We have seen that a minimal free resolution of *I* as *P*-module is given by:

$$0 \to F_2 = {\textbf{P}(-4)} \stackrel{f_2}{\to} F_1 = {\textbf{P}(-3)^3} \oplus {\textbf{P}(-4)} \stackrel{f_1}{\to} F_0 = {\textbf{P}(-2)^3} \oplus {\textbf{P}(-3)} \stackrel{f_0}{\to} I \to 0.$$

Then

● *pd*(*l*) = 2

• reg(I) = 3 = max degree of a minimal generator.

• dim P/I = 1 (we know that $HS_{P/I}(z) = \frac{1+2z}{1-z}$).

Hence P/I is not Cohen-Macaulay since $pd(P/I) = 3 > 3 - \dim P/I = 2$.

• reg-index(P/I) = 1 < reg(P/I) = 2

$$I = (x^2, xy, xz, y^3) \subseteq P = k[x, y, z].$$

We have seen that a minimal free resolution of *I* as *P*-module is given by:

$$0 \to F_2 = {\textbf{P}}(-4) \stackrel{f_2}{\to} F_1 = {\textbf{P}}(-3)^3 \oplus {\textbf{P}}(-4) \stackrel{f_1}{\to} F_0 = {\textbf{P}}(-2)^3 \oplus {\textbf{P}}(-3) \stackrel{f_0}{\to} I \to 0.$$

Then

• *pd*(*I*) = 2

• reg(I) = 3 = max degree of a minimal generator.

• dim P/I = 1 (we know that $HS_{P/I}(z) = \frac{1+2z}{1-z}$).

Hence P/I is not Cohen-Macaulay since $pd(P/I) = 3 > 3 - \dim P/I = 2$.

reg-index(P/I) = 1 < reg(P/I) = 2</p>

$$I = (x^2, xy, xz, y^3) \subseteq P = k[x, y, z].$$

We have seen that a minimal free resolution of *I* as *P*-module is given by:

$$0 \to F_2 = {\textbf{P}}(-4) \stackrel{f_2}{\to} F_1 = {\textbf{P}}(-3)^3 \oplus {\textbf{P}}(-4) \stackrel{f_1}{\to} F_0 = {\textbf{P}}(-2)^3 \oplus {\textbf{P}}(-3) \stackrel{f_0}{\to} I \to 0.$$

Then

- pd(I) = 2
- reg(I) = 3 = max degree of a minimal generator.
- dim P/I = 1 (we know that $HS_{P/I}(z) = \frac{1+2z}{1-z}$).

Hence P/I is not Cohen-Macaulay since $pd(P/I) = 3 > 3 - \dim P/I = 2$.

reg-index(P/I) = 1 < reg(P/I) = 2

$$I = (x^2, xy, xz, y^3) \subseteq P = k[x, y, z].$$

We have seen that a minimal free resolution of *I* as *P*-module is given by:

$$0 \to F_2 = {\textbf{P}}(-4) \stackrel{f_2}{\to} F_1 = {\textbf{P}}(-3)^3 \oplus {\textbf{P}}(-4) \stackrel{f_1}{\to} F_0 = {\textbf{P}}(-2)^3 \oplus {\textbf{P}}(-3) \stackrel{f_0}{\to} I \to 0.$$

Then

- *pd*(*I*) = 2
- reg(I) = 3 = max degree of a minimal generator.
- dim P/I = 1 (we know that $HS_{P/I}(z) = \frac{1+2z}{1-z}$).

Hence P/I is not Cohen-Macaulay since $pd(P/I) = 3 > 3 - \dim P/I = 2$.

$$I = (x^2, xy, xz, y^3) \subseteq P = k[x, y, z].$$

We have seen that a minimal free resolution of *I* as *P*-module is given by:

$$0 \to F_2 = {\textbf{P}}(-4) \stackrel{f_2}{\to} F_1 = {\textbf{P}}(-3)^3 \oplus {\textbf{P}}(-4) \stackrel{f_1}{\to} F_0 = {\textbf{P}}(-2)^3 \oplus {\textbf{P}}(-3) \stackrel{f_0}{\to} I \to 0.$$

Then

- *pd*(*I*) = 2
- reg(I) = 3 = max degree of a minimal generator.
- dim P/I = 1 (we know that $HS_{P/I}(z) = \frac{1+2z}{1-z}$).

Hence P/I is not Cohen-Macaulay since $pd(P/I) = 3 > 3 - \dim P/I = 2$.

• reg-index(P/I) = 1 < reg(P/I) = 2

Use P I := Reg(I 4	Ideal	-			x^2y+xzw, xy^2, xyz);				
Res(I);								
P^2(-7) -> P^6(-6) -> P^5(-4)(+)P^3(-5)-> P^2(-2)(+)P^3(-3)									
BettiD	iagra	m(I);							
	0	1	2	3					
2:	2	_	_	_					
3:				-					
4:	_	3	6	2					
Tot:	5	8	6	2					

- (Exercise) If *M* has finite length, then $reg(M) = max\{j : M_j \neq 0\}$.
- $reg(I) = reg(P/I) + 1 \ge maximum$ degree of a minimal generator of I
- reg(P/I) coincides with the last non-zero row in the Betti diagram

functione

Stillman's conjecture

 $R = k[x_1, ..., x_n]/I = (f_1, ..., f_r)$ where f_i are forms of degree d_i .

In general pd(/), as well reg(I), can grew relatively fast as one increases the number of generators and the degrees.

Conjecture (Stillman)

There is an upper bound, independent of n, on pd(I), for any ideal I generated by r homogeneous polynomials of given degrees.

Ananyan-Hochster (2011): Positive answer if $d_i \leq 2$.

Equivalently to:

Conjecture (Caviglia-Kumini)

Stillman's conjecture

 $R = k[x_1, ..., x_n]/I = (f_1, ..., f_r)$ where f_i are forms of degree d_i .

In general pd(I), as well reg(I), can grew relatively fast as one increases the number of generators and the degrees.

Conjecture (Stillman)

There is an upper bound, independent of n, on pd(I), for any ideal I generated by r homogeneous polynomials of given degrees.

Ananyan-Hochster (2011): Positive answer if $d_i \leq 2$.

Equivalently to:

Conjecture (Caviglia-Kumini)

Stillman's conjecture

 $R = k[x_1, ..., x_n]/I = (f_1, ..., f_r)$ where f_i are forms of degree d_i .

In general pd(I), as well reg(I), can grew relatively fast as one increases the number of generators and the degrees.

Conjecture (Stillman)

There is an upper bound, independent of n, on pd(I), for any ideal I generated by r homogeneous polynomials of given degrees.

Ananyan-Hochster (2011): Positive answer if $d_i \leq 2$.

Equivalently to:

Conjecture (Caviglia-Kumini)

Stillman's conjecture

 $R = k[x_1, ..., x_n]/I = (f_1, ..., f_r)$ where f_i are forms of degree d_i .

In general pd(I), as well reg(I), can grew relatively fast as one increases the number of generators and the degrees.

Conjecture (Stillman)

There is an upper bound, independent of n, on pd(I), for any ideal I generated by r homogeneous polynomials of given degrees.

Ananyan-Hochster (2011): Positive answer if $d_i \leq 2$.

Equivalently to:

Conjecture (Caviglia-Kumini)

Exercise Consider the homogeneous coordinate ring of the "twisted cubic":

$$R = K[s^3, s^2t, st^2, t^3]$$

- Prove that R = P/I where $P = K[x_0, ..., x_3]$ and $I = I_2\begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix}$
- Prove that *R* is CM
- Compute $HF_R(j)$, reg(R)
- Compare reg(I) and $reg(Lt_{\tau}(I))$ with τ any term ordering

 $\mbox{Exercise}$ Consider the homogeneous coordinate ring of the smooth rational quartic in \mathbb{P}^3

$$\boldsymbol{R} = \boldsymbol{K}[\boldsymbol{s}^4, \boldsymbol{s}^3 t, \boldsymbol{s} t^3, t^4]$$

• Prove that $R \simeq P/I$ where $P = K[x_0, ..., x_3]$ and $I = I_2 \begin{pmatrix} x_0 & x_1^2 & x_1 x_3 & x_2 \\ x_1 & x_0 x_2 & x_2^2 & x_3 \end{pmatrix}$

- Prove that R is not CM
- Compute reg(*I*)