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@ Castelnuovo Mumford Regularity via minimal free resolutions and Hilbert
functions

@ Castelnuovo Mumford Regularity and its behavior relative to Hyperplane
sections, Sums, Products, Intersections of ideals

@ Castelnuovo Mumford regularity: computational aspects
© Finiteness of Hilbert Functions and Regularity
@ Bounds on the regularity and Open Problems
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Historical Notes

Castelnuovo (1893): The germ of the idea of regularity as a special case of
"Base-point free pencil trick" (exercises 17.18 and 20.21 in Eisenbud’s book).
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Castelnuovo (1893): The germ of the idea of regularity as a special case of
"Base-point free pencil trick" (exercises 17.18 and 20.21 in Eisenbud’s book).

Zarisky (1960) taught to his students (included Mumford and Kleiman)
Castelnuovo’s idea.

Mumford (1966): gave a definition of regularity for sheaves in P" which is
related to the notion of weakly m-regularity given in Lesson 2.

Kleiman’s thesis (1965), see also Grothendieck’s volume SGA 6 (1970): the
notion of regularity is used in the construction of bounded families of ideals
with given Hilbert polynomial, a crucial point in the construction of Hilbert or
Picard scheme.
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Reg-limited

Let / C P = K[x4, ..., X, be an homogeneous ideal.

The most important invariants from the Hilbert polynomial are:

d=Krull dimension, e=multiplicity

(Universita di Genova) Castelnuovo-Mumford regularity July, 2011 5/15



Finiteness of Hilbert Functions and Regularity
Reg-limited

Let / C P = K[x4, ..., X, be an homogeneous ideal.
The most important invariants from the Hilbert polynomial are:

d=Krull dimension, e=multiplicity

@ If A= P/l is Cohen-Macaulay, we have seen that reg(A) =degree of the
h-polynomial ha(z). Hence (we may assume | C m?)

reg(A)<e—n+d

In particular = holds <= ha(z) =1+ (n—d)z+--- + z8~ 4.
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@ The following example shows that in general the regularity cannot be
bounded by a function F(e,d, n).

Example. Let r € N* and consider A = k[x, y]/(x?, xy") which is
1-dimensional non C-M. In this case e(A) =1 but reg(A) =r.
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Let / C P = K[x4, ..., X, be an homogeneous ideal.
The most important invariants from the Hilbert polynomial are:

d=Krull dimension, e=multiplicity

@ If A= P/l is Cohen-Macaulay, we have seen that reg(A) =degree of the
h-polynomial ha(z). Hence (we may assume | C m?)

reg(A)<e—n+d
In particular = holds <= ha(z) =1+ (n—d)z+--- + z8~ 4.

@ The following example shows that in general the regularity cannot be
bounded by a function F(e,d, n).

Example. Let r € N* and consider A = k[x, y]/(x?, xy") which is
1-dimensional non C-M. In this case e(A) =1 but reg(A) =r.

Geometric information can produce better situations.
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@ (Castelnuovo) I = I(C) where C is a smooth curve:

reg(l) <e—1
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Reg-limited

@ (Castelnuovo) I = I(C) where C is a smooth curve:
reg(l) <e—1
More in general

@ (Gruson-Lazarsfeld-Peskine) k = k, | = I(C) where C is a reduced
irreducible curve in P":

reg(l)<e—n+2
Here we will present an algebraic version of a result by Kleiman (1971) in the
case of equidimensional reduced schemes.

The problem is related to the finitness of Hilbert functions for classes of
graded k-algebras with given multiplicity.
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Let C be a class of homogeneous ideals in P = k[xi, ..., Xy], then we say:
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Reg-limited

Let C be a class of homogeneous ideals in P = k[xi, ..., Xy], then we say:

@ C is HF-finite if the number of numerical functions which arise as the
Hilbert functions of P//, I € C, is finite,

@ C is HP-finite if the number of polynomials which arise as the Hilbert
polynomials of P/I, | € C, is finite,

@ C is reg-limited if for some integer t and all / € C we have reg(P/l) < t,

@ C is g-reg-limited if for some integer t and all / € C we have
g-reg(P/l) <t

(g-reg(P/I) = reg(P/I¥?") called the geometric regularity).
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Fix P = Kk[x,...,Xy] and let C be a class of homogeneous ideals in P

C reg-limited <= C HF-finite
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Fix P = Kk[x,...,Xy] and let C be a class of homogeneous ideals in P

C reg-limited <= C HF-finite

@ (=) Assume
t > reg(P/I) = reg(P/ginreviex(1)) > m — 1

where m = maximum degree of the generators of gin(/).
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where m = maximum degree of the generators of gin(/). Since
HFp/1(n) = HFp/ginee(1)(N) and the monomials of degree < t+1in P
are a finite number, the conclusion follows.

@ (<) For the converse, since HFp//(n) = HFp,Lex()(N), if C is HF -finite,
there are only a finite number of lexicographic ideals in P associated to
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Fix P = Kk[x,...,Xy] and let C be a class of homogeneous ideals in P

C reg-limited <= C HF-finite

@ (=) Assume
t > reg(P/I) = reg(P/ginreviex(1)) > m — 1

where m = maximum degree of the generators of gin(/). Since
HFp/1(n) = HFp/ginee(1)(N) and the monomials of degree < t+1in P
are a finite number, the conclusion follows.

@ (<) For the converse, since HFp//(n) = HFp,Lex()(N), if C is HF -finite,
there are only a finite number of lexicographic ideals in P associated to
C. Then the result follows because

reg(P/I) < reg(P/Lex()).
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g-reg-limited

We have seen (example) that
C HP-finite #= C reg-limited
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If C is HP-finite, then we have a uniform upper bound for the geometric
regularity of P/l in C.

C HP-finite = C g-reg-limited
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Finiteness of Hilbert Functions and Regularity
g-reg-limited

We have seen (example) that
C HP-finite #= C reg-limited

If C is HP-finite, then we have a uniform upper bound for the geometric
regularity of P/l in C.

C HP-finite = C g-reg-limited

It is a consequence of Gotzmann’s result which says:

Let s be a positive integer such that

HPA(X) = <X+a1>+<X+a2—1>+.“+(X+as;s(s—1)>

a4 ao
with ay > a, > --- > a; > 0. Then
reg(P/I?3") < s —1.
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For example, if A has dimension 1 and multiplicity e, then its Hilbert
polynomial is

wea=e=(7)+ ("9 1)+ (TE7Y)

sothat g —reg(R) < e—1.
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Kleiman’s theorem: an algebraic proof

For every d > 1 we define recursively the following polynomials Fy(X) with
rational coefficients. We let

Fi(X)=X-1, FX)=X2+X-1

and if d > 3 then we let

Fo(X) = Fd—1(X)+X(Fd—1(§)_+1d 1)'
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Kleiman’s theorem: an algebraic proof

For every d > 1 we define recursively the following polynomials Fy(X) with
rational coefficients. We let

Fi(X)=X-1, FX)=X2+X-1

and if d > 3 then we let

Fd_1(X)+d1)'

FalX) = Fa-s00 + X (00

Assume k = k, char k = 0.

Let A= P/l be a reduced equidimensional graded algebra of dimension d
and multiplicity e. Then

reg(A) < Fg4(e).

We can list the main steps of an algebraic proof (by Rossi, Trung and Valla).

(Universita di Genova) Castelnuovo-Mumford regularity July, 2011 11/15



Finiteness of Hilbert Functions and Regularity

Kleiman’s theorem: an algebraic proof

(Universita di Genova) Castelnuovo-Mumford regularity July, 2011 12/15



Finiteness of Hilbert Functions and Regularity

Kleiman’s theorem: an algebraic proof

We need k algebraically closed and of characteristic zero in order to use
Bertini-type theorem on the generic hyperplane section of a reduced and non
degenerate variety (see Flenner’s result).
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We need k algebraically closed and of characteristic zero in order to use
Bertini-type theorem on the generic hyperplane section of a reduced and non
degenerate variety (see Flenner’s result).

@ The proof works by induction on the dimension d > 2 of A= P/I. We
choose a generic element z € Py and we consider

B = P/(I+ zP)*".
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@ The proof works by induction on the dimension d > 2 of A= P/I. We
choose a generic element z € Py and we consider

B := P/(l + zP)%.
It is clear that dim(B) = d — 1 and
e(A) = e(A/zA) = e(P/(I + zP)) = e(B) := e.
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choose a generic element z € Py and we consider

B := P/(l + zP)%.
It is clear that dim(B) = d — 1 and
e(A) = e(A/zA) = e(P/(I + zP)) = e(B) := e.

If we assume that A is reduced and equidimensional, then B (actually a
flat extension) is reduced equidimensional too (Flenner’s result).
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Kleiman’s theorem: an algebraic proof

We need k algebraically closed and of characteristic zero in order to use
Bertini-type theorem on the generic hyperplane section of a reduced and non
degenerate variety (see Flenner’s result).

@ The proof works by induction on the dimension d > 2 of A= P/I. We
choose a generic element z € Py and we consider

B := P/(l + zP)%.
It is clear that dim(B) = d — 1 and
e(A) = e(A/zA) = e(P/(I + zP)) = e(B) := e.

If we assume that A is reduced and equidimensional, then B (actually a
flat extension) is reduced equidimensional too (Flenner’s result).

@ Hence we need to relate reg(A) =g-reg(A) in terms of reg(B) =
g-reg(A/zA) < Fa_(e).
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Mumford’s theorem: an algebraic approach

@ Unlike the regularity, the geometric regularity does not behave well under
generic (and regular) hyperplane sections. Take for example the standard
graded algebras

A:k[vavz]/(X27Xy)7 T:k[X,y]/(Xz,Xy).

Then g-reg(A) = reg(A) =1 while g-reg(T) =0, reg(T) =1.
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Mumford’s theorem: an algebraic approach

@ Unlike the regularity, the geometric regularity does not behave well under
generic (and regular) hyperplane sections. Take for example the standard
graded algebras

A:k[vavz]/(X27Xy)7 T:k[X,y]/(Xz,Xy).
Then g-reg(A) = reg(A) = 1 while g-reg(T) =0, reg(T) =1.

However the following crucial result gives us the opportunity to control this
bad behaviour.

Theorem (An algebraic version of Mumford’s theorem)

Let A= P/I be a standard graded algebra and z € A, a regular linear form in
A. If g-reg(A/zA) < m, then

reg(A) < m+dim(H'(A)m) = m + HPs(m) — HFa(m)
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Now HP4(m) can be bounded in terms of the multiplicity and the dimension
d. We can prove Kleiman'’s result because, by induction, we have
m= Fgq_1(€), .

Let C be the class of reduced equidimensional graded algebras with given
multiplicity and dimension. Then C is HF-finite.
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d. We can prove Kleiman'’s result because, by induction, we have

m= Fq_1(€), .

Let C be the class of reduced equidimensional graded algebras with given
multiplicity and dimension. Then C is HF-finite.

We need only to remark that if P = k[xy,...,X,] and A= P/l has dimension
d and multiplicity e, then n— d + 1 < e. The conclusion follows by Kleiman’s

theorem.
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Now HP4(m) can be bounded in terms of the multiplicity and the dimension
d. We can prove Kleiman'’s result because, by induction, we have
m= Fgq_1(€), .

Let C be the class of reduced equidimensional graded algebras with given
multiplicity and dimension. Then C is HF-finite.

We need only to remark that if P = k[xy,...,X,] and A= P/l has dimension
d and multiplicity e, then n— d + 1 < e. The conclusion follows by Kleiman’s
theorem.

The theorem does not hold even if we consider reduced graded algebras not
necessarly equidimensional. Take for example the graded rings

Ar = Kix,y,z,t,w]/(x) N (w, x2" — yt").

All the elements of the family have dimension four, multeplicity one, but the
regularity and the Hilbert function depends on r.
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Kleiman’s theorem does not hold if we delete the assumption that every
element of the family is reduced.
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Kleiman’s theorem does not hold if we delete the assumption that every
element of the family is reduced.

Take for example the graded rings
Af = k[Xaya Z, t]/(yzaxya XZ,XZr - ytr)

This is the coordinate ring of a curve in P® which can be described as the
divisor 2L (L is a line) on a smooth surface of degree r + 1. The Hilbert
series of A, is

1+2z— 211
S

so that
dim(A;) =2, e(A)=2

but reg(A;) = r and we do not have a finite number of Hilbert functions.
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