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Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

In the previous lectures we considered two measures of the complexity of an
homogeneous ideal I ⊆ P = k [x1, . . . , xn] :

d(I) the maximum degree of a polynomial in a minimal system of
generators of I (actually of the generators of ginrevlex(I))

reg(I) : the maximum degree of the syzygies in a minimal free resolution
of I

Question How much bigger can reg(I) be than d(I)?

Obviously:
d(I) ≤ reg(I)

Conjecture (Bayer ’82):
reg(I) ≤ d(I)2n−1
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Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

Giusti-Galligo (’84) : If chark = 0, then

reg(I) ≤ (2d(I))2n−2

There are examples with very large regularity (Mayr-Mayer).

The regularity can really be doubly exponential in the degrees of the
generators and the number of the variables.

Koh (’98) : For each integer r ≥ 1 there exists an ideal Ir ⊆ P = k [x1, . . . , xn]
with n = 22r generated by quadrics such that

reg(Ir ) ≥ 22r−1

These examples are highly non reduced (see also Giaimo’s work for a way of
making reduced examples).
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Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

Bayer-Mumford in any characteristic

reg(I) ≤ (2d(I))(n−1)!

In the same paper they asked whether Giusti-Galligo’s bound holds in any
characteristic.

Caviglia-Sbarra: If ht(I) = c < n and I is generated in degree ≤ d , then

reg(I) ≤ (dc + (d − 1)c + 1)2n−c−1

As a consequence we may deduce
n = 2 reg(I) ≤ 2d

n ≥ 3 reg(I) ≤ (d2 + 2d − 1)2n−3 ≤ (2d)2n−2
(Giusti-Galligo’s bound)

(the worst case is ht(I) = 2. )
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Bounds on the regularity and Open Problems

Bounds in terms of the degrees of generators

Problem: (Peeva-Stillman) Let d1 ≥ d2 ≥ . . . be the degrees of the elements
in a minimal system of generators of I. Set c = ht(I), find conditions on I
such that

reg(I) ≤ d1 + · · ·+ dc − c + 1

Exercise.
Let I ⊆ P = k [x1, . . . , xn], dim P/I = 0, I is generated in degree ≤ d , then

reg(I) ≤ nd − n + 1

Sjögren : The previous fact holds assuming dim P/I ≤ 1.

For smooth (or nearly smooth) varieties there are much better bounds, linear
in the degrees of the generators and in the number of the variables (see
Bertram-Ein-Lazarsfeld and Chardin-Ulrich).
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Bounds on the regularity and Open Problems

Eisenbud-Goto’s Conjecture

Eisenbud-Goto Conjecture (84): If ℘ ⊆ (x1, . . . , xn)
2 is a prime

homogeneous ideal, then

reg(P/℘) ≤ e(P/℘)− n + dimP/℘

It is proved for irreducible curves (Gruson, Lazarsfeld, Peskine ’83)

It is proved for smooth surfaces (Bayer-Mumford ’93). Some more
generality (Brodman’99)

It is proved for some classes of toric varieties in codimension two
(Peeva-Sturmfels ’98)

Slightly weaker bounds (still linear in the degree) for smooth varieties of
dimension ≤ 6 (Kwak 2000)
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Bounds on the regularity and Open Problems

Regularity of the Tangent Cone

Let A = k [[x1, . . . , xn]]/I a local ring and let m be its maximal ideal.
We define the homogeneous k -standard algebra

grm(A) = ⊕n≥0mn/mn+1

which is called the associated graded ring or the tangent cone of A .

Geometric meaning: If A is the localization at the origin of the coordinate
ring of an affine variety V passing through 0, then grm(A) is the coordinate
ring of the tangent cone of V , which is the cone composed of all lines that are
limiting positions of secant lines to V in 0.

We have the following presentation

grm(A) ' k [x1, . . . , xn]/I∗

where I∗ is the ideal generated by the initial forms (w.r.t. the m -adic filtration)
of the elements of I. The ideal I∗ can by computed by using a slight
modification of Buchberger’s algorithm (see SINGULAR).
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Bounds on the regularity and Open Problems

Example

Example

Consider the power series A = k [[t4, t5, t11]]. This is a one-dimensional local
domain and

A = k [[x , y , z]]/I where I = (x4 − yz, y3 − xz, z2 − x3y2).

We can prove that

grm(A) = k [x , y , z]/(xz, yz, z2, y4)

We have dimA = dim grm(A) = 1, but depth grm(A) = 0.

We always have dimA = dim grm(A) , but the above example shows that

A Cohen-Macaulay 6=⇒ grm(A) Cohen-Macaulay
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Bounds on the regularity and Open Problems

Minimal free resolution of the tangent cone
Denote by µ( ) the minimal number of generators of an ideal of A. The
Hilbert function of A is, by definition

HFA(n) := dimk mn/mn+1 = µ(mn)

for every n ≥ 0. Hence HFA is the Hilbert function of the homogeneous
k -standard algebra

grm(A) = ⊕n≥0mn/mn+1

In particular e(A) = e(grm(A)), dim A = dim grm(A). Several papers have

been produced concerning the following problem:

Problem: Compare the numerical invariants of the R -free minimal resolution
of A (R = k [[x1, . . . , xn]] ) with those of the P -free minimal graded resolution
(P = k [x1, . . . , xn] ) of grm(A) :

0→ Rβh(I) → Rβh−1(I) → · · · → Rβ0(I) → I → 0

0→ Pβs(I∗) → Pβs−1(I∗) → · · · → Pβ0(I∗) → I∗ → 0
Maria Evelina Rossi (Università di Genova) Castelnuovo-Mumford regularity July, 2011 11 / 23
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Bounds on the regularity and Open Problems

Minimal free resolution of the tangent cone

βi(I) ≤ βi(I∗)

In general is < (see R.-Sharifan for more complete information).

Example (Herzog,R., Valla)

Consider I = (x3 − y7, x2y − xt3 − z6) in R = k [[x , y , z, t ]]. Since I is a
complete intersection, then a minimal free resolution of I is given by:

0→ R → R2 → I → 0.

But
I∗ = (x3, x2y , x2t3, xt6, x2z6, xy9 − xz6t3, xy8t3, y7t9),

hence µ(I∗) = 8 and a minimal free resolution of I∗ is given by

0→ P → P6 → P12 → P8 → I∗ → 0

In particular depth A = 2 and depth grm(A) = 0.
Maria Evelina Rossi (Università di Genova) Castelnuovo-Mumford regularity July, 2011 12 / 23
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Bounds on the regularity and Open Problems

Regularity of grm(A)

It is an interesting problem to study the Castelnuovo-Mumford regularity of the
tangent cone of a Cohen-Macaulay local ring.

If grm(A) is a Cohen-Macaulay graded algebra, then

reg(grm(A)) ≤ e(A)− n + d

A 1-dimensional Cohen-Macaulay then

reg(grm(A)) ≤ e(A)− 1.

Problem. [R., Trung, Valla] Let (A,m) be a local Cohen-Macaulay ring. Is
reg(grm(A)) bounded by a polynomial function (possibly linear) of the
multiplicity e(A) and the codimension?

Srinivas-Trivedi, Rossi-Trung-Valla proved very large bounds.
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reg(grm(A)) bounded by a polynomial function (possibly linear) of the
multiplicity e(A) and the codimension?

Srinivas-Trivedi, Rossi-Trung-Valla proved very large bounds.
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Bounds on the regularity and Open Problems

Regularity of G = grm(A)

The following results allow to repeat the procedure of Lesson 4 (Mumford’s
inequality) for studying reg(G).

Assume that depthA > 0.Then

reg(G) = g- reg(G).

Let x be a generic element of m −m2 and G = grm/(x)(A/(x)). Then

g- reg(G/(x∗)) =g- reg(G).

Theorem (R, Valla,Trung)

Let A be a Cohen-Macaulay local ring with d = dim A ≥ 1 . Then

(i) reg(G) ≤ e(A)− 1 if d = 1 ,

(ii) reg(G) ≤ e(A)2((d−1)!)−1[e(A)− 1](d−1)! if d ≥ 2 .
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Bounds on the regularity and Open Problems

Finiteness of HF

As in Kleiman’s theorem (Lesson 4), as an application of the bound on the
Castelnuovo-Mumford regularity, we obtain the finiteness of Hilbert functions
of local rings with given dimension and multiplicity.

Theorem (Srinivas, Trivedi; R, Valla, Trung)

Given two positive integers d and q there exist only a finite number of Hilbert
functions for a local Cohen-Macaulay ring A with dim A = d and e ≤ q.
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Bounds on the regularity and Open Problems

Local version of Kleiman’s Theorem?
We remark that the analogous of Kleiman result does not hold in the local
case.

Srinivas and Trivedi showed with the following example that the class of local
domains of dimension two and multiplicity 4 does not have a finite number of
Hilbert functions. Let

Ar := k [[X ,Y ,Z ,T ]]/℘r

where

℘r = (Z r T r − XY ,X 3 − Z 2r Y ,Y 3 − T 2r X ,X 2T r − Y 2Z r ).

Then it is easy to see that ℘r is a prime ideal and the associated graded ring
of Ar is the standard graded algebra

Gr = k [X ,Y ,Z ,T ]/(XY ,X 3,Y 3,X 2T r − Y 2Z r ).

We have

reg(Gr ) = r + 1, HSAr (z) =
1 + 2z + 2z2 − z r+2

(1− z)2 .
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