In the name of God ## On Gorenstein homological dimension of Groups Abdolnaser Bahlekeh Gonbad-e-Kavous University November 30, 2011 In this talk, Γ is a group and $\mathbb{Z}\Gamma$ is its associated (integral) group ring. All considered modules - if not specified otherwise - are left $\mathbb{Z}\Gamma$ -modules that, for simplicity, will be called (left) Γ -modules. This talk is based on a joint work with J. Asadollahi, A. Hajizamani and Sh. Salarian. **Definition** . A complete flat resolution is an exact sequence of flat Γ -modules $$\mathbf{F}_{\bullet}: \cdots \longrightarrow F_{i+1} \longrightarrow F_{i} \longrightarrow F_{i-1} \longrightarrow \cdots$$ such that $I \otimes_{\Gamma} \mathbf{F}_{\bullet}$ is exact for any injective Γ -module I. A Γ -module M is called Gorenstein flat if it is a syzygy of a complete flat resolution, i.e., it is of the form $M = \text{Ker}(F_i \to F_{i-1})$, for some integer i. It follows from the definition that $\operatorname{Tor}_i^{\Gamma}(I,M)=0$ for all $i\geq 1$ and any injective Γ -module I. **Example** . 1. Every flat module is Gorenstein flat. 2. For any finite group Γ , \mathbb{Z} as a Γ -module, with trivial action, is a Gorenstein flat Γ -module. **Definition**. Let M be a non-zero Γ -module. We say that Gorenstein flat dimension of M is $n \geq 0$, denoted $\operatorname{Gfd}_{\Gamma} M = n$, if n is the least integer for which there exists a proper flat resolution of M such that its nth syzygy is Gorenstein flat. If no such n exists, then we shall write $\operatorname{Gfd}_{\Gamma} M = \infty$. By convention, $\operatorname{Gfd}_{\Gamma} 0 = -\infty$. **Definition**. For any group Γ , the Gorenstein homological dimension of Γ , denoted $\operatorname{Ghd}\Gamma$, is defined to be the Gorenstein flat dimension of the trivial Γ -module $\mathbb Z$; that is $\operatorname{Ghd}\Gamma=\operatorname{Gfd}_{\Gamma}\mathbb Z$. It is known that $\operatorname{Ghd}\Gamma\leq\operatorname{hd}\Gamma$, in addition equality holds provided that $\operatorname{hd}\Gamma$ is finite, where $\operatorname{hd}\Gamma=\operatorname{fd}_{\Gamma}\mathbb Z$. **Example** . Let Γ be a locally free group. Then we have the following. (1) Since $hd \Gamma = 1$, $Ghd \Gamma = hd \Gamma = 1$. (2) Set $\Gamma'' = \Gamma \oplus \Gamma'$, where Γ' is a finite group. Then $\operatorname{hd} \Gamma'' = \infty$ while $\operatorname{Ghd} \Gamma'' = 1$. **Proposition** . Let Γ be a group. Then $Ghd\Gamma=0$ if and only if Γ is a finite group. **Definition**. Let Γ be a group. We recall that sfli Γ is the supremum of the flat lengths of injective Γ -modules and silf Γ is the supremum of the injective lengths of flat Γ -modules. Moreover, it is straight forward to see that, for any group Γ , ${\rm sfli}\,\Gamma={\rm sup}\{i:{\rm Tor}_i^\Gamma(-,I)\neq 0,\ {\rm for\ some\ injective}\ \Gamma-{\rm module}\ I\}$ and silf $\Gamma = \sup\{i : \operatorname{Ext}^i_{\Gamma}(-,F) \neq 0, \text{ for some flat } \Gamma - \text{module } F\}.$ **Proposition** . Let Γ be any group. The following conditions are equivalent. (i) $sfli \Gamma < \infty$. (ii) $\mathsf{Gfd}_{\Gamma} M < \infty$, for any Γ -module M. In particular, if sfli Γ is finite, then for any Γ -module M, $\operatorname{Gfd}_{\Gamma} M \leq \operatorname{sfli} \Gamma + 1$. **Lemma** . Let Γ' be a subgroup of Γ and $F \to M$ be a flat precover of the Γ -module M. Then $F \to M$ is also a flat precover of M as Γ' -module. **Lemma** . Let Γ' be a subgroup of Γ of finite index and M be a Gorenstein flat Γ -module. Then M is Gorenstein flat as Γ' -module. **Corollary** . Let Γ' be a subgroup of Γ of finite index. Then $\operatorname{Ghd}\Gamma' \leq \operatorname{Ghd}\Gamma$. **Proposition** . Let Γ be a group with silf $\Gamma < \infty$. If $M \oplus F$ is a Gorenstein flat Γ -module and F is a flat Γ -module, then M is a Gorenstein flat Γ -module. **Proposition** . Let Γ be a group with silf Γ is finite and let M be a Γ -module such that $\operatorname{Gfd}_{\Gamma} M \leq n$. Then the nth syzygy of every proper flat resolution of M is a Gorenstein flat Γ -module. **Theorem** . Let Γ be a group and Γ' be its subgroup of finite index. Then $Ghd\Gamma=Ghd\Gamma'$ provided that silf Γ is finite. **Serre's Theorem.** Let Γ be a torsion-free group. If Γ' is a subgroup of Γ of finite index, then $hd \Gamma' = hd \Gamma$. **Definition** . We recall the Ikenaga's generalized homological dimension of groups, $\underline{hd}\Gamma$, as follows: $\underline{hd} \Gamma = \sup\{i : \mathsf{Tor}_i^{\Gamma}(M,I) \neq 0, \ M \text{ is } \mathbb{Z}-\mathsf{torsion free and } I \text{ is } \Gamma-\mathsf{injective}\}$ **Theorem** . (Emmanouil). For any group Γ , $\underline{hd}\Gamma=0$ if and only if Γ is locally finite. **Corollary** . For any group Γ , sfli $\Gamma = 1$ if and only if Γ is locally finite. It is known that for any group Γ , silf $\Gamma = \text{silp }\Gamma = \text{spli }\Gamma = 1$ if and only if Γ is a finite group. **Theorem** . (Bahlekeh, Dembegioti and Talelli). For any group Γ , $\operatorname{Gcd}\Gamma = \underline{cd}\Gamma$. We recall that $\underline{cd} \Gamma$ is the generalized cohomological dimension of Γ , defined by Ikenaga , as follows: $\underline{cd} \Gamma = \sup\{i : \operatorname{Ext}^i_{\Gamma}(M, P) \neq 0, \text{ where } M \text{ is } \mathbb{Z}-\text{free and } P \text{ is } \Gamma-\text{projective}\}$ Moreover, $\operatorname{Gcd} \Gamma := \operatorname{Gpd}_{\Gamma} \mathbb{Z}$ whereas \mathbb{Z} is a trivial Γ -module. **Proposition** . Let sfli Γ is finite. Then every Gorenstein projective Γ -module is Gorenstein flat. ## Thank you all