Local cohomology modules and derived functors

Kazem Khashyarmanesh

Ferdowsi University of Mashhad and IPM.

Some part of this talk is a joint work with Dr. F.Khosh-Ahang. December 2011
General notations and terminology

1. R: Commutative Noetherian ring with non-zero identity
2. \mathfrak{a}: An ideal of R
3. M: An R-module
4. \mathbb{N}_0 (resp. \mathbb{N}): The set of non-negative (resp.) positive integers.
1. \(R \): Commutative Noetherian ring with non-zero identity
2. \(\alpha \): An ideal of \(R \)
3. \(M \): An \(R \)-module
4. \(\mathbb{N}_0 \) (resp. \(\mathbb{N} \)): The set of non-negative (resp.) positive integers.
1. R: Commutative Noetherian ring with non-zero identity
2. \mathfrak{a}: An ideal of R
3. M: An R-module
4. \mathbb{N}_0 (resp. \mathbb{N}): The set of non-negative (resp.) positive integers.
1. R: Commutative Noetherian ring with non-zero identity
2. α: An ideal of R
3. M: An R-module
4. \mathbb{N}_0 (resp. \mathbb{N}): The set of non-negative (resp.) positive integers.
Recall that:

For each R-module M, set
$$\Gamma_a(M) := \bigcup_{n \in \mathbb{N}} (0 : M \ a^n)$$

Also for a homomorphism $f : M \to N$ of R-modules, we set $\Gamma_a(f)$ is the restriction of f to $\Gamma_a(M)$. Note that $f(\Gamma_a(M)) \subseteq \Gamma_a(N)$. Thus $\Gamma_a(-)$ becomes a covariant, R-linear, left exact functor from the category of R-modules and R-homomorphisms to itself. We call $\Gamma_a(-)$ the a-torsion functor. For $i \geq 0$, the i-th right derived functor of $\Gamma_a(-)$ is denoted by $H^i_a(-)$ and will be referred to as the i-th local cohomology functor with respect to a.
Definition:

There is a canonical map

$$\mu_M : R \longrightarrow \text{End}_R(M)$$

such that for $r \in R$, $\mu_M(r)$ is the multiplication map by r on M.

It is easy to see that μ_M is a homomorphism of R-algebras. In general, μ_M is neither injective nor surjective.

Let (R, m) be a Noetherian local ring. Let $D(-)$ be the Matlis dual functor $\text{Hom}_R(-, E)$, where E is the injective hull of the field R/m.
Let \(R \) be a local ring. \(M \) has a canonical embedding

\[
M \longrightarrow D(D(M)) = D^2(M),
\]

\[
m \longmapsto (\varphi \longmapsto \varphi(m))
\]

into its bidual, this map will denoted by \(i_M \). We will consider \(M \) as a submodule of \(D^2(M) \) via \(i_M \).
Definition. For an R-module M, the cohomological dimension of M with respect to α is defined as

$$\text{cd}(\alpha, M) := \max\{i \in \mathbb{Z} \mid H^i_\alpha(M) \neq 0\}.$$
Introduction

Let \((R, \mathfrak{m})\) be a Noetherian local ring.

For a positive integer \(n\), by using the theory of D-modules, Hellus showed that \(H^n_{\mathfrak{a}}(D(H^n_{\mathfrak{a}}(R)))\) is either \(E\) or zero in the following cases:

\((\alpha)\) \(R\) is a Noetherian local complete Cohen-Macaulay ring with coefficient field \(R/\mathfrak{m}\) and there exists a regular sequence \(x_1, \ldots, x_n \in \mathfrak{a}\) on \(R\) such that \(\mathfrak{a} = (x_1, \ldots, x_n)\). In this case \(\mathfrak{a}\) is a set-theoretic complete intersection ideal of \(R\).

\((\beta)\) \(R\) is a Noetherian local complete regular ring of equicharacteristic zero and a an ideal of height \(n \geq 1\) such that there exists a regular sequence \(x_1, \ldots, x_n \in \mathfrak{a}\) on \(R\) and \(H^i_{\mathfrak{a}}(R) = 0\) for every \(i > n\).
In [*], the present author obtained the following generalization of Hellus’ Theorem.

Theorem Let R be a local ring and a be an ideal of R such that $aM \neq M$ and $n := \text{grade}_M a = \text{cd}(a, M) \geq 1$. Then

$$H^n_a(D(H^n_a(M))) \cong D(M).$$

In [], the present author obtained the following generalization of Hellus’ Theorem.

Theorem Let R be a local ring and α be an ideal of R such that $\alpha M \neq M$ and $n := \text{grade}_M \alpha = \text{cd}(\alpha, M) \geq 1$. Then

$$H^n_{\alpha}(D(H^n_{\alpha}(M))) \cong D(M).$$

By using this generalization in conjunction with spectral sequences method, Hellus and Stückrad, in [*], showed that:

if R is Noetherian local complete and \mathfrak{a} an ideal of R such that $H^i_\mathfrak{a}(R) = 0$ for every $i \neq n (= \text{height } \mathfrak{a})$, then $\mu_{H^n_\mathfrak{a}(R)}$ is bijective.

By using this generalization in conjunction with spectral sequences method, Hellus and Stückrad, in [*], showed that:

if \(R \) is Noetherian local complete and \(\mathfrak{a} \) an ideal of \(R \) such that \(H^i_{\mathfrak{a}}(R) = 0 \) for every \(i \neq n(=\text{height } \mathfrak{a}) \), then \(\mu H^n_{\mathfrak{a}}(R) \) is bijective.

Moreover, Hellus and Stückrad, raised the following question:

If R is a commutative Noetherian complete local ring and $\underline{x} := x_1, \ldots, x_n$ is a regular sequence on R contained in \mathfrak{a}, when exactly is $J_{\underline{x}, \mathfrak{a}, R} := D(H^n_{\underline{x}R}(D(H^n_{\mathfrak{a}}(R))))$ zero?

where $\underline{x}R$ is the ideal $\sum_{i=1}^n x_i R$ of R.
Moreover, Hellus and Stückrad, raised the following question:

If R is a commutative Noetherian complete local ring and $\overline{x} := x_1, \ldots, x_n$ is a regular sequence on R contained in a, when exactly is $J_{\overline{x}, a, R} := D(H^n_{\overline{x}R}(D(H^n_a(R))))$ zero?

where $\overline{x}R$ is the ideal $\sum_{i=1}^n x_i R$ of R.
Let \((R, m)\) be a Noetherian local ring and \(x \coloneqq x_1, \ldots, x_h\) a sequence of \(R\). For every \(R\)-module \(M\) there is a canonical map

\[
M/xM \xrightarrow{i_{M,x}} H^h_{xR}(M)
\]

(coming from the description

\[
H^h_{xR}(M) \cong \lim_{n \in \mathbb{N}} M/(x^n_1, \ldots, x^n_h)M.
\]
Theorem: Let \((R, m)\) be a Noetherian local complete ring and \(a\) an ideal of \(R\) such that \(H^\ell_a(R) = 0\) for every \(\ell \neq h = \text{height}(a)\). Set \(H := H^h_a(R)\). Then

1. \(\text{Hom}(H, i_H) : \text{End}(H) \longrightarrow \text{Hom}(H, D^2(H))\) is an isomorphism.

2. There is a canonical isomorphism

\[\gamma_H : \text{Hom}(H, D^2(H)) \longrightarrow D(H^h_a(D(H))). \]

3. \(\mu_H : R \longrightarrow \text{End}(H)\) is an isomorphism of \(R\)-algebras.

4. Consequently there is a canonical isomorphism

\[\gamma_H \circ \text{Hom}(H, i_H) \circ \mu_H : R \longrightarrow \text{End}(H). \]
Theorem: Let \((R, m)\) be a Noetherian local complete ring and \(a\) an ideal of \(R\) such that \(H^\ell_a(R) = 0\) for every \(\ell \neq h = \text{height}(a)\). Set \(H := H^h_a(R)\). Then

1. \(\text{Hom}(H, i_H) : \text{End}(H) \longrightarrow \text{Hom}(H, D^2(H))\) is an isomorphism.

2. There is a canonical isomorphism

\[
\gamma_H : \text{Hom}(H, D^2(H)) \longrightarrow D(H^h_a(D(H))).
\]

3. \(\mu_H : R \longrightarrow \text{End}(H)\) is an isomorphism of \(R\)-algebras.

4. Consequently there is a canonical isomorphism

\[
\gamma_H \circ \text{Hom}(H, i_H) \circ \mu_H : R \longrightarrow \text{End}(H).
\]
Theorem: Let \((R, \mathfrak{m})\) be a Noetherian local complete ring and \(a\) an ideal of \(R\) such that \(H^\ell_a(R) = 0\) for every \(\ell \neq h = \text{height}(a)\). Set \(H := H^h_a(R)\). Then

1. \(\text{Hom}(H, i_H) : \text{End}(H) \longrightarrow \text{Hom}(H, D^2(H))\) is an isomorphism.

2. There is a canonical isomorphism

\[
\gamma_H : \text{Hom}(H, D^2(H)) \longrightarrow D(H^h_a(D(H)))).
\]

3. \(\mu_H : R \longrightarrow \text{End}(H)\) is an isomorphism of \(R\)-algebras.

4. Consequently there is a canonical isomorphism

\[
\gamma_H \circ \text{Hom}(H, i_H) \circ \mu_H : R \longrightarrow \text{End}(H).
\]
Hellus and Stückrad

Theorem: Let \((R, m)\) be a Noetherian local complete ring and \(a\) an ideal of \(R\) such that \(H^\ell_a(R) = 0\) for every \(\ell \neq h = \text{height}(a)\). Set \(H := H^h_a(R)\). Then

1. \(\text{Hom}(H, i_H) : \text{End}(H) \to \text{Hom}(H, D^2(H))\) is an isomorphism.

2. There is a canonical isomorphism

\[
\gamma_H : \text{Hom}(H, D^2(H)) \to D(H^h_a(D(H))).
\]

3. \(\mu_H : R \to \text{End}(H)\) is an isomorphism of \(R\)-algebras.

4. Consequently there is a canonical isomorphism

\[
\gamma_H \circ \text{Hom}(H, i_H) \circ \mu_H : R \to \text{End}(H).
\]
Theorem: Let \((R, m)\) be a Noetherian local complete ring and \(a\) an ideal of \(R\) such that \(H^\ell_a(R) = 0\) for every \(\ell \neq h = \text{height}(a)\). Set \(H := H^h_a(R)\). Then

1. \(\text{Hom}(H, i_H) : \text{End}(H) \to \text{Hom}(H, D^2(H))\) is an isomorphism.
2. There is a canonical isomorphism
 \[
 \gamma_H : \text{Hom}(H, D^2(H)) \to D(H^h_a(D(H)))).
 \]
3. \(\mu_H : R \to \text{End}(H)\) is an isomorphism of \(R\)-algebras.
4. Consequently there is a canonical isomorphism
 \[
 \gamma_H \circ \text{Hom}(H, i_H) \circ \mu_H : R \to \text{End}(H).
 \]
Theorem: Let \((R, m)\) be a Noetherian local complete ring and \(a\) an ideal of \(R\) such that \(H^\ell_a(R) = 0\) for every \(\ell \neq h = \text{height}(a) \geq 1\); let \(x := x_1, \ldots, x_h \in a\) be an \(R\)-regular sequence. Set \(D := D(H^h_a(R))\).

The following conditions are equivalent:

1. \(\sqrt{a} = \sqrt{(xR)}\).
2. \(x\) is a sequence on \(D\).
3. \(D/\langle x \rangle D \xrightarrow{i_{D,x}} H^h_{xR}(D)\) is injective.
4. \(J_{x,a} = R\).
Theorem: Let \((R, m)\) be a Noetherian local complete ring and \(a\) an ideal of \(R\) such that \(H^\ell_a(R) = 0\) for every \(\ell \neq h = \text{height}(a) \geq 1\); let \(x := x_1, \ldots, x_h \in a\) be an \(R\)-regular sequence. Set \(D := D(H^h_a(R))\).

The following conditions are equivalent:

1. \(\sqrt{a} = \sqrt{(x R)}\).
2. \(x\) is a sequence on \(D\).
3. \(D/\langle x \rangle D \xrightarrow{i_{D, x}} H^h_{x R}(D)\) is injective.
4. \(J_{x, a} = R\).
Theorem: Let \((R, m)\) be a Noetherian local complete ring and \(a\) an ideal of \(R\) such that \(H^\ell_a(R) = 0\) for every \(\ell \neq h = \text{height}(a) \geq 1\); let \(\bar{x} := x_1, \ldots, x_h \in a\) be an \(R\)-regular sequence. Set \(D := D(H^h_a(R))\).

The following conditions are equivalent:

1. \(\sqrt{a} = \sqrt{(\bar{x}R)}\).
2. \(\bar{x}\) is a sequence on \(D\).
3. \(D/\bar{x}D \xrightarrow{i_{D, \bar{x}}} H^h_{\bar{x}R}(D)\) is injective.
4. \(J_{\bar{x}, a} = R\).
Theorem: Let (R, m) be a Noetherian local complete ring and a an ideal of R such that $H^\ell_a(R) = 0$ for every $\ell \neq h = \text{height}(a) \geq 1$; let $x := x_1, \ldots, x_h \in a$ be an R-regular sequence. Set $D := D(H^h_a(R))$.

The following conditions are equivalent:

1. $\sqrt{a} = \sqrt{(x)R}$.
2. x is a sequence on D.
3. $D/\overline{x}D \xrightarrow{i_{D,x}} H^h_{\overline{x}R}(D)$ is injective.
4. $J_{x,a} = R$.
Hellus and Stückrad

Theorem: Let \((R, m)\) be a Noetherian local complete ring and \(a\) an ideal of \(R\) such that \(H^\ell_a(R) = 0\) for every \(\ell \neq h = \text{height}(a) \geq 1\); let \(x := x_1, \ldots, x_h \in a\) be an \(R\)-regular sequence. Set \(D := D(H^h_a(R))\).

The following conditions are equivalent:

1. \(\sqrt{a} = \sqrt{(x)R}\).
2. \(x\) is a sequence on \(D\).
3. \(D/\langle x \rangle D \xrightarrow{i_{D,x}} H^h_{xR}(D)\) is injective.
4. \(J^h_{x,a} = R\).
Question. Let \((R, m)\) be a Noetherian local complete ring and \(\mathfrak{a}\) an ideal of \(R\), \(h \in \mathbb{N}\); assume that \(x := x_1, \ldots, x_h \in \mathfrak{a}\) is an \(R\)-regular sequence. When

\[J_{x, \mathfrak{a}, R} := 0. \]
Theorem. Let \((R, m)\) be a Noetherian local Gorenstien ring of dimension \(n\) and \(a\) an ideal of \(R\) such that \(\dim R/a = n - c\). Then there is a natural isomorphism

\[
\text{End}_R(H^c_a(R)) \cong \text{Ext}^c_R(H^c_a(R), R)
\]
Recall that we say a sequence of elements x_1, \ldots, x_k of a is an a-filter regular sequence on M if

$$x_i \notin \bigcup_{p \in \text{Ass}_R \left(\frac{M}{(x_1, \ldots, x_{i-1})M} \right) \setminus V(a)} p$$

for $i = 1, \ldots, k$.

Kazem Khashyarmanesh
Local cohomology modules and derived functors
Lemma. Let R is Noetherian, M is a finitely generated. If x_1, \ldots, x_n be an α-filter regular sequence on M, then there is an element $x_{n+1} \in \mathfrak{a}$ such that $x_1, \ldots, x_n, x_{n+1}$ is an α-filter regular sequence on M.

Lemma. Let $n > 1$ and x_1, \ldots, x_n be an α-filter regular sequence on M. Then

$$H^i_\alpha(M) \cong \begin{cases} H^i_{(x_1, \ldots, x_n)}(M) & \text{for } 0 \leq i < n, \\ H^{i-n}_\alpha(H^n_{(x_1, \ldots, x_n)}(M)) & \text{for } n \leq i. \end{cases}$$
Lemma. Let R is Noetherian, M is a finitely generated. If x_1, \ldots, x_n be an a-filter regular sequence on M, then there is an element $x_{n+1} \in a$ such that $x_1, \ldots, x_n, x_{n+1}$ is an a-filter regular sequence on M.

Lemma. Let $n > 1$ and x_1, \ldots, x_n be an a-filter regular sequence on M. Then

$$H^i_a(M) \cong \begin{cases} H^i_{(x_1,\ldots,x_n)}(M) & \text{for } 0 \leq i < n, \\ H^i_{a^{-n}}(H^n_{(x_1,\ldots,x_n)}(M)) & \text{for } n \leq i. \end{cases}$$
Proposition. For a non-negative integer n and an α-filter regular sequence $x_1, \ldots, x_{n+1} \in \alpha$ on M, there exists an exact sequence

\[0 \longrightarrow H^n_\alpha(M) \longrightarrow H^n_{(x_1, \ldots, x_n)}(M) \longrightarrow (H^n_{(x_1, \ldots, x_n)}(M))_{x_{n+1}} \]
\[\longrightarrow H^{n+1}_{(x_1, \ldots, x_{n+1})}(M) \longrightarrow 0. \]
Proposition. Let n be a non-negative integer and x_1, \ldots, x_n be an α-filter regular sequence on M. Let T be an α-torsion R-module. Then

$$\text{Hom}_R(T, H^n_\alpha(M)) \cong \text{Hom}_R(T, H^n_{(x_1, \ldots, x_n)}(M)).$$

In particular

$$\text{End}_R(H^n_\alpha(M)) \cong \text{Hom}_R(H^n_\alpha(M), H^n_{(x_1, \ldots, x_n)}(M)).$$
Theorem. Let \mathfrak{a} be a proper ideal of R and $n := \text{grade}_R \mathfrak{a}$. Then, for every \mathfrak{a}-torsion R-module T, we have the following isomorphism

$$\text{Hom}_R(T, H^n_\mathfrak{a}(R)) \cong \text{Ext}_R^n(T, R).$$

In particular

$$\text{End}_R(H^n_\mathfrak{a}(R)) \cong \text{Ext}_R^n(H^n_\mathfrak{a}(R), R).$$
Theorem: Let \(\mathfrak{a} \) be a proper ideal of \(R \) such that \(n := \text{grade}_R \mathfrak{a} = \text{cd}(\mathfrak{a}, R) \). Let \(\text{Ext}^i_R(R_z, R) = 0 \) for all \(i \in \mathbb{N} \) and \(z \in \mathfrak{a} \). Then

1. \(\text{End}_R(H^n_\mathfrak{a}(R)) \) is a homomorphic image of \(R \).
2. If moreover \(\text{Hom}_R(R_z, R) = 0 \) for all \(z \in \mathfrak{a} \), then \(\text{End}_R(H^n_\mathfrak{a}(R)) \cong R \) and so \(\mu_{H^n_\mathfrak{a}(R)} \) is bijective.
Theorem: Let \mathfrak{a} be a proper ideal of R such that $n := \text{grade}_{R}\mathfrak{a} = \text{cd}(\mathfrak{a}, R)$. Let $\text{Ext}^i_R(R_z, R) = 0$ for all $i \in \mathbb{N}$ and $z \in \mathfrak{a}$. Then

1. $\text{End}_R(H^n_{\mathfrak{a}}(R))$ is a homomorphic image of R.
2. If moreover $\text{Hom}_R(R_z, R) = 0$ for all $z \in \mathfrak{a}$, then $\text{End}_R(H^n_{\mathfrak{a}}(R)) \cong R$ and so $\mu_{H^n_{\mathfrak{a}}(R)}$ is bijective.
Theorem: Let \(a \) be a proper ideal of \(R \) such that
\[
n := \text{grade}_{R} a = \text{cd}(a, R).
\]
Let \(\text{Ext}^i_{R}(R_z, R) = 0 \) for all \(i \in \mathbb{N} \) and \(z \in a \). Then

1. \(\text{End}_R(H^n_a(R)) \) is a homomorphic image of \(R \).
2. If moreover \(\text{Hom}_R(R_z, R) = 0 \) for all \(z \in a \), then
 \(\text{End}_R(H^n_a(R)) \cong R \) and so \(\mu_{H^n_a(R)} \) is bijective.
Corollary. Let \((\mathcal{R}, \mathcal{m})\) be a Noetherian local complete ring and \(\mathcal{a}\) an ideal of \(\mathcal{R}\) such that \(n \equiv \text{grade}\mathcal{R}\mathcal{a} = \text{cd}(\mathcal{a}, \mathcal{R})\). Set \(\mathcal{H} \equiv \mathcal{H}_\mathcal{a}^n(\mathcal{R})\). Then

\[
\mu_\mathcal{H} : \mathcal{R} \longrightarrow \text{End}_\mathcal{R}(\mathcal{H})
\]

is an isomorphism of \(\mathcal{R}\)-algebras.
Theorem. Let F be an R-linear covariant functor from $\mathcal{C}(R)$ to itself such that for every R-module L, $F(L)$ is α-torsion. Also let $c \in \mathbb{N}_0$ and α be an ideal of R such that $\alpha M \neq M$ and that $c \leq \text{grade}(\alpha, M)$. Then

$$\mathcal{R}^0 F(H^c_\alpha(M)) \cong \mathcal{R}^c F(M).$$
Theorem. Let F be an R-linear covariant functor from $\mathcal{C}(R)$ to itself such that for every R-module L, $F(L)$ is α-torsion. Suppose that α is an ideal of R and M is a finitely generated R-module such that $\alpha M \neq M$ and that $c := \text{cd}(\alpha, M) = \text{grade}(\alpha, M)$. Then

$$\mathcal{R}^i F(H^c_\alpha(M)) \cong \mathcal{R}^{i+c} F(M)$$

for all $i \in \mathbb{N}_0$.
Theorem. Let M be a finitely generated R-module, a be an ideal of R such that $aM \neq M$ and $c := \text{cd}(a, M) = \text{grade}(a, M)$. Then, for every ideal b of R with $b \supseteq a$,

(i) $H^i_b(H^c_a(M)) \cong H^{i+c}_b(M)$, and;

(ii) $\text{Ext}^i_R(R/b, H^c_a(M)) \cong \text{Ext}^{i+c}_R(R/b, M)$

for all $i \in \mathbb{N}_0$.
Theorem. Let \((R, m)\) be a Gorenstein local ring and \(a\) be a cohomological complete intersection ideal of \(R\). Set \(c := \text{cd}(a, R)\) and \(d := \dim_R R/a\). Then

(i) \(H^d_m(H^c_a(R)) \cong E(R/m)\),

(ii) \(\text{Ext}^d_R(R/m, H^c_a(R)) \cong E(R/m)\), and;

(iii) \(H^i_m(H^c_a(R)) = 0 = \text{Ext}^i_R(R/m, H^c_a(R))\) for all \(i \neq d\).
Theorem. Let a and b be ideals of an arbitrary commutative Noetherian ring R such that $b \supseteq a$, $aM \neq M$ and $c := \text{grade}(a, M)$. Then

(i) we have a monomorphism from $H^c_b(M)$ to $H^c_a(M)$, and;
(ii) there exists a natural homomorphism from $\text{End}(H^c_a(M))$ to $\text{End}(H^c_b(M))$.
Module of generalized fractions

Let M be an R-module. The construction of a module of generalized fractions of M requires a (positive integer n and a) triangular subset $U \subseteq R^n$; the construction produces a module $U^{-n}M$, called the module of generalized fractions of M with respect to U, whose elements, called generalized fractions, have the form $\frac{m}{(u_1, \ldots, u_n)}$, where $m \in M$ and $(u_1, \ldots, u_n) \in U$.

The concept of a chain of triangular subsets on R is explained in [*]. Such a chain $\mathcal{U} = (U_i)_{i \in \mathbb{N}}$ determines a complex of modules of generalized fractions

$$0 \xrightarrow{d^{-1}} M \xrightarrow{d^0} U_1^{-1}M \xrightarrow{} \ldots \xrightarrow{} U_i^{-1}M \xrightarrow{d^i} U_{i+1}^{-1}M \xrightarrow{} \ldots,$$

in which $d^0(m) = m/(1)$ for all $m \in M$ and $d^i(m/(u_1, \ldots, u_i)) = m/(u_1, \ldots, u_i, 1)$ for all $i \in \mathbb{N}$, $m \in M$ and $(u_1, \ldots, u_i) \in U_i$. We shall denote this complex by $C(\mathcal{U}, M)$.

Let $\bar{x} := x_1, \ldots, x_n$ be a sequence of elements of R. For each $i \in \mathbb{N}$, set

$$U(x)_i := \{(x_1^{\alpha_1}, \ldots, x_i^{\alpha_i}) : \text{there exists } j \text{ with } 0 \leq j \leq i \text{ such that }$$

$$\alpha_1, \ldots, \alpha_j \in \mathbb{N} \text{ and } \alpha_{j+1} = \cdots = \alpha_i = 0\},$$

where x_r is interpreted as 1 whenever $r > n$. It is easy to see that, for each $i \in \mathbb{N}$, $U(x)_i$ is a triangular subset of R^i. We use $R(x)$ to denote the family $(U(x)_i)_{i \in \mathbb{N}}$. Hence $R(x)$ is a chain of triangular subsets on R. Write the associated complex $C(R(x), M)$ as

$$0 \xrightarrow{d_{X,M}^{-1}} M \xrightarrow{d_{X,M}^0} U(x)_1^{-1} M \xrightarrow{d_{X,M}^i} \cdots \xrightarrow{d_{X,M}^i} U(x)_{i+1}^{-1} M \xrightarrow{d_{X,M}^i} \cdots$$
Proposition Let \mathfrak{a} be a proper ideal of a Noetherian local ring R. Let $x := x_1, \ldots, x_n (n > 0)$ be a regular sequence on M contained in \mathfrak{a}. Then there exists an exact sequence

$$0 \longrightarrow J_{x, \mathfrak{a}, M} \longrightarrow D(D(M)) \longrightarrow D(H^{n-1}_{x, R}(D(Ker d^n_{y, M})))$$

for every $x_{n+1} \in \mathfrak{a}$ such that $y := x_1, \ldots, x_n, x_{n+1}$ is an \mathfrak{a}-filter regular sequence on M.
Theorem Let \((R, m)\) be a Noetherian local ring and \(\mathfrak{a}\) be a proper ideal of \(R\). Let \(x := x_1, \ldots, x_n (n > 0)\) be a regular sequence on \(M\) in \(\mathfrak{a}\). Suppose that there exists \(x_{n+1} \in \mathfrak{a}\) such that \(y := x_1, \ldots, x_n, x_{n+1}\) is an \(\mathfrak{a}\)-filter regular sequence on \(M\) and \(H^n_{\mathfrak{a}R}(D(U(y)_{n+1}^{-1} M)) = 0\). Then

\[J_{\mathfrak{a}, M} \cong D(D(M)). \]
Thanks For Your Patience