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@ R: Commutative Noetherian ring with non-zero identity
Q o Anideal of R

© M: An R-module
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General notations and terminology

@ R: Commutative Noetherian ring with non-zero identity
Q o Anideal of R
© M: An R-module

Q Ny (resp. N): The set of non-negative (resp.) positive
integers.
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Recall that:

For each R-module M, set

Also for a homomorphism f: M — N of R-modules, we
set I4(f) is the restriction of f to I',(M). Note that

f(Fa(M)) CT4(N). Thus I'y(—) becomes a covariant,

R-linear, left exact functor from the category of R-modules

and R-homomorphisms to itself. We call the
a-torsion functor. For i > 0, the i-th right derived functor of
a(—) is denoted by and will be referred to as the i-th

local cohomology functor with respect to a.
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Definition:

There is a canonical map

pv R — Enck(M)
such that for r € R, uy(r) is the multiplication map by
M.

r on
Itis easy to see that 1y is a homomorphism of
In general, uy is neither nor
Let (R, m) be a Noetherian local ring. Let D(—) be the
Matlis dual functor Homg(—, E), where E is the injective
hull of the field R/m

R-algebras.
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Definition:

Let R be a local ring. M has a canonical embedding

M — D(D(M)) = D*(M),

m+— (o +— ¢(m))
into its bidual, this map will denoted by iv. We will
consider M as a submodule of D?(M) via iy.
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Definition. For an R-module M, the cohomological

dimension of M with respectto a is defined as

cd(a,M) :=max{i € Z | H\(M) # 0 }.
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Introduction

Let (R, m) be a Noetherian local ring.

For a positive integer n, by using the theory of D-modules,
Hellus showed that HZ(D(H?(R))) is either E or zero in the
following cases:

R is a Noetherian local complete Cohen-Macaulay ring
with coefficient field R/m and there exists a regular
sequence Xi,...,Xn € aon R suchthat a=(xg,...,Xp). In
this case a is a set-theoretic complete intersection ideal of
R.

R is a Noetherian local complete regular ring of
equicharacteristic zero and a an ideal of height n > 1 such
that there exists a regular sequence  Xi,...,X;, € aon R and
H!(R) = 0 for every i >n.
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In [*], the present author obtained the following
generalization of Hellus’ Theorem.

Theorem Let R be a local ring and a be an ideal of R such that
aM # M and n := gradg,a = cd(a,M) > 1. Then

HR(D(H}

(M))) = D(M).

[*] Khashyarmanesh, K., On the Matils dual of local cohomology
modules, Arch. Math. (Basel) 88 (2007), no. 5, 413-418.
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Introduction

By using this generalization in conjunction with spectral
sequences method, Hellus and Stiickrad, in [*], showed
that:

if R is Noetherian local complete and a an ideal of R such
that Hy(R) = O for every i # n(=height a), then jynr) is
bijective .

[*] Hellus, M. and Stuickrad, J., On endomorphism rings of local
cohomology, Proc. Amer. Math. Soc. 136 (2008), 2333—2341.
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Moreover, Hellus and Stiickrad, raised the following
guestion:

If R is a commutative Noetherian

complete local ring and
X:=Xq,...,Xn IS @ regular sequence on R contained in a,
when exactly is Jx . r := D(Hgg(D(HZ(R)))) zero?

where xR is the ideal }_' ; xR of R.
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Let (R, m) be a Noetherian local ring and x
map

_=X1,.

.., Xp a
)
sequence of R. For every R-module M there is a canonical

v X
M/xM 25 HE L (M)
(coming from the description

Hyg (M) = imM/(x{, ..., X

n
neN

hM.)
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Hellus and Stuckrad

Let (R, m) be a Noetherian local complete ring
and a an ideal of R such that H.(R) = 0 for every
¢ # h = heigh{a). Set H := H(R).Then
© Hom(H,iy) : EndH) — Hom(H,D?(H)) is an
isomorphism.
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Hellus and Stuckrad

Let (R, m) be a Noetherian local complete ring
and a an ideal of R such that H.(R) = 0 for every
¢ # h = heigh{a). Set H := H(R).Then
© Hom(H,iy) : EndH) — Hom(H,D?(H)) is an
isomorphism.
©Q There is a canonical isomorphism

Y4 : Hom(H, D?(H)) — D(H"(D(H))).
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Hellus and Stuckrad

Let (R, m) be a Noetherian local complete ring
and a an ideal of R such that H(R) = O for every
¢ # h = heighta) > 1; let X :=X3,...,Xn € a be an R-regular
sequence. Set D := D(H(R)).
The following conditions are equivalent:

Q Vo= V(xR).
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Let (R, m) be a Noetherian local complete ring
and a an ideal of R such that H(R) = O for every
¢ # h = heighta) > 1; let X :=X3,...,Xn € a be an R-regular
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b, X
Q D/xD -5 HR (D) is injective.
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Hellus and Stickrad

Question. Let (R, m) be a Noetherian local complete ring
an R-regular sequence. When

and a an ideal of R, h € N; assume that X_ := X4,

., Xp Eais
‘])L,a,R =0.
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Schenzel

Theorem. Let (R, m) be a Noetherian local Gorenstien ring
of dimension n and a an ideal of R such that

Endk (Hg

dimR/a = n — c. Then there is a natural isomorphism

=~ Ext: (H
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Schenzel, Trung and Coung: 1978
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Lemma. Let R is Noetherian, M is a finitely generated. If

X1,...,Xn be an a-filter regular sequence on M, then there is

an element x,.1 € asuchthat Xi,...,Xn,Xny1 IS an a-filter
regular sequence on M.
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Lemma. Let R is Noetherian, M is a finitely generated. If

X1,...,Xn be an a-filter regular sequence on M, then there is

an element x,.1 € asuchthat Xi,...,Xn,Xny1 IS an a-filter
regular sequence on M.

Lemma. Let n > 1 and Xy, ...,X, be an a-filter regular
sequence on M. Then

Hi (M) o~ HEXL...,xn)(M) for 0 < | <n,
a Ha "(H,. (M) for n<i.
(=] =l = =
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Proposition.

regular sequence X,

For a non-negative integer
exact sequence

n and an a-filter
., Xn+1 € aon M, there exists an

H n+1

0 — HJ(M) — HG, (M) — (H, sy (M)
(Xl,...,xn+1)(M) — 0.

Xn+1
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Proposition. Let n be a non-negative integer and  Xq,..., X
be an a-filter regular sequence on M. Let T be an a-torsion
R-module. Then

Homg (T, Hg(M)) = Homg (T, HEY, (M)
In particular

Endz (Hg(M)) = Homg (H3 (M), Hi, ) (M)).
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Theorem. Let a be a proper ideal of R and n := gradea
Then, for every a-torsion R-module T, we have the
following isomorphism

In particular

Ends (H}

Homg(T,HJ (R

~ Ext3(T,R)

~ Ext}(H"(R),R)
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Let a be a proper ideal of R such that
n := gradga = cd(a,R). Let Extz(R;,R) =0 forall i € Nand
z € a. Then

Q@ Endk(H[(R)) is a homomorphic image of R.
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Let a be a proper ideal of R such that
n := gradga = cd(a,R). Let Extz(R;,R) =0 forall i € Nand
z € a. Then
Q@ Endk(H[(R)) is a homomorphic image of R.

Q If moreover Homg (Rz,R) = 0 for all z € a, then
Endk(HF(R)) = R and so pp(r) is
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H :=HZ(R). Then

Corollary. Let (R, m) be a Noetherian local complete ring
and a an ideal of R such that n := gradga = cd(a, R). Set

pn : R — Endk(H)
is an isomorphism of

R-algebras.
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Khashyarmanesh and Khosh-Ahang

Let F be an R-linear covariant functor from
to itself such that for every R-module L, F(L) is a-torsion.

C(R)
Also let ¢ € Ng and a be an ideal of R such that aM # M and
that ¢ < gradda, M). Then

ROF (HE(M)) = REF(M).
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Theorem. Let F be an R-linear covariant functor from  C(R)
to itself such that for every R-module L, F(L) is a-torsion.
Suppose that ais anideal of R and M is a finitely

generated R-module such that aM # M and that

¢ := cd(a, M) = gradga,M). Then

RIF(HE(M)) = R™CF (M)

forall i € Ng.
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Let M be a finitely generated R-module, a be an
ideal of R suchthat aM # M and ¢ := cd(a, M) = gradga, M).
Then, for every ideal b of R with b D q,

() Hy(HE(M)) = HyFe(M), and;
(i) Ext,(R/b,HE(M)) = Exty¢(R/b,M)
for all i € Np.
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Theorem. Let (R, m) be a Gorenstein local ringand abe a
cohomological complete intersection ideal of R. Set
¢ :=cd(a,R) and d := dimg R/a. Then
() HR(HE(R)) = E(R/m),
(i) Ext3(R/m,HS(R)) = E(R/m), and;
(i) Hi,(HE(R)) = 0 = Exty(R/m,HE(R)) forall i #4d.
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Theorem. Let a and b be ideals of an arbitrary
commutative Noetherianring R suchthat b D a, aM # M
and c := grad€a,M). Then

(i) we have a monomorphism from  HE(M) to HS(M), and;

(i) there exists a natural homomorphism from EndHS(M))
to EndHE(M)).
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Sharp and Zakeri*

Module of generalized fractions

Let M be an R-module. The construction of a module of
generalized fractions of M requires a (positive integer n
and a) triangular subset U C R"; the construction
produces a module U~"M, called the module of
generalized fractions of M with respectto U, whose
elements, called generalized fractions, have the form

(ulf“m,where m e M and (ug,...,uy) € U.

[*] Sharp, R. Y. and Zakeri, H., Modules of generalized
fractions, Mathematika 29 (1982), no. 1, 32—41.
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O’Carroll*

The concept of a chain of triangular subsets on R is
explained in [*]. Such a chain U = (Uj)ien determines a
complex of modules of generalized fractions

05 M L UM — . UM UM
in which d°(m) = m/(1) for all m € M and
d'(m/(ug,...,ui)) =m/(ug,...,u;,1) forall i e N,me M and
(ug,...,u;) € U;. We shall denote this complex by  C(U, M).

y

[¥] O'Carroll, L., On the generalized fractions of Sharp and
Zakeri, J. London Math. Soc. (2) 28 (1983), no. 3, 417-427.
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notations

Let x := Xq,...,X, be a sequence of elements of R. For
each i € N, set

U(x)i := {(x{*,...,x™) : there existg with 0 <j <i such that
aig,...,o € Nandajpqg = -+ = a; = 0},

where X, is interpreted as 1 whenever r > n. Itis easy to
see that, for each i € N, U(x); is a triangular subset of R
We use R(x) to denote the family (U (x);)ien. Hence R(X) is
a chain of triangular subsets on  R. Write the associated
complex C(R(x),M) as

A 9% ) dic .
0 —M—=UX;M—.. —UxX ;M—. ..
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Proposition Let a be a proper ideal of a Noetherian local
ring R. Let X :=Xy,...,Xy(n > 0) be a regular sequence on
M contained in a. Then there exists an exact sequence

0 — Jxam — D(D(M)) — D(Hggl(D(KerdiM)))

for every Xny1 € asuchthat y:=Xg,...,Xn,Xn41 IS an a-filter
regular sequence on M.
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Theorem Let (R, m) be a Noetherian local ring and a be a
proper ideal of R. Let x:=Xy,...,Xn(n > 0) be a regular
sequence on M in a. Suppose that there exists X, 1 €a
such that y := xl, ..., Xn, Xny1 is an a-filter regular sequence

on M and Hg( X)n+1lM) = 0. Then

Ix.am = D(D(M)).
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