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Local cohomology modules and derived functors

General notations and terminology

1 R: Commutative Noetherian ring with non-zero identity
2 a: An ideal of R
3 M: An R-module
4 N0 (resp. N): The set of non-negative (resp.) positive

integers.
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Recall that:

For each R-module M, set Γa(M) :=
⋃

n∈N(0 :M an)
Also for a homomorphism f : M −→ N of R-modules, we
set Γa(f ) is the restriction of f to Γa(M). Note that
f (Γa(M)) ⊆ Γa(N). Thus Γa(−) becomes a covariant,
R-linear, left exact functor from the category of R-modules
and R-homomorphisms to itself. We call Γa(−) the
a-torsion functor. For i ≥ 0, the i-th right derived functor of
Γa(−) is denoted by H i

a(−) and will be referred to as the i-th
local cohomology functor with respect to a.
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Definition:

There is a canonical map

µM : R −→ EndR(M)

such that for r ∈ R, µM(r) is the multiplication map by r on
M.
It is easy to see that µM is a homomorphism of R-algebras.
In general, µM is neither injective nor surjective .

Let (R,m) be a Noetherian local ring. Let D(−) be the
Matlis dual functor HomR(−, E), where E is the injective
hull of the field R/m
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Definition:

Let R be a local ring. M has a canonical embedding

M −→ D(D(M)) = D2(M),

m 7−→ (ϕ 7−→ ϕ(m))

into its bidual, this map will denoted by iM . We will
consider M as a submodule of D2(M) via iM .
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Definition. For an R-module M, the cohomological
dimension of M with respect to a is defined as

cd(a, M) := max{i ∈ Z | H i
a(M) 6= 0 }.
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Introduction

Let (R,m) be a Noetherian local ring.

For a positive integer n, by using the theory of D-modules,
Hellus showed that Hn

a (D(Hn
a (R))) is either E or zero in the

following cases:

(α) R is a Noetherian local complete Cohen-Macaulay ring
with coefficient field R/m and there exists a regular
sequence x1, . . . , xn ∈ a on R such that a = (x1, . . . , xn). In
this case a is a set-theoretic complete intersection ideal of
R.

(β) R is a Noetherian local complete regular ring of
equicharacteristic zero and a an ideal of height n > 1 such
that there exists a regular sequence x1, . . . , xn ∈ a on R and
H i

a(R) = 0 for every i > n.
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Introduction

In [*], the present author obtained the following
generalization of Hellus’ Theorem.

Theorem Let R be a local ring and a be an ideal of R such that
aM 6= M and n := gradeMa = cd(a, M) > 1. Then

Hn
a (D(Hn

a (M))) ∼= D(M).

[*] Khashyarmanesh, K., On the Matils dual of local cohomology
modules, Arch. Math. (Basel) 88 (2007), no. 5, 413–418.
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Introduction

By using this generalization in conjunction with spectral
sequences method, Hellus and Stückrad, in [*], showed
that:

if R is Noetherian local complete and a an ideal of R such
that H i

a(R) = 0 for every i 6= n(=height a), then µHn
a(R) is

bijective .

[*] Hellus, M. and Stückrad, J., On endomorphism rings of local
cohomology, Proc. Amer. Math. Soc. 136 (2008), 2333–2341.
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Introduction

Moreover, Hellus and Stückrad, raised the following
question:

If R is a commutative Noetherian complete local ring and
x
¯

:= x1, . . . , xn is a regular sequence on R contained in a,
when exactly is Jx

¯
,a,R := D(Hn

x
¯

R(D(Hn
a (R)))) zero?

where x
¯
R is the ideal

∑n
i=1 xiR of R.
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Let (R,m) be a Noetherian local ring and x
¯

:= x1, . . . , xh a
sequence of R. For every R-module M there is a canonical
map

M/x
¯
M

iM,x
¯−→ Hh

x
¯

R(M)

(coming from the description

Hh
x
¯

R(M) ∼= lim
−→
n∈N

M/(xn
1 , . . . , xn

h )M.)

Kazem Khashyarmanesh Local cohomology modules and derived functors



Local cohomology modules and derived functors

Hellus and Stückrad

Theorem: Let (R,m) be a Noetherian local complete ring
and a an ideal of R such that H`

a(R) = 0 for every
` 6= h = height(a). Set H := Hh

a (R).Then
1 Hom(H, iH) : End(H) −→ Hom(H, D2(H)) is an

isomorphism.
2 There is a canonical isomorphism

γH : Hom(H, D2(H)) −→ D(Hh
a (D(H))).

3 µH : R −→ End(H) is an isomorphism of R-algebras.
4 Consequently there is a canonical isomorphism

γHoHom(H, iH)oµH : R −→ End(H).
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Hellus and Stückrad

Theorem: Let (R,m) be a Noetherian local complete ring
and a an ideal of R such that H`

a(R) = 0 for every
` 6= h = height(a) > 1; let x

¯
:= x1, . . . , xh ∈ a be an R-regular

sequence. Set D := D(Hh
a (R)).

The following conditions are equivalent:
1
√

a =
√

(x
¯
R).

2 x
¯

is a sequence on D.

3 D/x
¯
D

iD,x
¯−→ Hh

x
¯

R(D) is injective.

4 Jx
¯
,a = R.
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Hellus and Stückrad

Question. Let (R,m) be a Noetherian local complete ring
and a an ideal of R, h ∈ N; assume that x

¯
:= x1, . . . , xh ∈ a is

an R-regular sequence. When

Jx
¯
,a,R := 0.
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Schenzel

Theorem. Let (R,m) be a Noetherian local Gorenstien ring
of dimension n and a an ideal of R such that
dim R/a = n − c. Then there is a natural isomorphism

EndR(Hc
a (R)) ∼= ExtcR(Hc

a (R), R)
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Schenzel, Trung and Coung: 1978

Recall that we say a sequence of elements x1, . . . , xk of a is
an a-filter regular sequence on M if

xi /∈
⋃

p∈AssR( M
(x1,...,xi−1)M )\V (a)

p

for i = 1, . . . , k .
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Lemma. Let R is Noetherian, M is a finitely generated. If
x1, . . . , xn be an a-filter regular sequence on M, then there is
an element xn+1 ∈ a such that x1, . . . , xn, xn+1 is an a-filter
regular sequence on M.

Lemma. Let n > 1 and x1, . . . , xn be an a-filter regular
sequence on M. Then

H i
a(M) ∼=

{
H i

(x1,...,xn)
(M) for 0 ≤ i < n,

H i−n
a (Hn

(x1,...,xn)
(M)) for n ≤ i .
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Proposition. For a non-negative integer n and an a-filter
regular sequence x1, . . . , xn+1 ∈ a on M, there exists an
exact sequence

0 −→ Hn
a (M) −→ Hn

(x1,...,xn)
(M) −→ (Hn

(x1,...,xn)
(M))xn+1

−→ Hn+1
(x1,...,xn+1)

(M) −→ 0.
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Proposition. Let n be a non-negative integer and x1, . . . , xn

be an a-filter regular sequence on M. Let T be an a-torsion
R-module. Then

HomR(T , Hn
a (M)) ∼= HomR(T , Hn

(x1,...,xn)
(M)).

In particular

EndR(Hn
a (M)) ∼= HomR(Hn

a (M), Hn
(x1,...,xn)

(M)).
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Theorem. Let a be a proper ideal of R and n := gradeRa.
Then, for every a-torsion R-module T , we have the
following isomorphism

HomR(T , Hn
a (R)) ∼= ExtnR(T , R).

In particular

EndR(Hn
a (R)) ∼= ExtnR(Hn

a (R), R)
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Theorem: Let a be a proper ideal of R such that
n := gradeRa = cd(a, R). Let ExtiR(Rz , R) = 0 for all i ∈ N and
z ∈ a. Then

1 EndR(Hn
a (R)) is a homomorphic image of R.

2 If moreover HomR(Rz , R) = 0 for all z ∈ a, then
EndR(Hn

a (R)) ∼= R and so µHn
a(R) is bijective.
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Corollary. Let (R,m) be a Noetherian local complete ring
and a an ideal of R such that n := gradeRa = cd(a, R). Set
H := Hn

a (R). Then

µH : R −→ EndR(H)

is an isomorphism of R-algebras.
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Khashyarmanesh and Khosh-Ahang

Theorem. Let F be an R-linear covariant functor from C(R)
to itself such that for every R-module L, F (L) is a-torsion.
Also let c ∈ N0 and a be an ideal of R such that aM 6= M and
that c 6 grade(a, M). Then

R0F (Hc
a (M)) ∼= RcF (M).
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Theorem. Let F be an R-linear covariant functor from C(R)
to itself such that for every R-module L, F (L) is a-torsion.
Suppose that a is an ideal of R and M is a finitely
generated R-module such that aM 6= M and that
c := cd(a, M) = grade(a, M). Then

RiF (Hc
a (M)) ∼= Ri+cF (M)

for all i ∈ N0.
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Theorem. Let M be a finitely generated R-module, a be an
ideal of R such that aM 6= M and c := cd(a, M) = grade(a, M).
Then, for every ideal b of R with b ⊇ a,

(i) H i
b(H

c
a (M)) ∼= H i+c

b (M), and;

(ii) ExtiR(R/b, Hc
a (M)) ∼= Exti+c

R (R/b, M)

for all i ∈ N0.
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Theorem. Let (R,m) be a Gorenstein local ring and a be a
cohomological complete intersection ideal of R. Set
c := cd(a, R) and d := dimR R/a. Then

(i) Hd
m(Hc

a (R)) ∼= E(R/m),

(ii) ExtdR(R/m, Hc
a (R)) ∼= E(R/m), and;

(iii) H i
m(Hc

a (R)) = 0 = ExtiR(R/m, Hc
a (R)) for all i 6= d .
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Theorem. Let a and b be ideals of an arbitrary
commutative Noetherian ring R such that b ⊇ a, aM 6= M
and c := grade(a, M). Then

(i) we have a monomorphism from Hc
b (M) to Hc

a (M), and;

(ii) there exists a natural homomorphism from End(Hc
a (M))

to End(Hc
b (M)).
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Sharp and Zakeri*

Module of generalized fractions

Let M be an R-module. The construction of a module of
generalized fractions of M requires a (positive integer n
and a) triangular subset U ⊆ Rn; the construction
produces a module U−nM, called the module of
generalized fractions of M with respect to U, whose
elements, called generalized fractions, have the form

m
(u1,...,un)

, where m ∈ M and (u1, . . . , un) ∈ U.

[*] Sharp, R. Y. and Zakeri, H., Modules of generalized
fractions, Mathematika 29 (1982), no. 1, 32–41.
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O’Carroll*

The concept of a chain of triangular subsets on R is
explained in [*]. Such a chain U = (Ui)i∈N determines a
complex of modules of generalized fractions

0 d−1

−→ M d0

−→ U−1
1 M −→ . . . −→ U−i

i M d i

−→ U−i−1
i+1 M −→ . . . ,

in which d0(m) = m/(1) for all m ∈ M and
d i(m/(u1, . . . , ui)) = m/(u1, . . . , ui , 1) for all i ∈ N, m ∈ M and
(u1, . . . , ui) ∈ Ui . We shall denote this complex by C(U , M).

[*] O’Carroll, L., On the generalized fractions of Sharp and
Zakeri, J. London Math. Soc. (2) 28 (1983), no. 3, 417-427.
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notations

Let x
¯

:= x1, . . . , xn be a sequence of elements of R. For
each i ∈ N, set

U(x
¯
)i := {(xα1

1 , . . . , xαi
i ) : there existsj with 0 6 j 6 i such that

α1, . . . , αj ∈ N andαj+1 = · · · = αi = 0},

where xr is interpreted as 1 whenever r > n. It is easy to
see that, for each i ∈ N, U(x

¯
)i is a triangular subset of R i .

We use R(x
¯
) to denote the family (U(x

¯
)i)i∈N. Hence R(x

¯
) is

a chain of triangular subsets on R. Write the associated
complex C(R(x

¯
), M) as

0
d−1
x
¯

,M
−→ M

d0
x
¯

,M
−→ U(x

¯
)−1
1 M −→ . . .

d i
x
¯

,M
−→ U(x

¯
)−i−1
i+1 M −→ . . . .
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Proposition Let a be a proper ideal of a Noetherian local
ring R. Let x

¯
:= x1, . . . , xn(n > 0) be a regular sequence on

M contained in a. Then there exists an exact sequence

0 −→ Jx
¯
,a,M −→ D(D(M)) −→ D(Hn−1

x
¯

R (D(Kerdn
y
¯
,M)))

for every xn+1 ∈ a such that y
¯

:= x1, . . . , xn, xn+1 is an a-filter
regular sequence on M.

Kazem Khashyarmanesh Local cohomology modules and derived functors



Local cohomology modules and derived functors

Theorem Let (R,m) be a Noetherian local ring and a be a
proper ideal of R. Let x

¯
:= x1, . . . , xn(n > 0) be a regular

sequence on M in a. Suppose that there exists xn+1 ∈ a

such that y
¯

:= x1, . . . , xn, xn+1 is an a-filter regular sequence
on M and Hn

x
¯

R(D(U(y
¯
)−n−1
n+1 M)) = 0. Then

Jx
¯
,a,M

∼= D(D(M)).
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