# Local cohomology modules and derived functors

Kazem Khashyarmanesh

Ferdowsi University of Mashhad and IPM.

Some part of this talk is a joint work with Dr. F.Khosh-Ahang.

December 2011

- R: Commutative Noetherian ring with non-zero identity
- a: An ideal of R
- 3 M: An R-module
  - N<sub>0</sub> (resp. N): The set of non-negative (resp.) positive integers.

- R: Commutative Noetherian ring with non-zero identity
- 2 a: An ideal of R
- 3 M: An R-module

- R: Commutative Noetherian ring with non-zero identity
- a: An ideal of R
- M: An R-module

- R: Commutative Noetherian ring with non-zero identity
- a: An ideal of R
- M: An R-module
- N<sub>0</sub> (resp. N): The set of non-negative (resp.) positive integers.

## Recall that:

For each R-module M, set  $\Gamma_{\mathfrak{a}}(M) := \bigcup_{n \in \mathbb{N}} (0:_{M} \mathfrak{a}^{n})$  Also for a homomorphism  $f: M \longrightarrow N$  of R-modules, we set  $\Gamma_{\mathfrak{a}}(f)$  is the restriction of f to  $\Gamma_{\mathfrak{a}}(M)$ . Note that  $f(\Gamma_{\mathfrak{a}}(M)) \subseteq \Gamma_{\mathfrak{a}}(N)$ . Thus  $\Gamma_{\mathfrak{a}}(-)$  becomes a covariant, R-linear, left exact functor from the category of R-modules and R-homomorphisms to itself. We call  $\Gamma_{\mathfrak{a}}(-)$  the  $\mathfrak{a}$ -torsion functor. For  $i \geq 0$ , the i-th right derived functor of  $\Gamma_{\mathfrak{a}}(-)$  is denoted by  $H_{\mathfrak{a}}^{i}(-)$  and will be referred to as the i-th local cohomology functor with respect to  $\mathfrak{a}$ .

#### **Definition:**

#### There is a canonical map

$$\mu_M: R \longrightarrow \operatorname{End}_R(M)$$

such that for  $r \in R$ ,  $\mu_M(r)$  is the multiplication map by r on M.

It is easy to see that  $\mu_M$  is a homomorphism of R-algebras. In general,  $\mu_M$  is neither injective nor surjective.

Let  $(R, \mathfrak{m})$  be a Noetherian local ring. Let D(-) be the Matlis dual functor  $\operatorname{Hom}_R(-, E)$ , where E is the injective hull of the field  $R/\mathfrak{m}$ 

#### **Definition:**

### Let R be a local ring. M has a canonical embedding

$$M \longrightarrow D(D(M)) = D^2(M),$$
  
 $m \longmapsto (\varphi \longmapsto \varphi(m))$ 

into its bidual, this map will denoted by  $i_M$ . We will consider M as a submodule of  $D^2(M)$  via  $i_M$ .

# Definition. For an R-module M, the cohomological dimension of M with respect to $\mathfrak a$ is defined as

$$\operatorname{cd}(\mathfrak{a}, M) := \max\{i \in \mathbb{Z} \mid H_{\mathfrak{a}}^{i}(M) \neq 0 \}.$$

Let  $(R, \mathfrak{m})$  be a Noetherian local ring.

For a positive integer n, by using the theory of D-modules, Hellus showed that  $H^n_{\mathfrak{a}}(D(H^n_{\mathfrak{a}}(R)))$  is either E or zero in the following cases:

- ( $\alpha$ ) R is a Noetherian local complete Cohen-Macaulay ring with coefficient field  $R/\mathfrak{m}$  and there exists a regular sequence  $x_1,\ldots,x_n\in\mathfrak{a}$  on R such that  $\mathfrak{a}=(x_1,\ldots,x_n)$ . In this case  $\mathfrak{a}$  is a set-theoretic complete intersection ideal of R.
- ( $\beta$ ) R is a Noetherian local complete regular ring of equicharacteristic zero and a an ideal of height  $n \ge 1$  such that there exists a regular sequence  $x_1, \ldots, x_n \in \mathfrak{a}$  on R and  $H^i_{\mathfrak{a}}(R) = 0$  for every i > n.

# In [\*], the present author obtained the following generalization of Hellus' Theorem.

**Theorem** Let R be a local ring and  $\mathfrak{a}$  be an ideal of R such that  $\mathfrak{a}M \neq M$  and  $n := \operatorname{grade}_M \mathfrak{a} = \operatorname{cd}(\mathfrak{a}, M) \geqslant 1$ . Then

$$H_a^n(D(H_a^n(M))) \cong D(M).$$

[\*] Khashyarmanesh, K., On the Matils dual of local cohomology modules, Arch. Math. (Basel) 88 (2007), no. 5, 413–418.



In [\*], the present author obtained the following generalization of Hellus' Theorem.

**Theorem** Let R be a local ring and  $\mathfrak{a}$  be an ideal of R such that  $\mathfrak{a}M \neq M$  and  $n := \operatorname{grade}_M \mathfrak{a} = \operatorname{cd}(\mathfrak{a}, M) \geqslant 1$ . Then

$$H_{\mathfrak{a}}^{n}(D(H_{\mathfrak{a}}^{n}(M)))\cong D(M).$$

[\*] Khashyarmanesh, K., On the Matils dual of local cohomology modules, Arch. Math. (Basel) 88 (2007), no. 5, 413–418.

By using this generalization in conjunction with spectral sequences method, Hellus and Stückrad, in [\*], showed that:

if R is Noetherian local complete and  $\mathfrak a$  an ideal of R such that  $H^i_{\mathfrak a}(R)=0$  for every  $i\neq n(=$ height  $\mathfrak a)$ , then  $\mu_{H^n_{\mathfrak a}(R)}$  is bijective.

[\*] Hellus, M. and Stückrad, J., On endomorphism rings of local cohomology, Proc. Amer. Math. Soc. 136 (2008), 2333–2341.

By using this generalization in conjunction with spectral sequences method, Hellus and Stückrad, in [\*], showed that:

if R is Noetherian local complete and  $\mathfrak a$  an ideal of R such that  $H^i_{\mathfrak a}(R)=0$  for every  $i\neq n$ (=height  $\mathfrak a$ ), then  $\mu_{H^n_{\mathfrak a}(R)}$  is bijective.

[\*] Hellus, M. and Stückrad, J., On endomorphism rings of local cohomology, Proc. Amer. Math. Soc. 136 (2008), 2333–2341.

# Moreover, Hellus and Stückrad, raised the following question:

If R is a commutative Noetherian complete local ring and  $\underline{x} := x_1, \dots, x_n$  is a regular sequence on R contained in  $\mathfrak{a}$ , when exactly is  $J_{X,\mathfrak{a},R} := D(H_{XR}^n(D(H_{\mathfrak{a}}^n(R))))$  zero?

where xR is the ideal  $\sum_{i=1}^{n} x_i R$  of R.



Moreover, Hellus and Stückrad, raised the following question:

If R is a commutative Noetherian complete local ring and  $\underline{x} := x_1, \dots, x_n$  is a regular sequence on R contained in  $\mathfrak{a}$ , when exactly is  $J_{\underline{X},\mathfrak{a},R} := D(H_{XR}^n(D(H_{\mathfrak{a}}^n(R))))$  zero?

where  $\underline{x}R$  is the ideal  $\sum_{i=1}^{n} x_i R$  of R.



Let  $(R, \mathfrak{m})$  be a Noetherian local ring and  $\underline{\mathbf{x}} := x_1, \dots, x_h$  a sequence of R. For every R-module M there is a canonical map

$$M/\underline{\mathbf{x}}M \stackrel{i_{M},\underline{\mathbf{X}}}{\longrightarrow} H^{h}_{\underline{\mathbf{X}}R}(M)$$

(coming from the description

$$H^h_{\underline{\mathbf{X}}R}(M) \cong \underset{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}}{\underline{\lim}} M/(x_1^n, \dots, x_h^n) M.)$$

Theorem: Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H_{\mathfrak{a}}^{\ell}(R)=0$  for every  $\ell \neq h=\mathrm{height}(\mathfrak{a})$ . Set  $H:=H_{\mathfrak{a}}^{h}(R)$ . Then

- $\bullet \ \, \operatorname{Hom}(H,i_H):\operatorname{End}(H)\longrightarrow \operatorname{Hom}(H,D^2(H)) \text{ is an isomorphism.}$
- 2 There is a canonical isomorphism

$$\gamma_H : \operatorname{Hom}(H, D^2(H)) \longrightarrow D(H_{\mathfrak{a}}^h(D(H))).$$

- 3  $\mu_H: R \longrightarrow \operatorname{End}(H)$  is an isomorphism of *R*-algebras.
- Consequently there is a canonical isomorphism

$$\gamma_H$$
oHom(H, i<sub>H</sub>) $o\mu_H : R \longrightarrow End(H)$ .



Theorem: Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H^{\ell}_{\mathfrak{a}}(R)=0$  for every  $\ell \neq h=\mathrm{height}(\mathfrak{a})$ . Set  $H:=H^{h}_{\mathfrak{a}}(R)$ . Then

- $\bullet \ \operatorname{Hom}(H,i_H) : \operatorname{End}(H) \longrightarrow \operatorname{Hom}(H,D^2(H)) \text{ is an isomorphism.}$
- 2 There is a canonical isomorphism

$$\gamma_H : \operatorname{Hom}(H, D^2(H)) \longrightarrow D(H^h_{\mathfrak{a}}(D(H))).$$

- $\bullet$   $\mu_H: R \longrightarrow \operatorname{End}(H)$  is an isomorphism of R-algebras.
- Onsequently there is a canonical isomorphism

$$\gamma_H$$
**o**Hom(H, i<sub>H</sub>)**o** $\mu_H : R \longrightarrow \text{End}(H)$ .



Theorem: Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H^{\ell}_{\mathfrak{a}}(R)=0$  for every  $\ell \neq h=\mathrm{height}(\mathfrak{a})$ . Set  $H:=H^{h}_{\mathfrak{a}}(R)$ . Then

- $\bullet \ \, \operatorname{Hom}(H, i_H) : \operatorname{End}(H) \longrightarrow \operatorname{Hom}(H, D^2(H)) \text{ is an isomorphism.}$
- 2 There is a canonical isomorphism

$$\gamma_H : \operatorname{Hom}(H, D^2(H)) \longrightarrow D(H^h_{\mathfrak{a}}(D(H))).$$

- **3**  $\mu_H : R \longrightarrow \operatorname{End}(H)$  is an isomorphism of R-algebras.
- Consequently there is a canonical isomorphism

$$\gamma_H$$
**o**Hom(H, i<sub>H</sub>) $o\mu_H : R \longrightarrow End(H)$ .



Theorem: Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H_{\mathfrak{a}}^{\ell}(R)=0$  for every  $\ell \neq h=\mathrm{height}(\mathfrak{a})$ . Set  $H:=H_{\mathfrak{a}}^{h}(R)$ . Then

- $\bullet \ \, \operatorname{Hom}(H, i_H) : \operatorname{End}(H) \longrightarrow \operatorname{Hom}(H, D^2(H)) \text{ is an isomorphism.}$
- 2 There is a canonical isomorphism

$$\gamma_H : \operatorname{Hom}(H, D^2(H)) \longrightarrow D(H^h_{\mathfrak{a}}(D(H))).$$

- **3**  $\mu_H : R \longrightarrow \operatorname{End}(H)$  is an isomorphism of R-algebras.
- 4 Consequently there is a canonical isomorphism

$$\gamma_H$$
**o**Hom(H, i<sub>H</sub>)**o** $\mu_H : R \longrightarrow \text{End}(H)$ .



Theorem: Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H_{\mathfrak{a}}^{\ell}(R) = 0$  for every  $\ell \neq h = \operatorname{height}(\mathfrak{a})$ . Set  $H := H_{\mathfrak{a}}^{h}(R)$ . Then

- $\bullet \ \, \operatorname{Hom}(H, i_H) : \operatorname{End}(H) \longrightarrow \operatorname{Hom}(H, D^2(H)) \text{ is an isomorphism.}$
- 2 There is a canonical isomorphism

$$\gamma_H : \operatorname{Hom}(H, D^2(H)) \longrightarrow D(H^h_{\mathfrak{a}}(D(H))).$$

- **3**  $\mu_H : R \longrightarrow \operatorname{End}(H)$  is an isomorphism of R-algebras.
- 4 Consequently there is a canonical isomorphism

$$\gamma_H$$
**o**Hom(H, i<sub>H</sub>)**o** $\mu_H : R \longrightarrow \text{End}(H)$ .



Theorem: Let  $(R,\mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H^{\ell}_{\mathfrak{a}}(R)=0$  for every  $\ell \neq h=\mathrm{height}(\mathfrak{a})\geqslant 1$ ; let  $\underline{\mathbf{x}}:=x_1,\ldots,x_h\in\mathfrak{a}$  be an R-regular sequence. Set  $D:=D(H^h_{\mathfrak{a}}(R))$ .

- $\mathbf{2}$   $\mathbf{x}$  is a sequence on D.
- 3  $D/\underline{x}D \xrightarrow{I_D,\underline{X}} H_{XR}^h(D)$  is injective.
- **4**  $J_{X,a} = R$ .



Theorem: Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H^{\ell}_{\mathfrak{a}}(R)=0$  for every  $\ell \neq h=\mathrm{height}(\mathfrak{a})\geqslant 1$ ; let  $\underline{\mathbf{x}}:=x_1,\ldots,x_h\in\mathfrak{a}$  be an R-regular sequence. Set  $D:=D(H^h_{\mathfrak{a}}(R))$ .

- $\mathbf{2}$   $\mathbf{x}$  is a sequence on D.
- 3  $D/\underline{x}D \xrightarrow{I_D,\underline{X}} H_{XR}^h(D)$  is injective.
- **4**  $J_{X,n} = R$ .

Theorem: Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H_{\mathfrak{a}}^{\ell}(R) = 0$  for every  $\ell \neq h = \operatorname{height}(\mathfrak{a}) \geqslant 1$ ; let  $\underline{\mathbf{x}} := x_1, \ldots, x_h \in \mathfrak{a}$  be an R-regular sequence. Set  $D := D(H_{\mathfrak{a}}^h(R))$ .

- $2 \times x$  is a sequence on D.
- 4  $J_{X,a} = R$ .



Theorem: Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H_{\mathfrak{a}}^{\ell}(R) = 0$  for every  $\ell \neq h = \operatorname{height}(\mathfrak{a}) \geqslant 1$ ; let  $\underline{\mathbf{x}} := x_1, \ldots, x_h \in \mathfrak{a}$  be an R-regular sequence. Set  $D := D(H_{\mathfrak{a}}^h(R))$ .

- $\mathbf{2}$   $\mathbf{x}$  is a sequence on D.
- $\mathbf{J}_{\mathsf{X},\mathfrak{a}}=\mathsf{R}.$



Theorem: Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $H_{\mathfrak{a}}^{\ell}(R) = 0$  for every  $\ell \neq h = \operatorname{height}(\mathfrak{a}) \geqslant 1$ ; let  $\underline{\mathbf{x}} := x_1, \ldots, x_h \in \mathfrak{a}$  be an R-regular sequence. Set  $D := D(H_{\mathfrak{a}}^h(R))$ .

- $\mathbf{2}$   $\mathbf{x}$  is a sequence on D.
- $\mathbf{J}_{\mathsf{X},\mathfrak{a}}=\mathsf{R}.$



Question. Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R,  $h \in \mathbb{N}$ ; assume that  $\underline{\mathbf{x}} := x_1, \ldots, x_h \in \mathfrak{a}$  is an R-regular sequence. When

$$J_{\mathbf{X},\mathfrak{a},R}:=0.$$

## Schenzel

Theorem. Let  $(R, \mathfrak{m})$  be a Noetherian local Gorenstien ring of dimension n and  $\mathfrak{a}$  an ideal of R such that  $\dim R/\mathfrak{a}=n-c$ . Then there is a natural isomorphism

$$\operatorname{End}_R(H_{\mathfrak{q}}^c(R)) \cong \operatorname{Ext}_R^c(H_{\mathfrak{q}}^c(R), R)$$

# Schenzel, Trung and Coung: 1978

Recall that we say a sequence of elements  $x_1, \ldots, x_k$  of  $\mathfrak a$  is an  $\mathfrak a$ -filter regular sequence on M if

$$X_j \notin \bigcup_{\mathfrak{p} \in \mathsf{Ass}_{\mathcal{R}}(\frac{M}{(x_1, \dots, x_{j-1})M}) \setminus V(\mathfrak{a})} \mathfrak{p}$$

for 
$$i = 1, ..., k$$
.



Lemma. Let R is Noetherian, M is a finitely generated. If  $x_1, \ldots, x_n$  be an  $\alpha$ -filter regular sequence on M, then there is an element  $x_{n+1} \in \alpha$  such that  $x_1, \ldots, x_n, x_{n+1}$  is an  $\alpha$ -filter regular sequence on M.

Lemma. Let n > 1 and  $x_1, \dots, x_n$  be an  $\alpha$ -filter regular sequence on M. Then

$$H^i_{\mathfrak{a}}(M) \cong \left\{ \begin{array}{ll} H^i_{(x_1, \dots, x_n)}(M) & \text{for } 0 \leq i < n, \\ H^{i-n}_{\mathfrak{a}}(H^n_{(x_1, \dots, x_n)}(M)) & \text{for } n \leq i. \end{array} \right.$$

Lemma. Let R is Noetherian, M is a finitely generated. If  $x_1, \ldots, x_n$  be an  $\alpha$ -filter regular sequence on M, then there is an element  $x_{n+1} \in \alpha$  such that  $x_1, \ldots, x_n, x_{n+1}$  is an  $\alpha$ -filter regular sequence on M.

**Lemma.** Let n > 1 and  $x_1, \ldots, x_n$  be an  $\alpha$ -filter regular sequence on M. Then

$$H^i_{\mathfrak{a}}(M) \cong \left\{ \begin{array}{ll} H^i_{(x_1, \dots, x_n)}(M) & \text{for } 0 \leq i < n, \\ H^{i-n}_{\mathfrak{a}}(H^n_{(x_1, \dots, x_n)}(M)) & \text{for } n \leq i. \end{array} \right.$$

**Proposition.** For a non-negative integer n and an  $\mathfrak{a}$ -filter regular sequence  $x_1, \ldots, x_{n+1} \in \mathfrak{a}$  on M, there exists an exact sequence

$$0 \longrightarrow H_{\mathfrak{a}}^{n}(M) \longrightarrow H_{(x_{1},...,x_{n})}^{n}(M) \longrightarrow (H_{(x_{1},...,x_{n})}^{n}(M))_{x_{n+1}}$$
$$\longrightarrow H_{(x_{1},...,x_{n+1})}^{n+1}(M) \longrightarrow 0.$$

**Proposition.** Let n be a non-negative integer and  $x_1, \ldots, x_n$  be an  $\alpha$ -filter regular sequence on M. Let T be an  $\alpha$ -torsion R-module. Then

$$\operatorname{Hom}_R(T,H^n_{\mathfrak a}(M)) \cong \operatorname{Hom}_R(T,H^n_{(x_1,\ldots,x_n)}(M)).$$

#### In particular

$$\operatorname{End}_R(H^n_{\mathfrak{a}}(M)) \cong \operatorname{Hom}_R(H^n_{\mathfrak{a}}(M), H^n_{(x_1, \dots, x_n)}(M)).$$

Theorem.Let  $\mathfrak{a}$  be a proper ideal of R and  $n := \operatorname{grade}_R \mathfrak{a}$ . Then, for every  $\mathfrak{a}$ -torsion R-module T, we have the following isomorphism

$$\operatorname{Hom}_R(T, H^n_{\mathfrak{a}}(R)) \cong \operatorname{Ext}_R^n(T, R).$$

In particular

$$\operatorname{End}_R(H_{\mathfrak{a}}^n(R)) \cong \operatorname{Ext}_R^n(H_{\mathfrak{a}}^n(R), R)$$

### Theorem: Let $\mathfrak{a}$ be a proper ideal of R such that

 $n:=\operatorname{grade}_R\mathfrak{a}=\operatorname{cd}(\mathfrak{a},R).$  Let  $\operatorname{Ext}_R^i(R_Z,R)=0$  for all  $i\in\mathbb{N}$  and  $z\in\mathfrak{a}.$  Then

- End<sub>R</sub>( $H_a^n(R)$ ) is a homomorphic image of R.
- 2 If moreover  $\operatorname{Hom}_R(R_z, R) = 0$  for all  $z \in \mathfrak{a}$ , then  $\operatorname{End}_R(H_n^n(R)) \cong R$  and so  $\mu_{H^n(R)}$  is bijective.

## Theorem: Let a be a proper ideal of R such that

 $n:=\operatorname{grade}_R\mathfrak{a}=\operatorname{cd}(\mathfrak{a},R).$  Let  $\operatorname{Ext}_R^i(R_Z,R)=0$  for all  $i\in\mathbb{N}$  and  $z\in\mathfrak{a}.$  Then

- End<sub>R</sub>( $H_a^n(R)$ ) is a homomorphic image of R.
- If moreover  $\operatorname{Hom}_R(R_z,R)=0$  for all  $z\in\mathfrak{a}$ , then  $\operatorname{End}_R(H^n_\mathfrak{a}(R))\cong R$  and so  $\mu_{H^n_\mathfrak{a}(R)}$  is bijective.

## Theorem: Let a be a proper ideal of R such that

 $n:=\operatorname{grade}_R\mathfrak{a}=\operatorname{cd}(\mathfrak{a},R).$  Let  $\operatorname{Ext}_R^i(R_Z,R)=0$  for all  $i\in\mathbb{N}$  and  $z\in\mathfrak{a}.$  Then

- End<sub>R</sub>( $H_a^n(R)$ ) is a homomorphic image of R.
- If moreover  $\operatorname{Hom}_R(R_z,R)=0$  for all  $z\in\mathfrak{a}$ , then  $\operatorname{End}_R(H^n_\mathfrak{a}(R))\cong R$  and so  $\mu_{H^n_\mathfrak{a}(R)}$  is bijective.

Corollary. Let  $(R, \mathfrak{m})$  be a Noetherian local complete ring and  $\mathfrak{a}$  an ideal of R such that  $n := \operatorname{grade}_R \mathfrak{a} = \operatorname{cd}(\mathfrak{a}, R)$ . Set  $H := H_{\mathfrak{a}}^n(R)$ . Then

$$\mu_H: R \longrightarrow \operatorname{End}_R(H)$$

is an isomorphism of R-algebras.

## Khashyarmanesh and Khosh-Ahang

Theorem. Let F be an R-linear covariant functor from  $\mathcal{C}(R)$  to itself such that for every R-module L, F(L) is  $\mathfrak{a}$ -torsion. Also let  $c \in \mathbb{N}_0$  and  $\mathfrak{a}$  be an ideal of R such that  $\mathfrak{a}M \neq M$  and that  $c \leqslant \operatorname{grade}(\mathfrak{a}, M)$ . Then

$$\mathcal{R}^0 F(H^c_{\mathfrak{a}}(M)) \cong \mathcal{R}^c F(M).$$

Theorem. Let F be an R-linear covariant functor from  $\mathcal{C}(R)$  to itself such that for every R-module L, F(L) is  $\mathfrak{a}$ -torsion. Suppose that  $\mathfrak{a}$  is an ideal of R and M is a finitely generated R-module such that  $\mathfrak{a}M \neq M$  and that  $c := \operatorname{cd}(\mathfrak{a}, M) = \operatorname{grade}(\mathfrak{a}, M)$ . Then

$$\mathcal{R}^i F(H^c_{\mathfrak{a}}(M)) \cong \mathcal{R}^{i+c} F(M)$$

for all  $i \in \mathbb{N}_0$ .

Theorem. Let M be a finitely generated R-module,  $\mathfrak{a}$  be an ideal of R such that  $\mathfrak{a}M \neq M$  and  $c := \operatorname{cd}(\mathfrak{a}, M) = \operatorname{grade}(\mathfrak{a}, M)$ . Then, for every ideal  $\mathfrak{b}$  of R with  $\mathfrak{b} \supseteq \mathfrak{a}$ ,

- (i)  $H^i_{\mathfrak{b}}(H^c_{\mathfrak{a}}(M)) \cong H^{i+c}_{\mathfrak{b}}(M)$ , and;
- (ii)  $\operatorname{Ext}_R^i(R/\mathfrak{b}, H_{\mathfrak{a}}^c(M)) \cong \operatorname{Ext}_R^{i+c}(R/\mathfrak{b}, M)$

for all  $i \in \mathbb{N}_0$ .

# Theorem. Let $(R, \mathfrak{m})$ be a Gorenstein local ring and $\mathfrak{a}$ be a cohomological complete intersection ideal of R. Set

 $c := \operatorname{cd}(\mathfrak{a}, R)$  and  $d := \dim_R R/\mathfrak{a}$ . Then

- (i)  $H^d_{\mathfrak{m}}(H^c_{\mathfrak{a}}(R)) \cong E(R/\mathfrak{m})$ ,
- (ii)  $\operatorname{Ext}_R^d(R/\mathfrak{m}, H_{\mathfrak{a}}^c(R)) \cong E(R/\mathfrak{m})$ , and;
- (iii)  $H_{\mathfrak{m}}^{i}(H_{\mathfrak{a}}^{c}(R)) = 0 = \operatorname{Ext}_{R}^{i}(R/\mathfrak{m}, H_{\mathfrak{a}}^{c}(R))$  for all  $i \neq d$ .

Theorem. Let  $\mathfrak a$  and  $\mathfrak b$  be ideals of an arbitrary commutative Noetherian ring R such that  $\mathfrak b \supseteq \mathfrak a$ ,  $\mathfrak a M \ne M$  and  $c := \operatorname{grade}(\mathfrak a, M)$ . Then

- (i) we have a monomorphism from  $H_h^c(M)$  to  $H_a^c(M)$ , and;
- (ii) there exists a natural homomorphism from  $\operatorname{End}(H^c_{\mathfrak{a}}(M))$  to  $\operatorname{End}(H^c_{\mathfrak{b}}(M))$ .

## Sharp and Zakeri\*

## Module of generalized fractions

Let M be an R-module. The construction of a module of generalized fractions of M requires a (positive integer nand a) triangular subset  $U \subseteq \mathbb{R}^n$ ; the construction produces a module  $U^{-n}M$ , called the module of generalized fractions of M with respect to U, whose elements, called generalized fractions, have the form  $\frac{m}{(u_1,\ldots,u_n)}$ , where  $m\in M$  and  $(u_1,\ldots,u_n)\in U$ .

[\*] Sharp, R. Y. and Zakeri, H., Modules of generalized fractions, Mathematika 29 (1982), no. 1, 32-41.



#### O'Carroll\*

The concept of a chain of triangular subsets on R is explained in [\*]. Such a chain  $\mathcal{U} = (U_i)_{i \in \mathbb{N}}$  determines a complex of modules of generalized fractions

$$0 \xrightarrow{d^{-1}} M \xrightarrow{d^0} U_1^{-1}M \longrightarrow \ldots \longrightarrow U_i^{-i}M \xrightarrow{d^i} U_{i+1}^{-i-1}M \longrightarrow \ldots,$$

in which  $d^0(m)=m/(1)$  for all  $m\in M$  and  $d^i(m/(u_1,\ldots,u_i))=m/(u_1,\ldots,u_i,1)$  for all  $i\in\mathbb{N}$ ,  $m\in M$  and  $(u_1,\ldots,u_i)\in U_i$ . We shall denote this complex by  $C(\mathcal{U},M)$ .

[\*] O'Carroll, L., On the generalized fractions of Sharp and Zakeri, J. London Math. Soc. (2) 28 (1983), no. 3, 417-427.



#### notations

Let  $\underline{x} := x_1, \dots, x_n$  be a sequence of elements of R. For each  $i \in \mathbb{N}$ , set

$$U(\underline{x})_i := \{(x_1^{\alpha_1}, \dots, x_i^{\alpha_i}) : \text{ there exists } j \text{ with } 0 \leqslant j \leqslant i \text{ such that}$$
  
 $\alpha_1, \dots, \alpha_j \in \mathbb{N} \text{ and } \alpha_{j+1} = \dots = \alpha_i = 0\},$ 

where  $x_r$  is interpreted as 1 whenever r > n. It is easy to see that, for each  $i \in \mathbb{N}$ ,  $U(\underline{x})_i$  is a triangular subset of  $R^i$ . We use  $\mathcal{R}(\underline{x})$  to denote the family  $(U(\underline{x})_i)_{i \in \mathbb{N}}$ . Hence  $\mathcal{R}(\underline{x})$  is a chain of triangular subsets on R. Write the associated complex  $C(\mathcal{R}(\underline{x}), M)$  as

$$0 \xrightarrow{d_{\underline{X},M}^{-1}} M \xrightarrow{d_{\underline{X},M}^{0}} U(\underline{x})_{1}^{-1} M \longrightarrow \dots \xrightarrow{d_{\underline{X},M}^{i}} U(\underline{x})_{i+1}^{-i-1} M \longrightarrow \dots$$

Proposition Let  $\mathfrak{a}$  be a proper ideal of a Noetherian local ring R. Let  $\underline{x} := x_1, \dots, x_n (n > 0)$  be a regular sequence on M contained in  $\mathfrak{a}$ . Then there exists an exact sequence

$$0 \longrightarrow J_{\underline{X},\mathfrak{a},M} \longrightarrow D(D(M)) \longrightarrow D(H^{n-1}_{\underline{X}R}(D(\operatorname{Ker} d^n_{\underline{Y},M})))$$

for every  $x_{n+1} \in \mathfrak{a}$  such that  $\underline{y} := x_1, \dots, x_n, x_{n+1}$  is an  $\mathfrak{a}$ -filter regular sequence on M.

Theorem Let  $(R, \mathfrak{m})$  be a Noetherian local ring and  $\mathfrak{a}$  be a proper ideal of R. Let  $\underline{x} := x_1, \ldots, x_n (n > 0)$  be a regular sequence on M in  $\mathfrak{a}$ . Suppose that there exists  $x_{n+1} \in \mathfrak{a}$  such that  $\underline{y} := x_1, \ldots, x_n, x_{n+1}$  is an  $\mathfrak{a}$ -filter regular sequence on M and  $H^n_{\underline{X}R}(D(U(\underline{y})_{n+1}^{-n-1}M)) = 0$ . Then

$$J_{\underline{X},\mathfrak{a},M}\cong D(D(M)).$$

Thanks For Your Patience