# Prime Submodules and Spectral Spaces

#### D. Hassanzadeh-lelekaami

University of Guilan

8th Seminar on Commutative Algebra and Related Topics School of Mathematics, IPM, Tehran, Iran November 30 and December 1, 2011

> joint work with Ahmad Abbasi

## INTRODUCTION

- We establish conditions for the prime spectrum of an R-module M to be Noetherian and spectral space, with respect to the different topologies.
- Another main subject of this paper is presentation of conditions under which a module is top.
- We present some results about minimal prime submodules of certain modules.



## **PRELIMINARIES**

Let M be an R-module.

- A submodule N of an R-module M is said to be **prime** if  $N \neq M$  and whenever  $rm \in N$  (where  $r \in R$  and  $m \in M$ ), then  $r \in (N :_R M)$  or  $m \in N$  (see [Lu84]).
- The set of all prime submodules of M is called the **prime spectrum** of M and denoted by  $\operatorname{Spec}(M)$ . Throughout this paper X denotes the prime spectrum  $\operatorname{Spec}(M)$  of M.
- Every maximal submodule of M is prime. The set of all maximal submodules of M is denoted by Max(M).

ullet For any submodule N of M we define

$$V(N) = \{ P \in X \mid (P : M) \supseteq (N : M) \}$$

and

$$V^*(N) = \{ P \in X \mid P \supseteq N \}.$$

Set

$$\mathbf{Z}(M) = \{V(N) \mid N \le M\}$$

and

$$\mathbf{Z}^*(M) = \{ V^*(N) \, | \, N \le M \}.$$

Then the elements of the set Z(M) satisfy the axioms for closed sets in a topological space X (see [Lu99]). The resulting topology due to Z(M) is called the **Zariski topology relative to** M and denoted by  $\tau$ .

There is another topology,  $\tau^*$  say, on X due to  $\mathbf{Z}^*(M)$  as the collection of all closed sets **if and only if**  $\mathbf{Z}^*(M)$  is closed under finite union. When this is the case, we call the topology  $\tau^*$  the **quasi-Zariski topology** on  $\operatorname{Spec}(M)$  and M is called a **top** module (see [MMS97]).

- A topological space *Y* is said to be **Noetherian** if the open subsets of *Y* satisfy the ascending chain condition.
- A topological space Y is said to be **irreducible** if  $Y \neq \emptyset$  and if every pair of non-empty open sets in Y intersect.
- Let Y be a closed subset of a topological space. An element  $y \in Y$  is called a **generic point** of Y if  $Y = Cl(\{y\})$ .

- Following M. Hochster [Hoc69], we say that a topological space Y is a **spectral space** in the case where Y is homeomorphic to  $\operatorname{Spec}(S)$ , with the Zariski topology, for some ring S.
- Spectral spaces have been characterized by Hochster [Hoc69, Proposition 4] as the topological spaces Y which satisfy the following conditions:
  - 1. Y is a  $T_0$ -space<sup>a</sup>;
  - 2. Y is quasi-compact<sup>b</sup>;
  - 3. the quasi-compact open subsets of Y are closed under finite intersections and form an open base<sup>c</sup>;
  - 4. each irreducible closed subset of *Y* has a generic point.

<sup>&</sup>lt;sup>a</sup>A topological space is  $T_0$  if and only if the closures of distinct points are distinct.

<sup>&</sup>lt;sup>b</sup>A topological space Y is *quasi-compact* if every collection of open subsets whose union is Y contains a finite subcollection whose union is Y.

<sup>&</sup>lt;sup>c</sup> Let  $(Y, \gamma)$  be a topological space. Then A *base* for the topology  $\gamma$  is a collection B of subsets of Y such that  $B \subseteq \gamma$  and for all  $U \subseteq \gamma$ , U is the union of some collection of sets taken from B.

# MAIN RESULTS

## **Definition**

Let M be an R-module. M is called **strongly top** if for every submodule N of M there exists an ideal I of R such that  $V^*(N) = V^*(IM)$ .

- Every multiplication<sup>a</sup> module is a strongly top module.
- Every strongly top R-module is a top module.
- It is not true that every top module is strongly top, for instance, the  $\mathbb{Z}$ -module  $\mathbb{Q} \oplus \mathbb{Z}_p$ , (p is a prime integer), is a top module which is not strongly top.

<sup>&</sup>lt;sup>a</sup>An R-module M is said to be a *multiplication* module (see [Bar81] and [EBS88]) if every submodule N of M is of the form IM for some ideal I of R.

### Remark

- An R-module M is called **primeful** if either  $M=(\mathbf{0})$  or  $M \neq (\mathbf{0})$  and the map  $\psi: \operatorname{Spec}(M) \to \operatorname{Spec}(\frac{R}{\operatorname{Ann}(M)})$  defined by  $\psi(L) = (L:M)/\operatorname{Ann}(M)$  for every  $L \in \operatorname{Spec}(M)$  be a surjective map (see [Lu07]). (e.g. finitely generated or faithfully flat modules.)
- Let M be an R-module. For every  $x \in M$ , we define  $c(x) := \bigcap \{I | I \text{ is an ideal of } R \text{ and } x \in IM \}$ . A module M is called a **content** R-module if, for every  $x \in M$ ,  $x \in c(x)M$  (see [OR72]). (e.g. projective or faithful multiplication modules.)
- $\operatorname{rad}(\mathbf{0}) = \bigcap_{P \in \operatorname{Spec}(M)} P$ .

Suppose that M is an R-module.

- 1. Let M be strongly top. If either M is primeful or R is Noetherian, then  $(X,\tau^*)$  is a **spectral space**. (This generalizes [ATOS10b, Theorem 4.9].)
- 2. Let R be a one-dimensional integral domain and let M be a content R-module such that  $T(M) \subseteq \operatorname{rad}(\mathbf{0})$  and  $(X,\tau)$  is a  $T_0$ -space. Then M is **top**. Moreover, if  $\operatorname{Spec}(R)$  is Noetherian, then  $(X,\tau^*)$  is **spectral**.
- 3. If M is content and weak multiplication<sup>b</sup>, then M is **top**. Moreover, if  $\operatorname{Spec}(R)$  is Noetherian, then  $(X, \tau^*)$  is **spectral**.

<sup>&</sup>lt;sup>a</sup>Here T(M) is the torsion submodule of M.

<sup>&</sup>lt;sup>b</sup>an R-module M is called a weak multiplication if every prime submodule P of M is of the form IM for some ideal I of R (see [AS95] and [Azi03]).

Suppose that M is an R-module.

- 1. Let R be a one-dimensional integral domain and let M be an R-module such that  $T(M) \subseteq \operatorname{rad}(\mathbf{0})$ . If  $(X,\tau)$  is a  $T_0$ -space and the intersection of every infinite number of maximal submodules of M is zero, then M is **top** and  $(X,\tau^*)$  is a **spectral space**. (This is a generalization of [ATOS10b, Theorem 4.11(d)].)
- 2. Let R be a one-dimensional integral domain with Noetherian spectrum and let M be a non-faithful top R-module. Then  $(X, \tau^*)$  is a **spectral space**.

Suppose that M is an R-module.

- 1. If M is distributive<sup>a</sup>, then M is **top**.
- 2. If R is a one-dimensional integral domain with Noetherian spectrum,  $T(M) \subseteq rad(\mathbf{0})$  and  $(X, \tau)$  is a  $T_0$ -space, then M is **top**.
- 3. If M is weak multiplication and R is a one-dimensional integral domain with Noetherian spectrum, then M is top. (This is a generalization of [ATOS10b, Theorem 3.18].)

<sup>&</sup>lt;sup>a</sup>An R-module M is called *distributive* if the lattice of its submodules is distributive, i.e.,  $A \cap (B+C) = (A \cap B) + (A \cap C)$  and  $A + (B \cap C) = (A+B) \cap (A+C)$  for all submodules A, B and C of M (see [Bar81]).

The next example shows that there is a  $\mathbb{Z}$ -module M such that  $(X, \tau)$  is  $T_0$  and  $T(M) \subseteq \operatorname{rad}(\mathbf{0})$ , but M is not weak multiplication.

## **Example**

Consider the  $\mathbb{Z}$ -module  $M=\mathbb{Z}(p^{\infty})\oplus\mathbb{Z}$ . For every prime ideal  $\mathfrak{p}\in\operatorname{Spec}(\mathbb{Z})$  we have  $|\operatorname{Spec}_{\mathfrak{p}}(M)|\leq 1$  and  $T(M)=\operatorname{rad}(\mathbf{0})$ . So, by the above Theorem, M is a top module. We note that M is **not** weak multiplication.

## **Corollary**

The R-module M is **top** in each of the following cases:

- 1. R is a Dedekind domain and M is weak multiplication;
- 2. R is a one-dimensional integral domain with Noetherian spectrum and  $\mathrm{Spec}(M) = \mathrm{Max}(M)$ ;
- 3. M is content and Spec(M) = Max(M);

## Corollary

Let M be an R-module. Then  $(X, \tau^*)$  is a **spectral space** in each of the following cases:

- 1. R has Noetherian spectrum and M is multiplication;
- **2**. M is content,  $\operatorname{Spec}(M) = \operatorname{Max}(M)$  and R is Noetherian;

## **Proposition**

Let M be a top R-module such that  $(X, \tau^*)$  is a Noetherian space. Then M has only finitely many **minimal prime submodules**.

## Corollary

In each of the following cases, the R-module M has only finitely many **minimal prime submodules**.

- 1. M is strongly top and R is Noetherian;
- 2. R is a one-dimensional integral domain with Noetherian spectrum and M is a content R-module such that  $T(M) \subseteq \operatorname{rad}(\mathbf{0})$  and  $(X, \tau)$  is a  $T_0$ -space;
- 3. M is content and weak multiplication and Spec(R) is Noetherian;
- 4. R is a one-dimensional integral domain and M is an R-module such that  $T(M) \subseteq \operatorname{rad}(\mathbf{0})$  and  $(X,\tau)$  is a  $T_0$ -space, and the intersection of every infinite number of maximal submodules of M is zero;

In the sequel, we present conditions under which  $(X, \tau)$  is a spectral space.

## **Proposition**

Let M be an R-module. Then  $(X, \tau)$  is a **Noetherian** topological space in each of the following cases:

- 1. R satisfies ACC on radical ideals;
- 2. *M* satisfies *ACC* on radical submodules.

## Remark

It is shown in [Lu10, Theorem 3.3], whenever M is a **primeful** R-module and  $\operatorname{Spec}(R/\operatorname{Ann}(M))$  is a Noetherian topological space, then  $(X,\tau)$  is a Noetherian topological space. We generalize this result in the next corollary.

## **Corollary**

Let M be an R-module. Then  $(X, \tau)$  is a **Noetherian** topological space in each of the following cases:

- 1. Spec(R) is a Noetherian topological space;
- 2. R is a Laskerian ring;
- 3. M is an Artinian R-module;
- 4. For every submodule N of M there exists a finitely generated submodule L of N such that  $\mathrm{rad}(N) = \mathrm{rad}(L)$ .

#### Remark

Some examples of non-Noetherian and non-primeful modules with Noetherian spectrum were introduced in [Lu10, Example 3.3].

For example, it is shown that the primeful  $\mathbb{Z}$ -module  $M=\prod_{p\in\Omega}\mathbb{Z}/p\mathbb{Z}$ , where  $\Omega$  is the set of all prime integers p, the non-primeful and non-Noetherian  $\mathbb{Z}$ -modules  $M=\bigoplus_{p\in\Omega}\mathbb{Z}/p\mathbb{Z}$  and  $\mathbb{Q}$  have Noetherian spectrum.

But, by the above Corollary, these  $\mathbb{Z}$ -modules have Noetherian spectrum. So, we can make plentiful examples of modules M such that  $(X,\tau)$  is a Noetherian topological space without M being either primeful or Noetherian.

#### Remark

There are several examples of modules with Noetherian spectrum in [ATOS10a, Table of Examples 3.2] which the Noetherianness of its spectrum is **trivial** by the above Corollary.

Let M be an R-module.

- 1. Assume that R is a ring with Noetherian spectrum and M is **flat**. Then  $(X, \tau)$  is a **spectral space** if and only if it is a  $T_0$ -space.
- 2. If R is an integral domain with Noetherian spectrum and M is **torsion-free distributive**, then  $(X, \tau)$  is a **spectral space**.
- 3. If R is a Dedekind domain and M is torsion-free weak multiplication, then  $(X, \tau)$  is a spectral space.

Let M be an R-module.

- 1. If R is a one-dimensional integral domain, M has at least one (0)-prime submodule and  $(X,\tau)$  is a Noetherian space, then  $(X,\tau)$  is a **spectral space** if and only if it is a  $T_0$ -space.
- 2. Let M be a **primeful** R -module. Then  $(X, \tau)$  is a **spectral space** in each of the following cases:
  - (a) M is strongly top;
  - (b) M is distributive.

## **Example**

Consider the non-torsion top  $\mathbb{Z}$ -module

$$M = \mathbb{Q} \oplus (\bigoplus_{p} \frac{\mathbb{Z}}{p\mathbb{Z}}).$$

M has one (0)-prime submodule, T(M). The topological space  $(X,\tau)$  is Noetherian (since  $\mathbb{Z}$  is Noetherian) and  $T_0$ . Consequently,  $(X,\tau)$  is a **spectral space** by the last theorem.

# THANK YOU FOR YOUR ATTENTION

#### References

- [AS95] S. Abu-Saymeh, *On dimensions of finitely generated modules*, Comm. Algebra **23** (1995), no. 3, 1131–1144.
- [ATOS10a] H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, *On the prime spectrum of a module and Zariski topologies*, Comm. Algebra **38** (2010), no. 12, 4461 4475.
- [ATOS10b] \_\_\_\_\_, On the prime spectrum of X-injective modules, Comm. Algebra **38** (2010), no. 7, 2606 2621.
- [Azi03] A. Azizi, Weak multiplication modules, Czechoslovak Math. J. 53 (2003), no. 128, 529–534.
- [Bar81] A. Barnard, *Multiplication modules*, J. Algebra **71** (1981), no. 1, 174–178.
- [EBS88] Z.A. El-Bast and P.F. Smith, *Multiplication modules*, Comm. Algebra **16** (1988), no. 4, 755–779.
- [Hoc69] M. Hochster, *Prime ideal structure in commutative rings*, Trans. Amer. Math. Soc. **142** (1969), 43–60.
- [Lu84] Chin-Pi Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli 33 (1984), no. 1, 61–69.
- [Lu99] \_\_\_\_\_, The Zariski topology on the prime spectrum of a module, Houston J. Math. **25** (1999), no. 3, 417–432.
- [Lu07] \_\_\_\_\_, *A module whose prime spectrum has the surjective natural map*, Houston J. Math. **33** (2007), no. 1, 125–143.
- [Lu10] , *Modules with Noetherian spectrum*, Comm. Algebra **38** (2010), no. 3, 807–828.
- [MMS97] R.L. McCasland, M.E. Moore, and P.F. Smith, *On the spectrum of a module over a commutative ring*, Comm. Algebra **25** (1997), no. 1, 79–103.
- [OR72] J. Ohm and D. E. Rush, *Content modules and algebras*, Math. Scand. **31** (1972), 49–68.