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INTRODUCTION

• We establish conditions for the prime spectrum of an R-module
M to be Noetherian and spectral space, with respect to the
different topologies.

• Another main subject of this paper is presentation of conditions
under which a module is top.

• We present some results about minimal prime submodules of
certain modules.
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Throughout this paper, R is a commutative ring with identity
and all R-modules are unitary.
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PRELIMINARIES
Let M be an R-module.

• A submodule N of an R-module M is said to be prime if
N 6= M and whenever rm ∈ N (where r ∈ R and m ∈ M ), then
r ∈ (N :R M) or m ∈ N (see [Lu84]).

• The set of all prime submodules of M is called the prime spec-
trum of M and denoted by Spec(M). Throughout this paper
X denotes the prime spectrum Spec(M) of M .

• Every maximal submodule of M is prime. The set of all maximal
submodules of M is denoted by Max(M).
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• For any submodule N of M we define

V (N) = {P ∈ X | (P : M) ⊇ (N : M)}

and
V ∗(N) = {P ∈ X |P ⊇ N}.

Set
Z(M) = {V (N) |N ≤M}

and
Z∗(M) = {V ∗(N) |N ≤M}.
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Then the elements of the set Z(M) satisfy the axioms for closed
sets in a topological space X (see [Lu99]). The resulting topology
due to Z(M) is called the Zariski topology relative to M and
denoted by τ .

There is another topology, τ ∗ say, on X due to Z∗(M) as the col-
lection of all closed sets if and only if Z∗(M) is closed under finite
union. When this is the case, we call the topology τ ∗ the quasi-
Zariski topology on Spec(M) and M is called a top module (see
[MMS97]).
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• A topological space Y is said to be Noetherian if the open
subsets of Y satisfy the ascending chain condition.

• A topological space Y is said to be irreducible if Y 6= ∅ and if
every pair of non-empty open sets in Y intersect.

• Let Y be a closed subset of a topological space. An element
y ∈ Y is called a generic point of Y if Y = Cl({y}).
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• Following M. Hochster [Hoc69], we say that a topological space
Y is a spectral space in the case where Y is homeomorphic
to Spec(S), with the Zariski topology, for some ring S.

• Spectral spaces have been characterized by Hochster [Hoc69,
Proposition 4] as the topological spaces Y which satisfy the fol-
lowing conditions:

1. Y is a T0-spacea;
2. Y is quasi-compactb;
3. the quasi-compact open subsets of Y are closed under finite

intersections and form an open basec;
4. each irreducible closed subset of Y has a generic point.

aA topological space is T0 if and only if the closures of distinct points are distinct.
bA topological space Y is quasi-compact if every collection of open subsets whose union is Y contains

a finite subcollection whose union is Y .
c Let (Y, γ) be a topological space. Then A base for the topology γ is a collection B of subsets of Y

such that B ⊆ γ and for all U ⊆ γ , U is the union of some collection of sets taken from B.
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MAIN RESULTS
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Definition

Let M be an R-module. M is called strongly top if for ev-
ery submodule N of M there exists an ideal I of R such that
V ∗(N) = V ∗(IM).

• Every multiplicationa module is a strongly top module.

• Every strongly top R-module is a top module.

• It is not true that every top module is strongly top, for instance,
the Z-module Q ⊕ Zp, (p is a prime integer), is a top module
which is not strongly top.

aAn R-module M is said to be a multiplication module (see [Bar81] and [EBS88]) if every submodule
N of M is of the form IM for some ideal I of R.
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Remark

• An R-module M is called primeful if either M = (0) or
M 6= (0) and the map ψ : Spec(M) → Spec( R

Ann(M)) defined
by ψ(L) = (L : M)/Ann(M) for every L ∈ Spec(M) be a surjec-
tive map (see [Lu07]). (e.g. finitely generated or faithfully flat modules.)

• Let M be an R-module. For every x ∈ M , we define
c(x) :=

⋂
{I|I is an ideal of R and x ∈ IM}. A module M

is called a content R-module if, for every x ∈ M , x ∈ c(x)M

(see [OR72]). (e.g. projective or faithful multiplication modules.)

• rad(0) =
⋂
P∈Spec(M) P .
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Theorem

Suppose that M is an R-module.

1. Let M be strongly top. If either M is primeful or R is Noethe-
rian, then (X, τ ∗) is a spectral space. (This generalizes [ATOS10b,

Theorem 4.9].)

2. Let R be a one-dimensional integral domain and let M be a
content R-module such that T (M) ⊆ rad(0) and (X, τ ) is a
T0-space. Then M is top. Moreover, if Spec(R) is Noetherian,
then (X, τ ∗) is spectral.a

3. If M is content and weak multiplicationb, then M is top. More-
over, if Spec(R) is Noetherian, then (X, τ ∗) is spectral.

aHere T (M) is the torsion submodule of M .
ban R-module M is called a weak multiplication if every prime submodule P of M is of the form IM

for some ideal I of R (see [AS95] and [Azi03]).
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Theorem

Suppose that M is an R-module.

1. Let R be a one-dimensional integral domain and let M be an
R-module such that T (M) ⊆ rad(0). If (X, τ ) is a T0-space and
the intersection of every infinite number of maximal submodules
of M is zero, then M is top and (X, τ ∗) is a spectral space.
(This is a generalization of [ATOS10b, Theorem 4.11(d)].)

2. Let R be a one-dimensional integral domain with Noetherian
spectrum and let M be a non-faithful top R-module. Then
(X, τ ∗) is a spectral space.
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Theorem

Suppose that M is an R-module.

1. If M is distributivea, then M is top.

2. If R is a one-dimensional integral domain with Noetherian spec-
trum, T (M) ⊆ rad(0) and (X, τ ) is a T0-space, then M is top.

3. If M is weak multiplication and R is a one-dimensional integral
domain with Noetherian spectrum, then M is top. (This is a

generalization of [ATOS10b, Theorem 3.18].)

aAnR-moduleM is called distributive if the lattice of its submodules is distributive, i.e.,A∩(B+C) =
(A ∩ B) + (A ∩ C) and A + (B ∩ C) = (A + B) ∩ (A + C) for all submodules A,B and C of M (see
[Bar81]).
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The next example shows that there is a Z-module M such that
(X, τ ) is T0 and T (M) ⊆ rad(0), but M is not weak multiplication.

Example

Consider the Z-module M = Z(p∞) ⊕ Z. For every prime ideal
p ∈ Spec(Z) we have |Specp(M)| ≤ 1 and T (M) = rad(0). So, by the
above Theorem, M is a top module. We note that M is not weak
multiplication.
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Corollary

The R-module M is top in each of the following cases:

1. R is a Dedekind domain and M is weak multiplication;

2. R is a one-dimensional integral domain with Noetherian spec-
trum and Spec(M) = Max(M);

3. M is content and Spec(M) = Max(M);
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Corollary

Let M be an R-module. Then (X, τ ∗) is a spectral space in
each of the following cases:

1. R has Noetherian spectrum and M is multiplication;

2. M is content, Spec(M) = Max(M) and R is Noetherian;
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Proposition

Let M be a top R-module such that (X, τ ∗) is a Noetherian space.
Then M has only finitely many minimal prime submodules.
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Corollary

In each of the following cases, the R-module M has only finitely
many minimal prime submodules.

1. M is strongly top and R is Noetherian;

2. R is a one-dimensional integral domain with Noetherian spec-
trum and M is a content R-module such that T (M) ⊆ rad(0)

and (X, τ ) is a T0-space;

3. M is content and weak multiplication and Spec(R) is Noetherian;

4. R is a one-dimensional integral domain and M is an R-module
such that T (M) ⊆ rad(0) and (X, τ ) is a T0-space, and the
intersection of every infinite number of maximal submodules of
M is zero;
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In the sequel, we present conditions under which (X, τ ) is a spectral
space.

Proposition

Let M be an R-module. Then (X, τ ) is a Noetherian topologi-
cal space in each of the following cases:

1. R satisfies ACC on radical ideals;

2. M satisfies ACC on radical submodules.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Remark

It is shown in [Lu10, Theorem 3.3], whenever M is a primeful
R-module and Spec(R/Ann(M)) is a Noetherian topological space,
then (X, τ ) is a Noetherian topological space. We generalize this
result in the next corollary.
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Corollary

Let M be an R-module. Then (X, τ ) is a Noetherian topologi-
cal space in each of the following cases:

1. Spec(R) is a Noetherian topological space;

2. R is a Laskerian ring;

3. M is an Artinian R-module;

4. For every submodule N of M there exists a finitely generated
submodule L of N such that rad(N) = rad(L).
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Remark

Some examples of non-Noetherian and non-primeful modules with
Noetherian spectrum were introduced in [Lu10, Example 3.3].

For example, it is shown that the primeful Z-module M =∏
p∈Ω Z/pZ, where Ω is the set of all prime integers p, the non-

primeful and non-Noetherian Z-modules M =
⊕

p∈Ω Z/pZ and Q
have Noetherian spectrum.

But, by the above Corollary, these Z-modules have Noetherian
spectrum. So, we can make plentiful examples of modules M
such that (X, τ ) is a Noetherian topological space without M
being either primeful or Noetherian.
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Remark

There are several examples of modules with Noetherian spectrum
in [ATOS10a, Table of Examples 3.2] which the Noetherianness of
its spectrum is trivial by the above Corollary.
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Theorem

Let M be an R-module.

1. Assume that R is a ring with Noetherian spectrum and M is flat.
Then (X, τ ) is a spectral space if and only if it is a T0-space.

2. If R is an integral domain with Noetherian spectrum and M is
torsion-free distributive, then (X, τ ) is a spectral space.

3. If R is a Dedekind domain and M is torsion-free weak multi-
plication, then (X, τ ) is a spectral space.
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Theorem

Let M be an R-module.

1. If R is a one-dimensional integral domain, M has at least one
(0)-prime submodule and (X, τ ) is a Noetherian space, then
(X, τ ) is a spectral space if and only if it is a T0-space.

2. Let M be a primeful R -module. Then (X, τ ) is a spectral
space in each of the following cases:

(a) M is strongly top;
(b) M is distributive.
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Example

Consider the non-torsion top Z-module

M = Q⊕ (
⊕
p

Z
pZ

).

M has one (0)-prime submodule, T (M). The topological space
(X, τ ) is Noetherian (since Z is Noetherian) and T0. Consequently,
(X, τ ) is a spectral space by the last theorem.
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