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1. Hyperhomology and Gorenstein flat modules.

Throughout this talk, R is a commutative Noetherian ring

with nonzero identity.

We will work within D(R), the derived category of R-modules.
The objects inD (R) are complexes of R-modules and symbol
~ denotes isomorphisms in this category. For any complex X ,

Its supremum and infimum are defined respectively by

supX =sup{i €eZ| H,(X) =0} and inf X =inf{i eZ| H, (X ) =0}




D,(R) : The full subcategory of complexes with homology modules

concentrated in degree zero.

D ](R) :The full subcategory of complexes that are homologically bounded

to the right.

D[ (R) :The full subcategory of complexes that are homologically bounded

to the left.

DD(R) :The full subcategory of homologically bounded complexes.

DfD(R) :The full subcategory of homologically bounded complexes with

finitely generated homology modules.



Modules will be considered as complexes concentrated in degree
Zero.

For any complex X inD ](R) (resp. D[ (R) ), there is a bounded to the
right (resp. left) complex P (resp. | ) consisting of projective (resp.
injective) R -modules which is isomorphic to X in D(R) .

A such complex P (resp. | ) is called a projective (resp. injective)
resolution of X . Also, for any complex Xin D ](R), there is a bounded
to the right complex F consisting of flat R-modules which is

isomorphism to X in D(R) .



A complex X i e (resp. injective)

dimension d projective (resp. injective)
res 0 have finite flat dimension, if it

d flat resolution.
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We recall that the left derived tensor product functor ~ ®E — IS
computed by taking a projective resolution of the first argument or of
the second one.

The right derived homomorphism functor RHom, (~,—) is computed by
taking a projective resolution of the first argument or by taking an
Injective resolution of the second one. For any two conveniant
complexesX andY and any integer i, set Tor"(X )Y )=H (X ®;Y )

and Ext) (XY )=H_ (RHo m(X ).



orenstein flat if there exists an
R-modules suchthat M =im(F, - F_,)

exact for all injective R -modules J .

viously, every flat R-module is Gorenstein flat.
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The Gorenstein flat di efined by

Gfd, X =1
Qis abo

f Gorenstein flat R-modules and Q = X }.
eD ](R),
Gfd X <fd.X

holds if fd X <o,



 Dualizing comg
A dualizing D DfD(R) such that the
homott 4 (D , D), IS an isomorphism in

active dimension.



homology
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* Local homology
Let a be anideal of R . The a-adic completion functor
A*(9) = lim (- ®, )
defines an additive functor 0;1 the category of complexes of R -modules.
So, we may consider its left derived functor in the categoryD (R).
For any complex X € D ](R) , the complex L A?%(X ) is defined by
LA®(X ):=A"(F) ,whereF is an (every) flat resolution of X .
Also, for any integeri, the i—th local homology module of X with respect

tod is definedby H (X )=H,(LA*(X)) .



For any complex X €D ](R) , we have

width. (@, X ) =inf L A*(X ),

where R
width, (a, X ) = inf(—®" X).
a R

Let C (a) denote the Cech complex onaset a={X;,X,,....X }

of generators ofa . We have

L A*(X )= RHom, (C (a),X ).



flat modules
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Lemma 3.1 Letd be anideal of R and X € DD(R)' Then

supLA®(X ) <sup(X )+cd,_(R),
Where Cda (R), denotes the supremum of I's such that i-th local

cohomology module of R with respect tod is nonzero.

The following result improves [M, Corllary 4.6].

Lemma 3.2 Let d be an ideal of R. Then every Gorenstein flat R-module

) | g
is A" -acyclic.



Lemma 3.3 Let @ be anideal of R and |\| a Gorenstein flat R-

Module. Then there exists a natural isomorphism

AX(M)=HZ(M).

Corollary 3.4 Letd be an R and
O->M"->M ->M"—>0

IS an exact sequence of Gorenstein flat R-modules. Then
0> AM"—> A M > A°M" >0

IS also exact.



Definition 3.5 To a morphism & :X —Y , the mapping cone
complex of & is denoted by zz(¢r) and is given by

pla), =Y, ®X |,
and  O1'P(Y . X, ) = (0] (y))+a (X, ), —07 (X, 1))

for every | € Z.
Lemma3.6Let T :CO(R) —)CO(R) be a covariant additive

functor. Any morphism¢g : X —Y inD(R)

yields an isomorphism ,U(T (05)) =T (,U(Ol)) in D(R).




—

Theorem 3.7 Letd be ar

complex of Gorenstein flat

It X €D (R)anc

R-module
X)=AQ)
Hia(x ) - Hi (Aa(Q))
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Corollary 3.8 Letq be

Forany X €D
<Gfd, X .

ves [FI,1.10].

be an ideal of R, X eD(R) andY eDf](R).

i

LA*(X ®;Y )=LA*(X)®Y .

11/30/2011 19



LemmalFI,1.10]: Le and Y eDf](R).

Such that [

=LA (X )®LY .
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Lemma 3.10 LetQ and Y eDf] (R).

Let Q be a X of Gorenstein flat R-

F a flat resolution of Y . Then

®-Y )=A*(Q ®F).
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[Bal, 1.4.7] states at R-modules Q and all

idealsd o

pe an ideal of R and Q a Gorenstein flat

'(Q) Gorenstein flat ?
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Definition 3.12 Large restricted flat dimension of an R-module

M is defined by

Rfd, (M ) =sup{sup(M ®; T )|fd T <oo}.

Lemma 3.13 Letd be an ideal of R and Q a Gorenstein flat
R-module. Then Rfd, A®(Q) = 0. Moreover, if R possesses a

dualizing complex, then A*(Q) is Gorenstein flat.



The first part of the following corollary improves

Corollary 3.14 Let R be a ring possessing a dualizing complex. Let
d be an ideal of R.

i) Forany X €D ](R), we have Gfd L A® (X ) <Gfd, (X ).
i) LetY e DfD(R) , be a non-exact complex such that either its
projective or injective dimension is finite andX €D (R).

Then

SUpLA*(X ®;Y )<Gfd X +supY .




Theorem [CFH, Th

Let R be omplex. Let d be an ideal

of F ) <o, then Gfd,LA*(X ) < .
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Proposition 3.15 Let R be a ring possessing a dualizing

complex andd an ideal of R. The following are equivalent:

) A*(Q) is flat for all Gorenstein flat R-modules Q.

ii) GdeQ — deQ for all d -adic complete R-modules Q.

Next, we present a characterization of regularity of Gorenstein

local rings.




Corollary 3.16 Let(K ring. The

following are

)/ ein flat R-modules Q.

O forallm -adic complete R-modules Q.

S regular.
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