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We will work  within           ,  the derived category of    -modules.  

The objects in           are complexes of      -modules and symbol  

denotes isomorphisms in this category. For  any complex      ,

its supremum and infimum are defined respectively by 

and 



3

Throughout  this talk,      is a commutative Noetherian ring

with nonzero identity.

1.  Hyperhomology and Gorenstein flat modules.

R

( )D R

( )D R

R

R

X

sup : sup{ | ( ) 0}iX i H X= ∈ ≠ inf : inf{ | ( ) 0}.iX i H X= ∈ ≠
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0 ( )D R : The full subcategory of complexes  with homology modules 

concentrated in degree  zero.

]( )D R :The full subcategory of complexes that are homologically bounded 

to the right.

:The full subcategory of complexes that are homologically bounded 

to the left.

[ ( )D R

( )D R :The full subcategory of homologically bounded complexes.

( )fD R :The full subcategory of  homologically bounded complexes  with

finitely  generated  homology  modules.
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For any complex      in            (resp.           ), there is a bounded to the 

right (resp. left) complex       (resp.      ) consisting of projective (resp. 

injective)      -modules which is isomorphic to      in            .

A such complex     (resp.     ) is called a projective (resp. injective)

resolution of    . Also, for any complex     in        , there is a bounded 

to the right complex      consisting of flat    -modules which is 

isomorphism  to      in           .      

]( )D R [ ( )D R

P I

R X ( )D R

P I

X

X X

X

Modules  will be considered as complexes concentrated in degree

zero.

]( )D R

F R

( )D R
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A  complex       is said to have finite projective (resp. injective) 

dimension, if it possesses a bounded projective (resp. injective) 

resolution.  Also , it is said  to have finite  flat  dimension, if  it

possesses a bounded flat resolution.

X



11/30/2011

We  recall  that  the left derived  tensor  product  functor is

computed by taking a projective  resolution of the first argument or of 

the second one. 

The right derived homomorphism functor is computed by

taking a projective  resolution of the first argument or by taking an

injective resolution of the second  one.  For any two conveniant

complexes     and     and any integer   , set                       

and

7

L
R⊗ −

( , )RRHom −

( , ) : ( )R L
i i RTor X Y H X Y= ⊗

( , ) : ( ( , )).i
R i RExt X Y H RHo m X Y−=

YX i
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An    -module      is said to be Gorenstein flat if there exists an 

exact complex     of flat R-modules such that  

and                 is exact for all  injective      -modules      .    

R M

F 0 1( )M im F F−≅ →

RJ F⊗ R J

 Gorenstein flat dimension. 

Obviously, every flat R-module is Gorenstein flat. 
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The Gorenstein flat dimension of                    is defined by 

is a bounded to the right complex of Gorenstein flat R-modules and

Note that for any complex                                                          

and equality holds if 

9

]( ),X D R∈

R RGfd X fd X≤

.Rfd X < ∞

]( ),X D R∈

: inf{sup{ | 0} |R lGfd X l Q= ∈ ≠

}.Q XQ
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 Dualizing complex.

A dualizing complex for    is a complex                     such that the 

homothety morphism ,  is an isomorphism  in           

and      has finite injective dimension. 

10

( )fD D R∈

( , )RR RHom D D→

R

( )D R D
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Section 2:

Local  homology



11/30/2011

 Local homology

Let     be an ideal of      . The     –adic completion functor

defines an additive functor on the category of complexes of     -modules.

So, we may consider its left derived functor in the category         . 

For any complex                     ,  the complex                   is defined by 

,where    is an (every) flat resolution of      .

12

( ) lim( )
n

a
Rn

R
a←

Λ − = ⊗ −

]( )X D R∈ ( )aL XΛ

( ) : ( )a aL X FΛ = Λ

( ) : ( ( ))a a
i iH X H L X= Λ

R

R

( )D R

F X
ii

a

a

a

Also, for any integer  , the    -th local  homology module of     with respect 

to    is defined by                                                 .

X
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For  any complex                      , we have 

where

Let            denote the  Cech complex on a set                             

of generators of    . We have

13

]( )X D R∈

( , ) inf ( ),a
Rwidth a X L X= Λ

( )C a
∨

1 2{ , ,..., }na x x x=

( ) ( ( ), ).a
RL X RHom C a X

∨

Λ 

a

( , ) : inf( ).
R

L
R

Rwidth a X X
a

= ⊗
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Section 3:
Local homology  and 
Gorenstein flat  modules
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Lemma 3.2 Let     be an ideal of R. Then every Gorenstein flat R-module

is      -acyclic. 

a
aΛ

Lemma 3.1 Let     be an ideal of R and Then

Where                 denotes the supremum of i’s such that i-th local

cohomology module of R with respect to    is nonzero.

The following  result improves [M, Corllary 4.6].

a ( ).X D R∈

sup ( ) sup( ) ( ),a
aL X X cd RΛ ≤ +

( ),acd R

a
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Lemma 3.3 Let     be an ideal of R and        a Gorenstein flat  R-

Module. Then there exists a natural isomorphism  

0( ) ( ).a aM H MΛ ≅

a M

Corollary 3.4 Let    be an R and 

is an exact sequence of Gorenstein flat R-modules. Then 

is also exact.

a
0 0M M M′ ′′→ → → →

0 0a a aM M M′ ′′→ Λ →Λ →Λ →
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Lemma 3.6 Let                                          be a covariant additive

functor.  Any morphism in  

yields an isomorphism                                         in          

0 0: ( ) ( )T C R C R→

: X Yα → ( )D R

( ( )) ( ( ))T Tµ α µ α ( ).D R

Definition 3.5  To a morphism , the mapping cone

complex of     is denoted by           and is given by 

and

for  every   

: X Yα →

α ( )µ α

1( )l l lY Xµ α −= ⊕
( )

1 1 1 1 1( , ) ( ( ) ( ), ( )).Y X
l l l l l l l l ly x y x xµ α α− − − − −∂ = ∂ + −∂

.l ∈
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Theorem 3.7 Let     be an ideal of R.

If                   and Q is a bounded to the right complex of Gorenstein flat

R-modules such that                    then                                                                            

and so

for all                           

a

]( )X D R∈

,X Q

( ) ( )a aL X QΛ Λ

( ) ( ( ))a a
i iH X H Q= Λ

.i ∈
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Corollary 3.8 Let     be an ideal of R.

For any                     , we have

a

]( )X D R∈

The following result improves [FI,1.10].

Lemma 3.9 Let     be an ideal of R,                     and

Then 

a ( )X D R∈ ] ( ).fY D R∈

( ) ( ) .a L a L
R RL X Y L X YΛ ⊗ Λ ⊗

sup ( ) .a
RL X Gfd XΛ ≤
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Lemma[FI,1.10]: Let     be an ideal of R,                     and

Such that                     Then 

a ( )X D R∈ ] ( ).fY D R∈

.Rpd Y < ∞

( ) ( ) .a L a L
R RL X Y L X YΛ ⊗ Λ ⊗
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Lemma 3.10 Let     be an ideal of R,                     and 

Let Q be a bounded to the right complex of Gorenstein flat R-

modules such that                 and F a flat resolution of Y . Then

a ( )X D R∈

Q X

( ) ( ).a L a
RL X Y Q FΛ ⊗ Λ ⊗

] ( ).fY D R∈
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[Ba1, 1.4.7] states that ,            is  flat for all flat R-modules Q and all

ideals    of R.

Question 3.11. Let     be an ideal of R and Q a Gorenstein flat 

R-module. Is             Gorenstein flat ?

( )a QΛ

a

a

( )a QΛ
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Lemma 3.13  Let     be an ideal of R and Q a Gorenstein flat 

R-module. Then                            . Moreover, if R possesses a

dualizing complex, then              is Gorenstein flat.

a
( ) 0a

RRfd QΛ =

( )a QΛ

Definition 3.12 Large restricted flat dimension of an R-module 

M is defined by

( ) sup{sup( ) | }.L
R R RRfd M M T fd T= ⊗ < ∞
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The first part of the following corollary improves  [CFH, Theorem 5.10 b)]

Corollary 3.14 Let R be a ring possessing a dualizing complex. Let

be an ideal of R.

i) For any                  ,  we have  

ii) Let                    , be a non-exact complex such that either its 

projective or injective dimension is finite and

Then 

a

]( )X D R∈ ( ) ( ).a
R RGfd L X Gfd XΛ ≤

( )fY D R∈

( ).X D R∈

sup ( ) sup .a L
R RL X Y Gfd X YΛ ⊗ ≤ +
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Theorem [CFH, Theorem 5.10 b)]

Let R be a ring possessing a dualizing complex. Let     be an ideal 

of R and                   . If                             , then

a

( ) .a
RGfd L XΛ < ∞( )RGfd X < ∞]( )X D R∈
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Proposition 3.15 Let R be a ring possessing a dualizing

complex and     an ideal of R. The following are equivalent:

i) is flat for all Gorenstein flat R-modules Q.

ii)                                 for all    -adic complete R-modules Q.

a

( )a QΛ

R RGfd Q fd Q= a

Next,  we present a characterization of regularity of Gorenstein

local rings.
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Corollary 3.16 Let             be a local Gorenstein ring. The

following are equivalent:

i) is flat for all Gorenstein flat R-modules Q.

ii) for all      -adic complete R-modules Q.

iii)        is regular.

( )m QΛ

R RGfd Q fd Q= m

( , )R m

R
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