What pullback constructions can do for you

Parviz Sahandi, University of Tabriz

IPM 9-10 Azar 1390

Parviz Sahandi, University of Tabriz What pullback constructions can do for you

Definition and some properties of pullbacks How can we construct an example

Find an example

2 An example of a *w*-Jaffard domain that is not a Jaffard domain

- Definition of Jaffard domain
- Definition of w-Jaffard domain
- The desired example

How can we construct an example Find an example

Pullback diagram

In this talk, we shall discuss pullback diagrams of the following type:

$$egin{array}{ccc} R &
ightarrow & D \ \downarrow & & \downarrow \ T & \stackrel{arphi}{
ightarrow} & k. \end{array}$$

Where *T* is a domain, φ is a homomorphism from *T* onto a field *k* with ker(φ) = *M*, *D* is a proper subring of *k*, and $\mathbf{R} = \varphi^{-1}(\mathbf{D})$. We shall refer to this as a diagram of type \Box .

How can we construct an example Find an example

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

- $R/M \cong D$ and M = (R : T), (It follows that qf(R) = qf(T), and that each fractional ideal of T is a fractional ideal of R)
- If *T* is quasilocal, then *M* is a divided prime ideal of *R*, and so each prime ideal of *R* is comparable with *M*. If in addition k = qf(D), then $R_M = T$.
- If T is quasilocal, then $\dim(R) = \dim(D) + \dim(T)$.
- If T and D are quasilocal, then R is quasilocal.

How can we construct an example Find an example

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

- $R/M \cong D$ and M = (R : T), (It follows that qf(R) = qf(T), and that each fractional ideal of T is a fractional ideal of R).
- **2** If *T* is quasilocal, then *M* is a divided prime ideal of *R*, and so each prime ideal of *R* is comparable with *M*. If in addition k = qf(D), then $R_M = T$.
- If T is quasilocal, then $\dim(R) = \dim(D) + \dim(T)$.
- If T and D are quasilocal, then R is quasilocal.

How can we construct an example Find an example

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

- $R/M \cong D$ and M = (R : T), (It follows that qf(R) = qf(T), and that each fractional ideal of T is a fractional ideal of R).
- **2** If *T* is quasilocal, then *M* is a divided prime ideal of *R*, and so each prime ideal of *R* is comparable with *M*. If in addition k = qf(D), then $R_M = T$.
- 3 If T is quasilocal, then $\dim(R) = \dim(D) + \dim(T)$.
- If T and D are quasilocal, then R is quasilocal.

How can we construct an example Find an example

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

- $R/M \cong D$ and M = (R : T), (It follows that qf(R) = qf(T), and that each fractional ideal of T is a fractional ideal of R).
- If T is quasilocal, then M is a divided prime ideal of R, and so each prime ideal of R is comparable with M. If in addition the origination of the formation of the formation
- 3 If T is quasilocal, then $\dim(R) = \dim(D) + \dim(T)$.
- If T and D are quasilocal, then R is quasilocal.

How can we construct an example Find an example

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

- $R/M \cong D$ and M = (R : T), (It follows that qf(R) = qf(T), and that each fractional ideal of T is a fractional ideal of R).
- 2 If *T* is quasilocal, then *M* is a divided prime ideal of *R*, and so each prime ideal of *R* is comparable with *M*. If in addition k = qf(D), then $R_M = T$.
- 3 If T is quasilocal, then $\dim(R) = \dim(D) + \dim(T)$.
- If T and D are quasilocal, then R is quasilocal.

How can we construct an example Find an example

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

In a diagram of type \Box we have:

- $R/M \cong D$ and M = (R : T), (It follows that qf(R) = qf(T), and that each fractional ideal of T is a fractional ideal of R).
- 2 If *T* is quasilocal, then *M* is a divided prime ideal of *R*, and so each prime ideal of *R* is comparable with *M*. If in addition k = qf(D), then $R_M = T$.
- 3 If T is quasilocal, then $\dim(R) = \dim(D) + \dim(T)$.

If T and D are quasilocal, then R is quasilocal.

How can we construct an example Find an example

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

- $R/M \cong D$ and M = (R : T), (It follows that qf(R) = qf(T), and that each fractional ideal of T is a fractional ideal of R).
- 2 If *T* is quasilocal, then *M* is a divided prime ideal of *R*, and so each prime ideal of *R* is comparable with *M*. If in addition k = qf(D), then $R_M = T$.
- 3 If T is quasilocal, then $\dim(R) = \dim(D) + \dim(T)$.
- If T and D are quasilocal, then R is quasilocal.

How can we construct an example Find an example

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

In a diagram of type \Box we have:

- For each $P \in \text{Spec}(R)$ with $M \nsubseteq P$, there is a unique $Q \in \text{Spec}(T)$ such that $Q \cap R = P$, and this Q satisfies $T_Q = R_P$.
- ② If *P* ∈ Spec(*R*) and *P* ⊇ *M*, then there is a unique $Q \in$ Spec(*D*) such that $P = \varphi^{-1}(Q)$.Moreover, the following of canonical homomorphisms

$$egin{array}{ccc} R_P &
ightarrow & D_Q \ \downarrow & \downarrow \ T_M & \stackrel{arphi}{
ightarrow} & k. \end{array}$$

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

In a diagram of type \Box we have:

- For each $P \in \operatorname{Spec}(R)$ with $M \nsubseteq P$, there is a unique $Q \in \operatorname{Spec}(T)$ such that $Q \cap R = P$, and this Q satisfies $T_Q = R_P$.
- 2 If $P \in \operatorname{Spec}(R)$ and $P \supseteq M$, then there is a unique $Q \in \operatorname{Spec}(D)$ such that $P = \varphi^{-1}(Q)$. Moreover, the following of canonical homomorphisms

$$\begin{array}{rccc} R_P & \to & D_Q \\ \downarrow & & \downarrow \\ T_M & \stackrel{\varphi}{\to} & k. \end{array}$$

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

In a diagram of type \Box we have:

- For each $P \in \operatorname{Spec}(R)$ with $M \nsubseteq P$, there is a unique $Q \in \operatorname{Spec}(T)$ such that $Q \cap R = P$, and this Q satisfies $T_Q = R_P$.
- 2 If *P* ∈ Spec(*R*) and *P* ⊇ *M*, then there is a unique $Q \in \text{Spec}(D)$ such that $P = \varphi^{-1}(Q)$. Moreover, the following of canonical homomorphisms

$$\begin{array}{rccc} R_P & \to & D_Q \\ \downarrow & & \downarrow \\ T_M & \stackrel{\varphi}{\to} & k. \end{array}$$

Some properties of pullback constructions

Gilmer(1968), Fontana(1980)

In a diagram of type \Box we have:

- For each $P \in \operatorname{Spec}(R)$ with $M \nsubseteq P$, there is a unique $Q \in \operatorname{Spec}(T)$ such that $Q \cap R = P$, and this Q satisfies $T_Q = R_P$.
- 2 If *P* ∈ Spec(*R*) and *P* ⊇ *M*, then there is a unique $Q \in \text{Spec}(D)$ such that $P = \varphi^{-1}(Q)$. Moreover, the following of canonical homomorphisms

$$egin{array}{ccc} R_P &
ightarrow & D_Q \ \downarrow & & \downarrow \ T_M & \stackrel{arphi}{
ightarrow} & k. \end{array}$$

CPI extension

How can we construct an example Find an example

Boisen and Sheldon (1977)

The notion of CPI (complete pre-image) extension of a domain R with respect to a prime ideal P of R; this is denoted R(P) and is defined by the following pullback diagram of type \Box : Here φ is the canonical homomorphism.

$$egin{array}{rcl} R(P) & o & R/P \ \downarrow & & \downarrow \ R_P & \stackrel{arphi}{
ightarrow} & R_P/PR_P \end{array}$$

So that $R(P)/PR_P \cong R/P$ and $R(P)_{PR_P} = R_P$.

How can we construct an example Find an example

Classical D+M constructions

In a pullback diagram of type \Box , the case where T = V is a valuation domain of the form K + M, where K is a field and M is the maximal ideal of V is of crucial interest, known as classical "D + M" construction.

$$\begin{array}{rrrr} D+M & \to & D \\ \downarrow & & \downarrow \\ K+M & \stackrel{\varphi}{\to} & K. \end{array}$$

The earliest use of the D+M construction in the literature seem due to Krull at 1936. Using the technique of D+M construction Krull gives an example of a one-dimensional quasilocal integrally closed domain that is not a valuation ring.

How can we construct an example Find an example

Classical D+M constructions

In a pullback diagram of type \Box , the case where T = V is a valuation domain of the form K + M, where K is a field and M is the maximal ideal of V is of crucial interest, known as classical "D + M" construction.

$$\begin{array}{rccc} D+M & \to & D \\ \downarrow & & \downarrow \\ K+M & \stackrel{\varphi}{\to} & K. \end{array}$$

The earliest use of the D+M construction in the literature seem due to Krull at 1936. Using the technique of D+M construction Krull gives an example of a one-dimensional quasilocal integrally closed domain that is not a valuation ring.

How can we construct an example Find an example

How can we use to produce desired examples

Suppose that we need to have a 2-dimensional valuation domain.

So that we need to know the behavior of pullback constructions with valuation domains.

Gilmer (1968) Consider a diagram of type \Box . Then *R* is a valuation domain if and only if *D* and *T* are valuation domains and k = qf(D).

How can we construct an example Find an example

How can we use to produce desired examples

Suppose that we need to have a 2-dimensional valuation domain.

So that we need to know the behavior of pullback constructions with valuation domains.

Gilmer (1968) Consider a diagram of type \Box . Then *R* is a valuation domain if and only if *D* and *T* are valuation domains and k = qf(D).

How can we construct an example Find an example

How can we use to produce desired examples

Suppose that we need to have a 2-dimensional valuation domain.

So that we need to know the behavior of pullback constructions with valuation domains.

Gilmer (1968) Consider a diagram of type \Box . Then *R* is a valuation domain if and only if *D* and *T* are valuation domains and k = qf(D).

How can we construct an example Find an example

How can we use to produce desired examples

Suppose that we need to have a 2-dimensional valuation domain.

So that we need to know the behavior of pullback constructions with valuation domains.

Gilmer (1968) Consider a diagram of type \Box . Then *R* is a valuation domain if and only if *D* and *T* are valuation domains and k = qf(D).

Parviz Sahandi, University of Tabriz What pullback constructions can do for you

How can we construct an example Find an example

The example

Let *k* be a field and *X* and *Y* be indeterminates over *k*. Let $T := k(X)[Y]_{(Y)}$ which is a 1-dimensional valuation domain. Note that T = k(X) + M, where $M = M(X)[Y]_{(Y)}$ is the maximal ideal of *T*. Let $D := k[X]_{(X)}$ and consider

$$\begin{array}{cccc} R := k + M' & \to & k[X]_{(X)} \\ \downarrow & & \downarrow \\ T = k(X) + M & \xrightarrow{\varphi} & k(X). \end{array}$$

where $M' = Xk[X]_{(X)} + Yk(X)[Y]_{(Y)}$. Since *D* and *T* are valuation domains and k(X) = qf(D), then *R* is a valuation domain. Now the dimension of *R*:

How can we construct an example Find an example

The example

Let *k* be a field and *X* and *Y* be indeterminates over *k*. Let $T := k(X)[Y]_{(Y)}$ which is a 1-dimensional valuation domain. Note that T = k(X) + M, where $M := Yk(X)[Y]_{(Y)}$ is the maximal ideal of *T*. Let $D := k[X]_{(X)}$ and consider

$$\begin{array}{cccc} R := k + M' & \to & k[X]_{(X)} \\ \downarrow & & \downarrow \\ T = k(X) + M & \xrightarrow{\varphi} & k(X). \end{array}$$

where $M' = Xk[X]_{(X)} + Yk(X)[Y]_{(Y)}$. Since *D* and *T* are valuation domains and k(X) = qf(D), then *R* is a valuation domain. Now the dimension of *R*:

How can we construct an example Find an example

The example

Let *k* be a field and *X* and *Y* be indeterminates over *k*. Let $T := k(X)[Y]_{(Y)}$ which is a 1-dimensional valuation domain. Note that T = k(X) + M, where $M := Yk(X)[Y]_{(Y)}$ is the maximal ideal of *T*. Let $D := k[X]_{(X)}$ and consider

$$\begin{array}{cccc} R := k + M' & \to & k[X]_{(X)} \\ \downarrow & & \downarrow \\ T = k(X) + M & \xrightarrow{\varphi} & k(X). \end{array}$$

where $M' = Xk[X]_{(X)} + Yk(X)[Y]_{(Y)}$. Since *D* and *T* are valuation domains and k(X) = qf(D), then *R* is a valuation domain. Now the dimension of *R*:

How can we construct an example Find an example

The example

Let *k* be a field and *X* and *Y* be indeterminates over *k*. Let $T := k(X)[Y]_{(Y)}$ which is a 1-dimensional valuation domain. Note that T = k(X) + M, where $M := Yk(X)[Y]_{(Y)}$ is the maximal ideal of *T*. Let $D := k[X]_{(X)}$ and consider

$$\begin{array}{cccc} R := k + M' & \to & k[X]_{(X)} \\ \downarrow & & \downarrow \\ T = k(X) + M & \xrightarrow{\varphi} & k(X). \end{array}$$

where $M' = Xk[X]_{(X)} + Yk(X)[Y]_{(Y)}$. Since *D* and *T* are valuation domains and *k*(X) = q(D), then *R* is a valuation domain. Now the dimension of *R*:

How can we construct an example Find an example

The example

Let *k* be a field and *X* and *Y* be indeterminates over *k*. Let $T := k(X)[Y]_{(Y)}$ which is a 1-dimensional valuation domain. Note that T = k(X) + M, where $M := Yk(X)[Y]_{(Y)}$ is the maximal ideal of *T*. Let $D := k[X]_{(X)}$ and consider

$$\begin{array}{cccc} R := k + M' & \to & k[X]_{(X)} \\ \downarrow & & \downarrow \\ T = k(X) + M & \xrightarrow{\varphi} & k(X). \end{array}$$

where $M' = Xk[X]_{(X)} + Yk(X)[Y]_{(Y)}$. Since *D* and *T* are valuation domains and k(X) = qf(D), then *R* is a valuation domain. Now the dimension of *R*:

How can we construct an example Find an example

The example

Let *k* be a field and *X* and *Y* be indeterminates over *k*. Let $T := k(X)[Y]_{(Y)}$ which is a 1-dimensional valuation domain. Note that T = k(X) + M, where $M := Yk(X)[Y]_{(Y)}$ is the maximal ideal of *T*. Let $D := k[X]_{(X)}$ and consider

$$\begin{array}{cccc} R := k + M' & \to & k[X]_{(X)} \\ \downarrow & & \downarrow \\ T = k(X) + M & \xrightarrow{\varphi} & k(X). \end{array}$$

where $M' = Xk[X]_{(X)} + Yk(X)[Y]_{(Y)}$. Since *D* and *T* are valuation domains and k(X) = qf(D), then *R* is a valuation domain. Now the dimension of *R*:

How can we construct an example Find an example

Some other ideal theoretic properties

Consider a diagram of type \Box .

Prüfer and pullback

Then *R* is a Prüfer domain if and only if *D* and *T* are Prüfer domains and k = qf(D).

Noetherian and pullback Then *R* is a Noetherian domain if and only if *T* is Noetherian, D = F is a field and $[k : F] < \infty$. outline

Definition and some properties of pullbacks An example of a *w*-Jaffard domain that is not a Jaffard domain

A question

How can we construct an example Find an example

Sahandi (2009)

Is there an example of a *w*-Jaffard domain that is not a Jaffard domain?

Parviz Sahandi, University of Tabriz What pullback constructions can do for you

Jaffard domain

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

The valuative dimension of a domain *D* was defined by Jaffard as: $\dim_{V}(D) := \sup\{\dim(V) | V \text{ is a valuation overring of } D\}$.

Jaffard (1959) • dim(D) \leq dim $_{v}(D)$; • dim(D) = dim $_{v}(D)$ \Leftrightarrow dim($D[X_{1}, \dots, X_{k}]$) $= k + \dim(D)$ for all $k \in \mathbb{N}$.

Anderson, Bouvier, Dobbs, Fontana and Kabbaj (1988) **Definition:** An integral domain *D* is called a Jaffard domain if $dim(D) < \infty$ and $dim(D) = dim_v(D)$.

Jaffard domain

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

The valuative dimension of a domain *D* was defined by Jaffard as: $\dim_{V}(D) := \sup\{\dim(V) | V \text{ is a valuation overring of } D\}$.

Jaffard (1959)

- dim $(D) \leq \dim_{v}(D)$;
- $\dim(D) = \dim_{\nu}(D) \Leftrightarrow \dim(D[X_1, \dots, X_k]) = k + \dim(D)$ for all $k \in \mathbb{N}$.

Anderson, Bouvier, Dobbs, Fontana and Kabbaj (1988) **Definition:** An integral domain *D* is called a Jaffard domain if $\dim(D) < \infty$ and $\dim(D) = \dim_v(D)$.

Jaffard domain

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

The valuative dimension of a domain *D* was defined by Jaffard as: $\dim_{V}(D) := \sup\{\dim(V) | V \text{ is a valuation overring of } D\}$.

Jaffard (1959)

- $\dim(D) \leq \dim_{\nu}(D);$
- $\dim(D) = \dim_{\nu}(D) \Leftrightarrow \dim(D[X_1, \ldots, X_k]) = k + \dim(D)$ for all $k \in \mathbb{N}$.

Anderson, Bouvier, Dobbs, Fontana and Kabbaj (1988) **Definition:** An integral domain *D* is called a Jaffard domain if $\dim(D) < \infty$ and $\dim(D) = \dim_{\nu}(D)$.

Anderson, Bouvier, Dobbs, Fontana and Kabbaj (1988)

Theorem: For a diagram of type (\Box), let F = qf(D) and d := tr.deg.(k/F). Then:

- $\dim(R) = \max{\dim(T), \dim(D) + \dim(T_M)}$.
- $\dim_{\nu}(R) = \max\{\dim_{\nu}(T), \dim_{\nu}(D) + \dim_{\nu}(T_M) + d\}.$

w-operation

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

Let D be an integral domain with quotient field K.

The *v*-operation on *D* is defined as $E^{v} := (E^{-1})^{-1}$, with $E^{-1} := (D : E) := \{x \in K | xE \subseteq D\}$ for each fractional ideal *E* of *D*.

The ring of fractions $Na(D, v) := D[X]_{N_v}$, is called the *v*-Nagata ring of *D*, where $N_v := \{f \in D[X] \mid f \neq 0 \text{ and } c_D(f)^v = D\}$.

The *w* operation on *D* is defined as follows: $E^w := E \operatorname{Na}(D, v) \cap K$, for all fractional ideal E of *D*.

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

w-operation

Let D be an integral domain with quotient field K.

The *v*-operation on *D* is defined as $E^{v} := (E^{-1})^{-1}$, with $E^{-1} := (D : E) := \{x \in K | xE \subseteq D\}$ for each fractional ideal *E* of *D*.

The ring of fractions $Na(D, v) := D[X]_{N_v}$, is called the *v*-Nagata ring of *D*, where $N_v := \{f \in D[X] \mid f \neq 0 \text{ and } c_D(f)^v = D\}$.

The *w* operation on *D* is defined as follows: $E^w := E \operatorname{Na}(D, v) \cap K$, for all fractional ideal E of *D*.

w-operation

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

Let D be an integral domain with quotient field K.

The *v*-operation on *D* is defined as $E^{v} := (E^{-1})^{-1}$, with $E^{-1} := (D : E) := \{x \in K | xE \subseteq D\}$ for each fractional ideal *E* of *D*.

The ring of fractions $Na(D, v) := D[X]_{N_v}$, is called the *v*-Nagata ring of *D*, where $N_v := \{f \in D[X] \mid f \neq 0 \text{ and } c_D(f)^v = D\}$.

The *w* operation on *D* is defined as follows: $E^w := E \operatorname{Na}(D, v) \cap K$, for all fractional ideal E of *D*.

w-operation

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

Let D be an integral domain with quotient field K.

The *v*-operation on *D* is defined as $E^{v} := (E^{-1})^{-1}$, with $E^{-1} := (D : E) := \{x \in K | xE \subseteq D\}$ for each fractional ideal *E* of *D*.

The ring of fractions Na(D, v) := $D[X]_{N_v}$, is called the v-Nagata ring of D, where $N_v := \{f \in D[X] \mid f \neq 0 \text{ and } c_D(f)^v = D\}$.

The *w* operation on *D* is defined as follows: $E^w := E \operatorname{Na}(D, v) \cap K$, for all fractional ideal E of *D*.

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

w-dim(D) and w-dim_v(D)

Definition: The *w*-Krull dimension of *D* is defined as

 $w-\dim(D) := \sup \left\{ n \middle| \begin{array}{c} (0) = P_0 \subset P_1 \subset \cdots \subset P_n \text{ where } P_i \\ \text{ is a prime ideal of } D \text{ s.t. } P_i^w = P_i \end{array} \right\}.$

Definition: We say that a valuation overring V of D is a *w*-valuation overring of D provided $F^w \subseteq FV$, for each fractiona ideal F of D.

S. (2009) **Definition:** The *w*-valuative dimension of *D*, is defined as: w_{2} dim. (*D*) := sup{dim(*V*)|*V* is a *w*-valuation overring of *D*

Parviz Sahandi, University of Tabriz

What pullback constructions can do for you

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

w-dim(D) and w-dim_v(D)

Definition: The *w*-Krull dimension of *D* is defined as

$$w\text{-}\dim(D) := \sup \left\{ n \middle| \begin{array}{c} (0) = P_0 \subset P_1 \subset \cdots \subset P_n \text{ where } P_i \\ \text{ is a prime ideal of } D \text{ s.t. } P_i^w = P_i \end{array} \right\}$$

Jaffard (1960)

Definition: We say that a valuation overring *V* of *D* is a *w*-valuation overring of *D* provided $F^w \subseteq FV$, for each fractional ideal *F* of *D*.

S. (2009) **Definition:** The *w*-valuative dimension of *D*, is defined as: *w*-dim_v(*D*) := sup{dim(*V*)|*V* is a *w*-valuation overring of *D*}

Parviz Sahandi, University of Tabriz

What pullback constructions can do for you

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

w-dim(D) and w-dim_v(D)

Definition: The *w*-Krull dimension of *D* is defined as

$$w-\dim(D) := \sup \left\{ n \middle| \begin{array}{c} (0) = P_0 \subset P_1 \subset \cdots \subset P_n \text{ where } P_i \\ \text{ is a prime ideal of } D \text{ s.t. } P_i^w = P_i \end{array} \right\}$$

Jaffard (1960)

Definition: We say that a valuation overring *V* of *D* is a *w*-valuation overring of *D* provided $F^w \subseteq FV$, for each fractional ideal *F* of *D*.

S. (2009)

Definition: The *w*-valuative dimension of *D*, is defined as:

w-dim_v(D) := sup{dim(V)|V is a w-valuation overring of D}.

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

w-Jaffard domain

S. (2009) Theorem: w-dim $(D) \le w$ -dim $_v(D)$.

S. (2009) **Definition:** The domain *D* is said to be a *w*-Jaffard domain, if *w*-dim(*D*) < ∞ and *w*-dim(*D*) = *w*-dim_{*v*}(*D*).

S. (2009) **Theorem:** If *D* is a Krull domain then it is a *w-*Jaffard.

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

w-Jaffard domain

S. (2009) **Theorem:** w-dim $(D) \le w$ -dim $_v(D)$.

S. (2009) **Definition:** The domain *D* is said to be a *w*-Jaffard domain, if w-dim(*D*) < ∞ and *w*-dim(*D*) = *w*-dim_v(*D*).

S. (2009) **Theorem:** If *D* is a Krull domain then it is a *w-*Jaffard

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

w-Jaffard domain

S. (2009) **Theorem:** w-dim $(D) \le w$ -dim $_v(D)$.

S. (2009) **Definition:** The domain *D* is said to be a *w*-Jaffard domain, if w-dim(*D*) < ∞ and *w*-dim(*D*) = *w*-dim_v(*D*).

S. (2009) Theorem: If *D* is a Krull domain then it is a *w*-Jaffard.

S. (2011)

Theorem: For a diagram of type (\Box) , let F = qf(D) and d := tr.deg.(k/F). Then:

- w-dim(R) = max{w-dim(T), w-dim(D) + dim (T_M) }.
- w-dim_v(R) = max{w-dim_v(T), w-dim_v(D) + dim_v(T_M) + d}.

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

The example

Let *K* be a field. Let (V_1, M_1) and (V_2, M_2) be incomparable valuation domains of K(W, X, Y, Z), such that dim $(V_1) = 1$ and dim $(V_2) = 3$ such that $V_1/M_1 \cong K(W, X, Z)$. Then

 $T_{\mathfrak{m}_1} = V_1$ and $T_{\mathfrak{m}_2} = V_2$. Note that $T/\mathfrak{m}_1 \cong K(W, X, Z)$

Notice that d := tr.deg.(K(W, X, Z)/K(W, X)) = 1

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

The example

Let *K* be a field. Let (V_1, M_1) and (V_2, M_2) be incomparable valuation domains of K(W, X, Y, Z), such that dim $(V_1) = 1$ and dim $(V_2) = 3$ such that $V_1/M_1 \cong K(W, X, Z)$. Then $T := V_1 \cap V_2$ is a 3 dimensional Prüfer domain with $\mathfrak{m}_1 := M_1 \cap T$ and $\mathfrak{m}_2 := M_2 \cap T$ as maximal ideals such that $T_{\mathfrak{m}_1} = V_1$ and $T_{\mathfrak{m}_2} = V_2$. Note that $T/\mathfrak{m}_1 \cong K(W, X, Z)$

Notice that d := tr.deg.(K(W, X, Z)/K(W, X)) = 1.

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

The example

Let *K* be a field. Let (V_1, M_1) and (V_2, M_2) be incomparable valuation domains of K(W, X, Y, Z), such that dim $(V_1) = 1$ and dim $(V_2) = 3$ such that $V_1/M_1 \cong K(W, X, Z)$. Then $T := V_1 \cap V_2$ is a 3 dimensional Prüfer domain with $\mathfrak{m}_1 := M_1 \cap T$ and $\mathfrak{m}_2 := M_2 \cap T$ as maximal ideals such that $T_{\mathfrak{m}_1} = V_1$ and $T_{\mathfrak{m}_2} = V_2$. Note that $T/\mathfrak{m}_1 \cong K(W, X, Z)$

$$egin{array}{rcl} R := arphi^{-1}(\mathcal{K}[\mathcal{W},X]) &
ightarrow & \mathcal{D} := \mathcal{K}[\mathcal{W},X] \ & \downarrow & & \downarrow \ & \mathcal{T} & \stackrel{arphi}{
ightarrow} & \mathcal{T}/\mathfrak{m}_1. \end{array}$$

Notice that d := tr.deg.(K(W, X, Z)/K(W, X)) = 1.

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

The example

Let *K* be a field. Let (V_1, M_1) and (V_2, M_2) be incomparable valuation domains of K(W, X, Y, Z), such that dim $(V_1) = 1$ and dim $(V_2) = 3$ such that $V_1/M_1 \cong K(W, X, Z)$. Then $T := V_1 \cap V_2$ is a 3 dimensional Prüfer domain with $\mathfrak{m}_1 := M_1 \cap T$ and $\mathfrak{m}_2 := M_2 \cap T$ as maximal ideals such that $T_{\mathfrak{m}_1} = V_1$ and $T_{\mathfrak{m}_2} = V_2$. Note that $T/\mathfrak{m}_1 \cong K(W, X, Z)$

$$egin{array}{rcl} R := arphi^{-1}(\mathcal{K}[\mathcal{W},X]) &
ightarrow & D := \mathcal{K}[\mathcal{W},X] \ & \downarrow & & \downarrow \ & T & \stackrel{arphi}{
ightarrow} & T/\mathfrak{m}_1. \end{array}$$

Notice that d := tr.deg.(K(W, X, Z)/K(W, X)) = 1.

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

R is w-Jaffard

Thus we have: $w - \dim(R) = \max\{w - \dim(T), w - \dim(K[W, X]) + \dim(T_{m_1})\}$ $= \max\{3, 1 + 1\} = 3, \text{ and}$ $w - \dim_v(R) = \max\{w - \dim_v(T), w - \dim_v(K[W, X]) + \dim_v(T_{m_1}) + d\}$ $= \max\{3, 1 + 1 + 1\} = 3.$ This means that *R* is a *w*-alaffard domain of *w*-dimension 3.

Parviz Sahandi, University of Tabriz What pullback constructions can do for you

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

R is not Jaffard

But we have $dim(R) = \max\{dim(T), dim(\mathcal{K}[W, X]) + dim(T_{\mathfrak{m}_1})\}$ $= \max\{3, 2 + 1\} = 3, \text{ and}$ $dim_{\nu}(R) = \max\{dim_{\nu}(T), dim_{\nu}(\mathcal{K}[W, X]) + dim_{\nu}(T_{\mathfrak{m}_1}) + d\}$ $= \max\{3, 2 + 1 + 1\} = 4.$ Therefore *R* is not a Jaffard domain.

Definition of Jaffard domain Definition of *w*-Jaffard domain The desired example

THANKS FOR YOUR ATTENTION

Parviz Sahandi, University of Tabriz What pullback constructions can do for you