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Abstract

Cohen-Macaulayness of bipartite graphs is investigated by several mathematicians

and has been characterized combinatorially. In this note, we give some different combi-

natorial conditions for a bipartite graph which are equal to Cohen-Macaulayness of the

graphs. Conditions in the previous works are depending on an appropriate ordering on

vertices of the graph. The conditions presented in this paper are not depending to any

ordering. Finally, we present a fast algorithm to check Cohen-Macaulayness of a given

bipartite graph.
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Characterization and classification of Cohen-Macaulay graphs, specially bipartite graphs,

have been extensively studied in the last decades. For instance, see [1], [4], [5], [10] and [2].

Complete prerequisites for the subject are nicely written in the mentioned references and

[9]. To make this note self-contained, we review here some basic definitions.

Through out this paper, G is a finite simple graph with no any vertex of degree zero.

For two vertices v and w which are adjacent in G, we write v ∼ w. The set of all vertices

of G adjacent to a vertex v is denoted by N(v). A subset P of the set of edges is called a

perfect matching if there is no any pair of distinct edges in P with a common vertex and

any vertex in G belongs to one of edges in P .

Let [n] = {1, 2, . . . , n}. A (finite) simplicial complex ∆ on n vertices, is a collection of

subsets of [n] such that the following conditions hold:

i) {i} ∈ ∆ for any i ∈ [n],

ii) if E ∈ ∆ and F ⊆ E, then F ∈ ∆.

An element of ∆ is called a face and a maximal face with respect to inclusion is called a facet.

The dimension of a face F ∈ ∆ is defined to be |F | − 1 and dimension of ∆ is maximum of

dimensions of its faces. Faces with dimension 0 are called vertices.

Let ∆ be a simplicial complex on [n]. Let S = K[x1, . . . , xn] be the polynomial ring in n

variables with coefficients in a field K. Let I∆ be the ideal of S generated by all square-free

monomials xi1 · · ·xis provided that {i1, . . . , is} 6∈ ∆. The quotient ring K[∆] = S/I∆ is

called Stanley-Reisner ring of the simplicial complex ∆.

Let G be a graph on the vertex set V = {vl, ..., vn}. Let S = K[x1, . . . , xn]. The

edge ideal I(G), is defined to be the ideal of S generated by all square-free monomials xixj
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provided that vi is adjacent to vj in G. The quotient ring R(G) = S/I(G) is called edge

ring of G. We say that a set F ⊆ V is an independent set in G if no two of its vertices are

adjacent. Define the independence complex of G, the simplicial complex ∆G by

∆G = {F ⊆ V : F is an independent set in G}.

Let S be the polynomial ring and let I be a homogeneous ideal of S. The depth of

S/I, denoted by depth(S/I), is the largest integer r such that there is a sequence fl, . . . , fr

of homogeneous elements such that fi is not a zero-divisor in S/(I, fi, . . . , fi−1) for all

1 ≤ i ≤ r, where f0 is assumed to be 0. Furthermore, (I, fi, . . . , fr) 6= S. Such a sequence

is called a regular sequence. Depth is an important invariant of a ring. It is bounded by

another important invariant which is Krull dimension of the ring, length of the longest chain

of prime ideals. The ring S/I is called Cohen-Macaulay if depth(S/I) = dim(S/I). A graph

G (a simplicial complex ∆, respectively) is called Cohen-Macaulay if the ring R(G) (the ring

K[∆], respectively) is Cohen-Macaulay.

A simplicial complex ∆ is called pure if all its facets have the same cardinality. A graphG

is called unmixed if all maximal independent sets of vertices of G have the same cardinality.

It is clear that a graph G is unmixed if and only if the simplicial complex ∆G is pure. It is

well known that a Cohen-Macaulay simplicial complex is pure, but the converse is not true,

i.e., there are pure simplicial complexes which are not Cohen-Macaulay.

A pure simplicial complex ∆ with vertex set V , is called completely balanced if there is

a partition of V as C1, . . . , Cr such that each facet of ∆ has exactly one vertex in common

with each Ci. Here a partition means that C1 ∪ · · · ∪ Cr = V and for each i 6= j, Ci ∩

Cj = ∅. R. Stanley has studied such simplicial complexes in [8]. He proved that, in a

completely balanced simplicial complex with partition C1, . . . , Cr, the elements θ1, . . . , θr

form a homogeneous system of parameters, where

θi =
∑

x∈Ci

x.

Here by a homogeneous system of parameters in a standard graded ring R, we mean a set

of homogeneous elements θ1, . . . , θr of nonzero degrees such that dim(R/〈θ1, . . . , θr〉) = 0.

R. H. Villarreal has proved in [11] that a bipartite graph G with parts V1 and V2 is

unmixed if and only if |V1| = |V2| and there is an order on vertices of V1 and V2 as x1, . . . , xn

and y1, . . . , yn respectively, such that:

1) xi ∼ yi for i = 1, . . . , n,

2) for each 1 ≤ i < j < k ≤ n if xi ∼ yj and xj ∼ yk, then xi ∼ yk.

Then, M. Estrada and R. H. Villarreal in [1] have shown that, Cohen-Macaulayness and

shellability of a bipartite graph G are coincide and if G is Cohen-Macaulay, then, there is a

vertex v in G such that G \ {v} is again Cohen-Macaulay.

Finally, J. Herzog and T. Hibi in [4] have proved that a bipartite graph G is Cohen-

Macaulay if and only if |V1| = |V2| and there is an order on vertices of V1 and V2 as

x1, . . . , xn and y1, . . . , yn respectively, such that:

1) xi ∼ yi for i = 1, . . . , n,
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2) if xi ∼ yj, then i ≤ j,

3) for each 1 ≤ i < j < k ≤ n if xi ∼ yj and xj ∼ yk, then xi ∼ yk.

In the above criteria, one needs to find an appropriate order on vertices of G and it makes

more complicated to check Cohen-Macaulayness of a given bipartite graph in practice. Here,

we show that there is no need to have an order and one can check Cohen-Macaulayness of

a given bipartite graph in a quite short time.

Theorem 1 Let G be a bipartite graph with parts V1 and V2. Then, G is Cohen-Macaulay

if and only if there is a perfect matching in G as {x1, y1}, . . . , {xn, yn}, such that, xi ∈ V1

and yi ∈ V2 for i = 1, . . . , n, and two following conditions hold.

1) The induced subgraph on N(xi) ∪N(yi) is a complete bipartite graph, for i = 1, . . . , n.

2) If xi ∼ yj for i 6= j, then, xj 6∼ yi.

Before proving the theorem, we prove some lemmas.

Lemma 2 Let G be an unmixed bipartite graph with a perfect matching {x1, y1}, . . . , {xn, yn}.

Then, G is Cohen-Macaulay if and only if the sequence x1 + y1, . . . , xn + yn is a regular se-

quence in R(G).

Proof. The sets {x1, y1}, . . . , {xn, yn} is a partition of vertices of G and any maximal

independent set intersects each of these sets in exactly one vertex. Thus, the simplicial

complex ∆G is completely balanced. By Corollary 4.2 and its Remark in [8], x1+y1, . . . , xn+

yn is a system of parameters in R(G). By Theorem 17.4 in [6] (using graded ring instead of

local ring), R(G) is Cohen-Macaulay if and only if every system of parameters is a regular

sequence in R(G). �

Lemma 3 Let I be an ideal of S = K[x1, . . . , xn] generated by quadratic monomials. Let

for some i, j, 1 ≤ i < j ≤ n, x2
i 6∈ I and x2

j 6∈ I. Then, x̄i + x̄j is zero-divisor in S/I if and

only if one of the following conditions hold. Here, x̄i denotes the image of xi in S/I.

i) There is xk, k 6∈ {i, j} such that x̄k(x̄i + x̄j) = 0 or,

ii) there are integers k, l, 1 ≤ k < l ≤ n, both distinct from i and j, such that xkxl 6∈ I and

x̄kx̄l(x̄i + x̄j) = 0.

Proof. Without loss of generality, we may assume that i = 1 and j = 2. It is well known

that a polynomial f in S belongs to a monomial ideal I if and only if all monomials of

f are belonging to I. Let ≺ be the lexicographic order on monomials of S induced by

x1 ≻ x2 ≻ · · · ≻ xn. Let x̄1 + x̄2 be zero-divisor in S/I. Then, there is a polynomial h in

S such that h̄ is nonzero in S/I and h̄(x̄1 + x̄2) = 0 or equivalently, f = h(x1 + x2) ∈ I.

Let h = h1 + h2 + · · ·+ hr such that hi’s are monomials and h1 ≻ h2 ≻ · · · ≻ hr. We may

assume that h1 6∈ I. Now, h1x1 is the greatest monomial of f with respect to the order ≺

and can not be canceled by other monomials. Therefore, h1x1 ∈ I and there is a quadratic

monomial in generating set of I which divides h1x1 and does not divide h1. This monomial

must be of the form x1xk for some k, 1 ≤ k ≤ n. In other hand, k 6= 1 because x2
1 6∈ I, and
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x1 ∤ h1 because xk|h1 and h1 6∈ I. According to the lexicographic order, x1 does not divide

any other monomial of h. In the polynomial hx1 + hx2, in the part hx2, none of monomials

are divided by x1. In this part, h1x2 is the greatest monomial with respect to ≺ and can

not be canceled by other monomials and therefore, h1x2 ∈ I. As before, there is a quadratic

monomial in generating set of I which divides h1x2 but not h1. This monomial must be of

the form x2xl for some 2 < l ≤ n. And also, x2 ∤ h1. Now, xk|h1, xl|h1 and if k = l, then,

xk(x1 + x2) ∈ I and if k 6= l, then, xkxl 6∈ I because xkxl|h1, and xkxl(x1 + x2) ∈ I. This

completes the proof in one direction. The converse is trivial. �

Proof of Theorem 1. The proof is in 3 steps. First we prove that a bipartite graph G

is unmixed if and only if there is a perfect matching in G satisfying condition 1. Then, in

Step 2, we prove that for an unmixed bipartite graph, condition 2 is necessary for Cohen-

Macauleyness and finally in Step 3 we prove that, condition 2 is also sufficient for Cohen-

Macaulayness of such a graph.

Step 1. Let G be unmixed. There is no isolated vertex and any vertex in V1 is adjacent to

some vertices in V2. Therefore, there is no any vertex in V1 independent to the set V2. This

means that V2 is a maximal independent set in G and similarly, V1 is a maximal independent

set. Then, by unmixedness of G, |V1| = |V2|. Let A ⊆ V1 be a nonempty set and N(A) be

the set of all vertices in V2 which are adjacent to some vertices in A. Suppose |N(A)| < |A|.

There is no any edge between A and V2\N(A). Therefore, A∪(V2\N(A)) is an independent

set and its size is strictly greater than size of V2, which is a contradiction with unmixedness

of G. Therefore, |N(A)| ≥ |A| for each nonempty subset A of V1. Therefore, by Theorem of

Hall [3], there is a set of distinct representatives (SDR) for the set {{N(v)} : v ∈ V1}, which

determines a perfect matching between V1 and V2.

Now, let V1 = {x1, . . . , xn}, V2 = {y1, . . . , yn} and {x1, y1}, . . . , {xn, yn} be a perfect

matching in G. G is unmixed and any maximal independent set of vertices in G has car-

dinality n. Therefore, any maximal independent set intersects each edge of the perfect

matching in exactly one vertex. Suppose for some j, 1 ≤ j ≤ n, the induced subgraph on

N(xj) ∪N(yj) is not complete bipartite graph. Then, there are x ∈ N(yj) and y ∈ N(xj)

such that x 6∼ y. The set {x, y} is independent and so there is a maximal independent set

containing it. This maximal independent set does not meet the edge {xj , yj} which is a

contradiction. Therefore, condition 1 holds.

Conversely, let there is a perfect matching {x1, y1}, . . . , {xn, yn} in G which satisfies con-

dition 1. Let A be a maximal independent set in G. Then A meets each edge in the perfect

matching in at most one vertex. Suppose that for some j, 1 ≤ j ≤ n, A ∩ {xj , yj} = ∅.

Then, none of xj and yj is independent to A, and there are x, y ∈ A such that x ∼ yj

and y ∼ xj . But, x and y are not adjacent and the induced subgraph on N(xj) ∪N(yj) is

not complete bipartite graph, which is a contradiction. Therefore, A meets any edge in the

perfect matching and has cardinality n. It means that G is unmixed.
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Step 2. Let G be a bipartite graph with a perfect matching which satisfies condition 1

but condition 2 fails. That is, for some i and j, 1 ≤ i < j ≤ n, we have xi ∼ yj and xj ∼ yi.

Then, in the quotient ring R(G)/〈xi + yi〉, the element x̄i is not zero and x̄i(x̄j + ȳj) = 0

because x̄i = −ȳi. Therefore, x̄j + ȳj is a zero-divisor in R(G)/〈xi + yi〉. This means that

the sequence x̄1 + ȳ1, . . . , x̄n + ȳn is not a regular sequence in R(G) and by Lemma 2, R(G)

is not Cohen-Macaulay.

Step 3. Let G be a bipartite graph with a perfect matching satisfying condition 1. In

this case, dim(R(G)) = n and to prove that R(G) is Cohen-Macaulay, it is enough to show

that the sequence x̄1 + ȳ1, . . . , x̄n + ȳn is a regular sequence in R(G) (Lemma 2). For an

integer i, 1 ≤ i < n, the ring R(G)/〈x1 + y1, . . . , xi−1 + yi−1〉 can be considered to be the

ring R′(G) obtained by R(G) with identifying variables xj with −yj for j = 1, . . . , i− 1. By

Lemma 3 and its proof, the only possibility for x̄i + ȳi to be zero-divisor in R′(G) is that

there is j, 1 ≤ j ≤ i − 1, such that x̄j(x̄i + ȳi) = 0. Therefore, x̄j ȳi = 0 and x̄j x̄i = 0 or

equivalently, ȳjx̄i = 0. Therefore, xj ∼ yi and yj ∼ xi. But, in this case, condition 2 fails.

This completes the proof. �

Proposition 4 Condition 1 in Theorem 1 which is equal to unmixedness of a bipartite graph

is also equal to saying that non of the polynomials x1 + y1, . . . , xn + yn are zero-divisor in

R(G).

Proof. It is clear by Lemma 3 and Theorem 1. �

Remark 5 Condition 2 in Theorem 1 is equal to say that, for each i and j, 1 ≤ i < j ≤ n,

the induced subgraph on vertices {xi, yi, xj , yj} has connected complement.

Corollary 6 Let G be a bipartite Cohen-Macaulay graph and {xi, yi} be any edge in the

perfect matching mentioned in Theorem 1. Then, G \ {xi, yi} is again Cohen-Macaulay.

Proof. Here, by G \ {xi, yi} we mean the graph obtained by deleting vertices xi and yi

and all edges passing through one of these vertices. It is clear that if condition 1 or 2 in

Theorem 1 holds for G, then, it holds for G \ {xi, yi} for each i = 1, . . . , n. �

Proposition 7 Let G be a bipartite Cohen-Macaulay graph with parts V1 and V2. Then,

there is at least one vertex of degree one in each part.

Proof. Let y be a vertex in V2 such that for any other vertex y′ ∈ V2, we have deg(y′) ≤

deg(y). Let x ∈ V1 be the vertex such that {x, y} is in a perfect matching in G. We have

deg(x) ≥ 1. If deg(x) > 1, then there is a vertex y′ ∈ V2 \ {y} such that x ∼ y′. Let x′

be a vertex in V1 \ {x} such that {x′, y′} is in the perfect matching. G is Cohen-Macaulay

then, the induced subgraph on N(x) ∪ N(y) is a complete bipartite graph and x′ 6∈ N(y).

Then, y′ is adjacent to each vertex in N(y) ∪ {x′}. Therefore, deg(y′) > deg(y) which is a

contradiction. Therefore, deg(x) = 1. �
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Let G be a Cohen-Macaulay bipartite graph. There are some vertices in both parts with

degree one. If we remove the vertex adjacent to a vertex of degree one, the edge consisting

these two vertices in a perfect matching will be removed and the remaining graph is also

Cohen-Macaulay.

Corollary 8 Let G be a Cohen-Macaulay bipartite graph. There is a unique perfect match-

ing in G.

Proof. By Theorem 1, there is a perfect matching. Let V1 and V2 be two parts of G. Let P

be a perfect matching in G. By the above proposition, there is a vertex of degree one in V1.

Let x1 be the vertex and y1 ∈ V2 be the unique vertex adjacent to x1. Then {x1, y1} ∈ P .

The graph G \ {x1, y1} is again Cohen-Macaulay and V1 \ {x1} has a vertex of degree one as

x2. Let y2 ∈ V2 \ {y1} be the unique vertex adjacent to x2. Then, {x2, y2} ∈ P . Continuing

this process, determines P uniquely. �

Corollary 9 Let G be an unmixed bipartite graph. Then, the following conditions are equiv-

alent.

i) G is Cohen-Macaulay.

ii) There is a unique perfect matching in G.

iii) For each two edges e1, e2 in a perfect matching, complement of the induced subgraph on

vertices of e1 and e2 is connected.

Proof. (i→ii) is proved in Corollary 8. Let G be unmixed but not Cohen-Macaulay. Then,

there is a perfect matching and two edges in the perfect matching as {xi, yi} and {xj , yj}

such that xi ∼ yj and xj ∼ yi. Substituting {xi, yi} and {xj , yj} by {xi, yj} and {xj, yi},

we get a different perfect matching. This proves (ii→i). Equality of i and iii is clear by

Theorem 1 and Remark 5. �

For a given bipartite graph G, we present a fast polynomial-time algorithm to check

wether G is Cohen-Macaulay or not.

Algorithm 10 Let G be a given bipartite graph with m vertices.

Step 1. Take i = 0. If m is not even, then, go to Step 7.

Step 2. If there is no any vertex with degree 1 in G, go to Step 7.

Step 3. Take i = i+1. Choose a vertex of degree one and name it xi. Name the vertex

adjacent to xi to be yi. Take G = G \ {xi, yi}. If i < n, go to Step 2.

Step 4. If there is j, 1 ≤ j ≤ n such that, a vertex in N(xj) and a vertex in N(yj)

are not adjacent, then, go to Step 7.

Step 5. If there are i, j, 1 ≤ i < j ≤ n such that xi ∼ yj and xj ∼ yi, then, go to

Step 7.

Step 6. Write ”G is Cohen-Macaulay” and end the algorithm.

6



Step 7. Write ”G is not Cohen-Macaulay” and end the algorithm.

In Step 3, G \ {xi, yi} is the induced subgraph of G on vertex set V (G) \ {xi, yi}.

Note that the assumption that there is no vertex of degree zero in G is not really a

restriction in the class of all bipartite graphs for Cohen-Macaulayness. Because, any graph

with only one vertex is Cohen-Macaulay and disjoint union of two graphs is Cohen-Macaulay

if and only if both of them are Cohen-Macaulay. Therefore, in a given bipartite graph G we

may omit all isolated vertices and check Cohen-Macaulayness of the remaining graph.

Some of results of this paper were already known. For example, equality of unmixedness

of a bipartite graph with condition 1 in Theorem 1 is proved in [7]. But, the aim of this work

was gathering together these results and reformulate and reprove them in a constructive way

such that an algorithm can be obtained. Also we hope that the proofs in this paper give

some ideas to find the same results in a larger class consisting of r-partite graphs which have

some separated maximal cliques covering all vertices.
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