Exceptional sequences

Hagen Meltzer

(Szczecin University, Szczecin, Poland)

Abstract

Let k be a field and \mathcal{H} be a hereditary k-category. An object E in \mathcal{H} is called exceptional if $\operatorname{Ext}^1(E,E)=0$ and $\operatorname{End}(E)$ is a skew field. A sequence $\epsilon=(E_1,\ldots,E_n)$ is called an exceptional sequence if $\operatorname{Hom}(E_i,E_j)=0$ and $\operatorname{Ext}^1(E_i,E_j)=0$ for i>j. If n coincides with the rank of the Grothendieck group of \mathcal{H} then ϵ is called a full exceptional sequence. In good cases the objects of a full exceptional sequence can be ordered to form a tilting object in \mathcal{H} .

Crawley-Boevey has shown that the braid group on n stirngs acts transitively on the set of all exceptional sequences in the category of finite-dimensional modules over a hereditary k-algebra. Ringel generalized this result to the case of an artin algebra. The same result is true if \mathcal{H} is the category of coheernt sheaves on a weighted projective line in the sense of Geigle and Lenzing. As a consequence we obtain that the endomorphism ring of any exceptional object is k.