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Vertex cover algebras

@ Let A be a simplicial complex on [n], and k a nonnegative
integer. A k-cover of A is a nonzero vector
Cc=(C1,...,cn) e N"with >~ - ¢ > k forall F € F(A).
The k-cover c is called squarefree if ¢; € {0,1} for all i.



Vertex cover algebras

@ Let A be a simplicial complex on [n], and k a nonnegative
integer. A k-cover of A is a nonzero vector
Cc=(C1,...,cn) e N"with >~ - ¢ > k forall F € F(A).
The k-cover c is called squarefree if ¢; € {0,1} for all i.

@ A k-cover c is decomposable if there exist an i-cover a and
a j-cover b as follows:
Qc=a+b;
Qk=i+j;
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Vertex cover algebra

A(L) = P I (L)t* C STt]

k>0



@ For any subset F C [n], let Pr denotes the prime ideal of S
generated by the variables x; withi € F. Then

I(a)Y = N P,:
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@ For any subset F C [n], let Pr denotes the prime ideal of S
generated by the variables x; withi € F. Then

I(a)Y = N P,:

FeF(A
where I(A) is the facet ideal of A.

@ A(A) is the symbolic Rees algebra of I(A)Y.
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Squarefree vertex cover algebra

@ Let B(A) be the S-subalgebra of S[t] generated by the
elements x°tk where ¢ is a squarefree k-cover. The
algebra B(A) is called the squarefree vertex cover algebra
of A.

@ Observe that B(A) is a graded S-algebra,

B(A) = P Lu(A)-.

k>0

Each Ly (A) is a monomial ideal in S and Ly (A) C Jk (4).
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@ For a monomial ideal | C S, we denote by 139 the
squarefree monomial ideal generated by all squarefree
monomials u € I.

@ The k-th squarefree power of a monomial ideal |, denoted
by 1), is defined to be (1¥)39.

@ Proposition.
() Le(A) = Neerea) P
(i) The algebra B(A) is standard graded if and only if
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@ Theorem. Let A be of dimensiond — 1, and
ke{l,...,d}. Then

L (A)% C 1(ACK)Y forall k.
Furthermore, the following conditions are equivalent:

(i) Ais a pure simplicial complex;
(i) Le(A)% = 1(AUE-K)V  for some k # 1;
(i) L(A)S9 = 1(AE=FN)Y forall K.

@ Corollary. Let A be a pure simplicial complex of
dimensiond — 1. Then

L (A(d—i))sq =L (A(d—j))sq
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@ LetP = {p1,...,pm} be afinite posetand d > 1 an
integer. Let Ad(P) be the simplicial complex for which
[(Ag(P))Y = Hq(P), the generalized Hibi ideal. Then

1(Ag(P)M)Y = (1(Ag(P)Y)@ forall k
Therefore, B(A4(P)) is standard graded.

® Theorem. One even has the S-algebra A(A4(P)) is
standard graded.
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It is of great interest to know when A(A) is a standard
graded algebra.

@ Combinatorially, that means every k-cover of A can be
written as a sum of k 1-covers.

@ |deal-theoretically, that means the symbolic powers of
I(A)Y coincide with the ordinary powers.

@ By a result of Herzog, Hibi and Trung, the Rees algebra of
I(A)Y is a Cohen-Macaulay normal domain. Therefore, the
associated graded ring of I(A)Y is also Cohen-Macaulay.
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@ Furthermore, by a result of Huneke, Ulrich and
Vasconcelos, the associated graded ring of I(A)Y is
reduced, and I(A)Y is normally torsion free.

@ (Herzog, Hibi, Trung and Zheng) In addition, assume that
[(A)V is generated in one degree. Let k[I(A)V] denote the
toric ring generated by the monomial generators of 1(A)".
Then k[I(A)Y] is a normal Cohen-Macaulay domain.



Questions

(1) I1s A(A) standard graded if and only if B(A) is standard
graded?

(2) When do we have A(A) = B(A)?
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@ In general Question (1) does not have a positive answer.

Let A be the simplicial complex with the following facets:

{1,2},{3,4},{5,6},{7,8},{1,3,7},{1,4,8},
{3,5,7},{4,5,8},{2,3,6,8},{2,4,6,7}

The vectorc = (1,1,1,1,2,0,1,1) is an indecomposable
2-cover of A, and hence A(A) is not standard graded.

However B(A) is standard graded.
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@ Theorem. Let G be a graph, and suppose A is the
simplicial complex with I(A) = I(G)Y. Then B(A) is
standard graded if and only if A(A) is standard graded.



@ A subcomplex I of A, denoted by I' C A, is a simplicial
complex such that 7(I') C F(A).



@ A subcomplex I of A, denoted by I' C A, is a simplicial
complex such that 7(I') C F(A).

@ A cycle of length r of A is a sequence
i1, Fe,ip, ..., Fr, ir+1 =iy where Fj S F(A), ij S [n] and
Vj,Viyr € Fjforj=1,....r.



@ A subcomplex I of A, denoted by I' C A, is a simplicial
complex such that 7(I') C F(A).

@ A cycle of length r of A is a sequence
i1, Fe,ip, ..., Fr, ir+1 =iy where Fj S F(A), ij S [n] and
Vj,Viyr € Fjforj=1,....r.

@ A cycle is called special if each facet of the cycle contains
exactly two vertices of the cycle.



@ Theorem. Let A be a simplicial complex. Then the
following conditions are equivalent:
(i) The algebra B(I') is standard graded for all T C A;
(i) The algebra A(T) is standard graded for all ' C A;
(iii) A has no special odd cycles.



Equality of the algebras

@ Theorem. Let G be a finite graph on [n]. Then the
following conditions are equivalent:
(i) A(G) = B(G);
(if) For every cycle C of G of odd length and for every vertex i
of G there exist a vertex j of the cycle C such that {i,j} is
an edge of G.



The facets of A form the special odd cycle 6,F,,2,F,, 4, F3, 6 of
length 3 and the equality B(A) = A(A) holds.

1




This figure shows a simplicial complex A of dimension 2 such
that

1,F1,2,F3,3,F3,4,F4,5,F5,1
is a special odd cycle of length 5. In this case B(A) # A(A).



Equality of the algebras

@ Let A be a simplicial complex with F(A) = {F1,...,Fm}.
We say that A has the strict intersection property if
(i) [FinFj| < 1foralli #j;
(i) Fi N Fj N Fy = 0 for pairwise distinct i,j and k.
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Equality of the algebras

@ Let A be a simplicial complex with F(A) = {F1,...,Fm}.
We say that A has the strict intersection property if
(i) [FinFj| < 1foralli #j;
(i) Fi N Fj N Fy = 0 for pairwise distinct i,j and k.

@ We define the intersection graph Ga of such a simplicial
complex A as follows:
V(GA) = {V]_, R ,Vm}
E(Ga) ={{vi,vj}: i#] and FnF #0}

@ Let A be a simplicial complex satisfying the strict
intersection property and suppose that no two cycles of
Ga have precisely two edges in common. Then
B(A) = A(A) if and only if each connected component of
G is a bipartite graph or an odd cycle.



Vi

Vy V2

V3
The intersection graph of A; and A,
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Vertex cover algebra of Borel sets

@ A subset B € 2[" is called Borel, if whenever F € B and
i <jforsomeie[n]\FandjeF,then(F\{j})u{i} e B.

@ Elements Fy,...,Fy € B are called Borel generators of B,
denoted by B = B(F4,...,Fm), if B is the smallest Borel
subset of 2" such that Fy,...,Fm € B.

@ A Borel set B is called principal, if there exists F € B such
that B = B(F).



Vertex cover algebra of Borel sets

@ A squarefree monomial ideal | C S is called a (principal)

squarefree Borel ideal, if there exists a (principal) Borel set
B C 2" such that

| = ({xe: F € B}).

If B=B(F1,...,Fm), then the monomials xg,, ..., X, are
called the Borel generators of I.



Vertex cover algebra of Borel sets

@ Theorem. Let B = B(F) be a principal Borel set with Borel
generator F = {i; <i, < --- <ig}, and let A be the
simplicial complex with F(A) = B. Then the S-algebra

B(A) is generated by the elements xytk, for k=1,...,d,
where

HeB({q,9+1,...ikygq-1}: 9=1,...,d =k +1).



Vertex cover algebra of Borel sets

@ In order to compute the generators of B(A) in more
general case, one can use the fact (I +J)¥ =1V N JV for all
monomial ideals | and J.



Vertex cover algebra of Borel sets

@ In order to compute the generators of B(A) in more
general case, one can use the fact (I +J)¥ =1V N JV for all
monomial ideals | and J.

@ Proposition. Let B =B(Fy,...,Fn) be a Borel set such
that |F;| = |F;| for all i, j, and suppose A is a simplicial
complex with F(A) = B. Then L (A) is a squarefree
Borel ideal for all k.



Vertex cover algebra of Borel sets

@ Theorem. Let B = B(F) be a principal Borel set with Borel
generator F = {i; <i» < --- <ig}, and let A be the
simplicial complex with F(A) = B. Then B(A0)) = A(AD)
foreveryj=0,...,d — 1.



Vertex cover algebra of Borel sets

@ Corollary. Let X, denote the simplex of all subsets of [n].

Then the S-algebra A(X, yd-1 ) is minimally generated by

ials Xi X - - k
the monomials x;, x;, - - - X, t, wherek =1,...,d and

1<jii<pp< - <jn—dtk <N



Vertex cover algebra of Borel sets

@ Corollary. Let X, denote the simplex of all subsets of [n].

Then the S-algebra A(X, yd-1 ) is minimally generated by
the monomials x;,x;, - - - Xj,_,,,t<, wherek = 1,...,d and
1<ji<jp<- - <jr-dtk <N.

@ Proposition. Let B = B(F) be a principal Borel set with
Borel generator F = {i; < iy < --- <lg}, and let A be the
simplicial complex with 7(A) = B. Then x1x; - - - Xt
belongs to the minimal set of monomial generators of A(A)
if and only if iy # 1.



