# Squarefree vertex cover algebras

Shamila Bayati

Joint work with Farhad Rahmati

Amirkabir University of Technology

Tehran, February 2012

## Vertex cover algebras

• Let  $\Delta$  be a simplicial complex on [n], and k a nonnegative integer. A k-cover of  $\Delta$  is a nonzero vector  $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{N}^n$  with  $\sum_{i \in F} c_i \geq k$  for all  $F \in \mathcal{F}(\Delta)$ . The k-cover  $\mathbf{c}$  is called squarefree if  $c_i \in \{0, 1\}$  for all i.

## Vertex cover algebras

- Let  $\Delta$  be a simplicial complex on [n], and k a nonnegative integer. A k-cover of  $\Delta$  is a nonzero vector  $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{N}^n$  with  $\sum_{i \in F} c_i \geq k$  for all  $F \in \mathcal{F}(\Delta)$ . The k-cover  $\mathbf{c}$  is called squarefree if  $c_i \in \{0, 1\}$  for all i.
- A k-cover c is decomposable if there exist an i-cover a and a j-cover b as follows:
  - **1** c = a + b:
  - k=i+j;

- Let  $S = K[x_1, \dots, x_n]$  be a polynomial ring over a field K.
- We denote by  $J_k(\Delta)$  the K-vector space spanned by the monomials  $x^c$  where c is a k-cover.

- Let  $S = K[x_1, \dots, x_n]$  be a polynomial ring over a field K.
- We denote by  $J_k(\Delta)$  the K-vector space spanned by the monomials  $x^c$  where c is a k-cover.
- $J_k(\Delta) \subseteq S$  is an ideal.

- Let  $S = K[x_1, \dots, x_n]$  be a polynomial ring over a field K.
- We denote by  $J_k(\Delta)$  the K-vector space spanned by the monomials  $x^c$  where c is a k-cover.
- $J_k(\Delta) \subseteq S$  is an ideal.
- $J_k(\Delta)J_\ell(\Delta) \subseteq J_{k+\ell}(\Delta)$  for all k and  $\ell$ .

- Let  $S = K[x_1, \dots, x_n]$  be a polynomial ring over a field K.
- We denote by  $J_k(\Delta)$  the K-vector space spanned by the monomials  $x^c$  where c is a k-cover.
- $J_k(\Delta) \subseteq S$  is an ideal.
- $J_k(\Delta)J_\ell(\Delta) \subseteq J_{k+\ell}(\Delta)$  for all k and  $\ell$ .

#### Vertex cover algebra

$$A(\Delta) = \bigoplus_{k \geq 0} J_k(\Delta)t^k \subseteq S[t]$$

• For any subset  $F \subseteq [n]$ , let  $P_F$  denotes the prime ideal of S generated by the variables  $x_i$  with  $i \in F$ . Then

$$I(\Delta)^{\vee} = \bigcap_{F \in \mathcal{F}(\Delta)} P_F.$$

where  $I(\Delta)$  is the facet ideal of  $\Delta$ .

• For any subset  $F \subseteq [n]$ , let  $P_F$  denotes the prime ideal of S generated by the variables  $x_i$  with  $i \in F$ . Then

$$I(\Delta)^{\vee} = \bigcap_{F \in \mathcal{F}(\Delta)} P_F.$$

where  $I(\Delta)$  is the facet ideal of  $\Delta$ .

•  $A(\Delta)$  is the symbolic Rees algebra of  $I(\Delta)^{\vee}$ .

## Squarefree vertex cover algebra

• Let  $B(\Delta)$  be the S-subalgebra of S[t] generated by the elements  $x^{\mathbf{c}}t^k$  where  $\mathbf{c}$  is a squarefree k-cover. The algebra  $B(\Delta)$  is called the squarefree vertex cover algebra of  $\Delta$ .

### Squarefree vertex cover algebra

- Let  $B(\Delta)$  be the S-subalgebra of S[t] generated by the elements  $x^{\mathbf{c}}t^k$  where  $\mathbf{c}$  is a squarefree k-cover. The algebra  $B(\Delta)$  is called the squarefree vertex cover algebra of  $\Delta$ .
- Observe that  $B(\Delta)$  is a graded S-algebra,

$$B(\Delta) = \bigoplus_{k \geq 0} L_k(\Delta) t^k.$$

Each  $L_k(\Delta)$  is a monomial ideal in S and  $L_k(\Delta) \subseteq J_k(\Delta)$ .

• For a monomial ideal  $I \subseteq S$ , we denote by  $I^{sq}$  the squarefree monomial ideal generated by all squarefree monomials  $u \in I$ .

- For a monomial ideal  $I \subseteq S$ , we denote by  $I^{sq}$  the squarefree monomial ideal generated by all squarefree monomials  $u \in I$ .
- The k-th squarefree power of a monomial ideal I, denoted by  $I^{\langle k \rangle}$ , is defined to be  $(I^k)^{sq}$ .

- For a monomial ideal  $I \subseteq S$ , we denote by  $I^{sq}$  the squarefree monomial ideal generated by all squarefree monomials  $u \in I$ .
- The k-th squarefree power of a monomial ideal I, denoted by  $I^{\langle k \rangle}$ , is defined to be  $(I^k)^{sq}$ .
- Proposition.

(i) 
$$L_k(\Delta)^{sq} = \bigcap_{F \in \mathcal{F}(\Delta)} P_F^{\langle k \rangle}$$
.

- For a monomial ideal  $I \subseteq S$ , we denote by  $I^{sq}$  the squarefree monomial ideal generated by all squarefree monomials  $u \in I$ .
- The k-th squarefree power of a monomial ideal I, denoted by  $I^{\langle k \rangle}$ , is defined to be  $(I^k)^{sq}$ .
- Proposition.
  - (i)  $L_k(\Delta)^{sq} = \bigcap_{F \in \mathcal{F}(\Delta)} P_F^{\langle k \rangle}$ .
  - (ii) The algebra  $B(\Delta)$  is standard graded if and only if

$$\bigcap_{F\in\mathcal{F}(\Delta)} P_F^{\langle k\rangle} = \big(\bigcap_{F\in\mathcal{F}(\Delta)} P_F\big)^{\langle k\rangle}.$$

• Theorem. Let  $\Delta$  be of dimension d-1, and  $k \in \{1, \dots, d\}$ . Then

$$L_k(\Delta)^{sq} \subseteq I(\Delta^{(d-k)})^{\vee}$$
 for all  $k$ .

• Theorem. Let  $\Delta$  be of dimension d-1, and  $k \in \{1, \dots, d\}$ . Then

$$L_k(\Delta)^{sq} \subseteq I(\Delta^{(d-k)})^{\vee}$$
 for all  $k$ .

Furthermore, the following conditions are equivalent:

- (i)  $\Delta$  is a pure simplicial complex;
- (ii)  $L_k(\Delta)^{sq} = I(\Delta^{(d-k)})^{\vee}$  for some  $k \neq 1$ ;
- (iii)  $L_k(\Delta)^{sq} = I(\Delta^{(d-k)})^{\vee}$  for all k.

• Theorem. Let  $\Delta$  be of dimension d-1, and  $k \in \{1, \dots, d\}$ . Then

$$L_k(\Delta)^{sq} \subseteq I(\Delta^{(d-k)})^{\vee}$$
 for all  $k$ .

Furthermore, the following conditions are equivalent:

- (i) ∆ is a pure simplicial complex;
- (ii)  $L_k(\Delta)^{sq} = I(\Delta^{(d-k)})^{\vee}$  for some  $k \neq 1$ ;
- (iii)  $L_k(\Delta)^{sq} = I(\Delta^{(d-k)})^{\vee}$  for all k.
- Corollary. Let  $\Delta$  be a pure simplicial complex of dimension d-1. Then

$$L_j(\Delta^{(d-i)})^{sq} = L_i(\Delta^{(d-j)})^{sq}$$

• Corollary. Let  $\Delta$  be a pure simplicial complex of dimension d-1. Then

$$I(\Delta^{(k)})^{\vee} = (I(\Delta)^{\vee})^{\langle d-k \rangle}$$
 for all  $k$ ,

if and only if  $B(\Delta)$  is standard graded.

• Corollary. Let  $\triangle$  be a pure simplicial complex of dimension d-1. Then

$$I(\Delta^{(k)})^{\vee} = (I(\Delta)^{\vee})^{\langle d-k \rangle}$$
 for all  $k$ ,

if and only if  $B(\Delta)$  is standard graded.

• Let  $P = \{p_1, \dots, p_m\}$  be a finite poset and  $d \ge 1$  an integer. Let  $\Delta_d(P)$  be the simplicial complex for which  $I(\Delta_d(P))^{\vee} = H_d(P)$ , the generalized Hibi ideal. Then

$$I(\Delta_d(P)^{(k)})^{\vee} = (I(\Delta_d(P))^{\vee})^{\langle d-k \rangle}$$
 for all  $k$ 

Therefore,  $B(\Delta_d(P))$  is standard graded.

• Corollary. Let  $\triangle$  be a pure simplicial complex of dimension d-1. Then

$$I(\Delta^{(k)})^{\vee} = (I(\Delta)^{\vee})^{\langle d-k \rangle}$$
 for all  $k$ ,

if and only if  $B(\Delta)$  is standard graded.

• Let  $P = \{p_1, \dots, p_m\}$  be a finite poset and  $d \ge 1$  an integer. Let  $\Delta_d(P)$  be the simplicial complex for which  $I(\Delta_d(P))^{\vee} = H_d(P)$ , the generalized Hibi ideal. Then

$$I(\Delta_d(P)^{(k)})^{\vee} = (I(\Delta_d(P))^{\vee})^{\langle d-k \rangle}$$
 for all  $k$ 

Therefore,  $B(\Delta_d(P))$  is standard graded.

• **Theorem.** One even has the S-algebra  $A(\Delta_d(P))$  is standard graded.

• Corollary. Let  $\triangle$  be a pure simplicial complex of dimension d-1. Then

$$I(\Delta^{(k)})^{\vee} = (I(\Delta)^{\vee})^{\langle d-k \rangle}$$
 for all  $k$ ,

if and only if  $B(\Delta)$  is standard graded.

• Let  $P = \{p_1, \dots, p_m\}$  be a finite poset and  $d \ge 1$  an integer. Let  $\Delta_d(P)$  be the simplicial complex for which  $I(\Delta_d(P))^{\vee} = H_d(P)$ , the generalized Hibi ideal. Then

$$I(\Delta_d(P)^{(k)})^{\vee} = (I(\Delta_d(P))^{\vee})^{\langle d-k \rangle}$$
 for all  $k$ 

Therefore,  $B(\Delta_d(P))$  is standard graded.

• **Theorem.** One even has the S-algebra  $A(\Delta_d(P))$  is standard graded.

It is of great interest to know when  $A(\Delta)$  is a standard

graded algebra.

It is of great interest to know when  $A(\Delta)$  is a standard graded algebra.

• Combinatorially, that means every k-cover of  $\Delta$  can be written as a sum of k 1-covers.

It is of great interest to know when  $A(\Delta)$  is a standard graded algebra.

- Combinatorially, that means every k-cover of  $\Delta$  can be written as a sum of k 1-covers.
- Ideal-theoretically, that means the symbolic powers of  $I(\Delta)^{\vee}$  coincide with the ordinary powers.

It is of great interest to know when  $A(\Delta)$  is a standard graded algebra.

- Combinatorially, that means every k-cover of  $\Delta$  can be written as a sum of k 1-covers.
- Ideal-theoretically, that means the symbolic powers of  $I(\Delta)^{\vee}$  coincide with the ordinary powers.
- By a result of Herzog, Hibi and Trung, the Rees algebra of  $I(\Delta)^{\vee}$  is a Cohen-Macaulay normal domain. Therefore, the associated graded ring of  $I(\Delta)^{\vee}$  is also Cohen-Macaulay.

• Furthermore, by a result of Huneke, Ulrich and Vasconcelos, the associated graded ring of  $I(\Delta)^{\vee}$  is reduced, and  $I(\Delta)^{\vee}$  is normally torsion free.

- Furthermore, by a result of Huneke, Ulrich and Vasconcelos, the associated graded ring of  $I(\Delta)^{\vee}$  is reduced, and  $I(\Delta)^{\vee}$  is normally torsion free.
- (Herzog, Hibi, Trung and Zheng) In addition, assume that  $I(\Delta)^{\vee}$  is generated in one degree. Let  $k[I(\Delta)^{\vee}]$  denote the toric ring generated by the monomial generators of  $I(\Delta)^{\vee}$ . Then  $k[I(\Delta)^{\vee}]$  is a normal Cohen-Macaulay domain.

#### **Questions**

- (1) Is  $A(\Delta)$  standard graded if and only if  $B(\Delta)$  is standard graded?
- (2) When do we have  $A(\Delta) = B(\Delta)$ ?



In general Question (1) does not have a positive answer.

Let  $\Delta$  be the simplicial complex with the following facets:

```
\{1,2\}, \{3,4\}, \{5,6\}, \{7,8\}, \{1,3,7\}, \{1,4,8\}, \{3,5,7\}, \{4,5,8\}, \{2,3,6,8\}, \{2,4,6,7\}
```

In general Question (1) does not have a positive answer.
 Let Δ be the simplicial complex with the following facets:

$$\{1,2\}, \{3,4\}, \{5,6\}, \{7,8\}, \{1,3,7\}, \{1,4,8\}, \{3,5,7\}, \{4,5,8\}, \{2,3,6,8\}, \{2,4,6,7\}$$

The vector  $\mathbf{c} = (1, 1, 1, 1, 2, 0, 1, 1)$  is an indecomposable 2-cover of  $\Delta$ , and hence  $A(\Delta)$  is not standard graded.

In general Question (1) does not have a positive answer.

Let  $\boldsymbol{\Delta}$  be the simplicial complex with the following facets:

$$\{1,2\}, \{3,4\}, \{5,6\}, \{7,8\}, \{1,3,7\}, \{1,4,8\}, \{3,5,7\}, \{4,5,8\}, \{2,3,6,8\}, \{2,4,6,7\}$$

The vector  $\mathbf{c} = (1, 1, 1, 1, 2, 0, 1, 1)$  is an indecomposable 2-cover of  $\Delta$ , and hence  $A(\Delta)$  is not standard graded.

However  $B(\Delta)$  is standard graded.

Theorem. Let G be a finite simple graph. Then B(G) is

standard graded if and only if A(G) is standard graded.

- **Theorem.** Let G be a finite simple graph. Then B(G) is standard graded if and only if A(G) is standard graded.
- **Theorem.** Let G be a graph, and suppose  $\Delta$  is the simplicial complex with  $I(\Delta) = I(G)^{\vee}$ . Then  $B(\Delta)$  is standard graded if and only if  $A(\Delta)$  is standard graded.

• A subcomplex  $\Gamma$  of  $\Delta$ , denoted by  $\Gamma \subseteq \Delta$ , is a simplicial complex such that  $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$ .

- A subcomplex  $\Gamma$  of  $\Delta$ , denoted by  $\Gamma \subseteq \Delta$ , is a simplicial complex such that  $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$ .
- A cycle of length r of  $\Delta$  is a sequence  $i_1, F_1, i_2, \ldots, F_r, i_{r+1} = i_1$  where  $F_j \in \mathcal{F}(\Delta), i_j \in [n]$  and  $v_i, v_{i+1} \in F_i$  for  $j = 1, \ldots, r$ .

- A subcomplex  $\Gamma$  of  $\Delta$ , denoted by  $\Gamma \subseteq \Delta$ , is a simplicial complex such that  $\mathcal{F}(\Gamma) \subseteq \mathcal{F}(\Delta)$ .
- A cycle of length r of  $\Delta$  is a sequence  $i_1, F_1, i_2, \ldots, F_r, i_{r+1} = i_1$  where  $F_j \in \mathcal{F}(\Delta), i_j \in [n]$  and  $v_j, v_{j+1} \in F_j$  for  $j = 1, \ldots, r$ .
- A cycle is called special if each facet of the cycle contains exactly two vertices of the cycle.

- Theorem. Let Δ be a simplicial complex. Then the following conditions are equivalent:
  - (i) The algebra  $B(\Gamma)$  is standard graded for all  $\Gamma \subseteq \Delta$ ;
  - (ii) The algebra  $A(\Gamma)$  is standard graded for all  $\Gamma \subseteq \Delta$ ; (iii)  $\Delta$  has no special odd cycles.

- **Theorem.** Let G be a finite graph on [n]. Then the following conditions are equivalent:
  - (i) A(G) = B(G);
  - (ii) For every cycle C of G of odd length and for every vertex i of G there exist a vertex j of the cycle C such that  $\{i, j\}$  is an edge of G.

The facets of  $\Delta$  form the special odd cycle 6,  $F_1$ , 2,  $F_2$ , 4,  $F_3$ , 6 of length 3 and the equality  $B(\Delta) = A(\Delta)$  holds.



This figure shows a simplicial complex  $\Delta$  of dimension 2 such that

$$1, F_1, 2, F_2, 3, F_3, 4, F_4, 5, F_5, 1$$

is a special odd cycle of length 5. In this case  $B(\Delta) \neq A(\Delta)$ .



- Let  $\Delta$  be a simplicial complex with  $\mathcal{F}(\Delta) = \{F_1, \dots, F_m\}$ . We say that  $\Delta$  has the strict intersection property if
  - (i)  $|F_i \cap F_j| \le 1$  for all  $i \ne j$ ;
  - (ii)  $F_i \cap F_j \cap F_k = \emptyset$  for pairwise distinct i, j and k.

- Let  $\Delta$  be a simplicial complex with  $\mathcal{F}(\Delta) = \{F_1, \dots, F_m\}$ . We say that  $\Delta$  has the strict intersection property if
  - (i)  $|F_i \cap F_i| \le 1$  for all  $i \ne j$ ;
  - (ii)  $F_i \cap F_j \cap F_k = \emptyset$  for pairwise distinct i,j and k.
- We define the intersection graph  $G_{\Delta}$  of such a simplicial complex  $\Delta$  as follows:

$$V(G_{\Delta}) = \{v_1, \dots, v_m\}$$

$$E(G_{\Delta}) = \{\{v_i, v_j\}: i \neq j \text{ and } F_i \cap F_j \neq \emptyset\}$$

- Let Δ be a simplicial complex with F(Δ) = {F<sub>1</sub>,..., F<sub>m</sub>}. We say that Δ has the strict intersection property if
  (i) |F<sub>i</sub> ∩ F<sub>j</sub>| ≤ 1 for all i ≠ j;
  (ii) F<sub>i</sub> ∩ F<sub>i</sub> ∩ F<sub>k</sub> = ∅ for pairwise distinct i,j and k.
- We define the intersection graph  $G_{\Delta}$  of such a simplicial complex  $\Delta$  as follows:

$$V(G_{\Delta}) = \{v_1, \dots, v_m\}$$

$$E(G_{\Delta}) = \{\{v_i, v_j\}: i \neq j \text{ and } F_i \cap F_j \neq \emptyset\}$$

Let Δ be a simplicial complex satisfying the strict intersection property and suppose that no two cycles of G<sub>Δ</sub> have precisely two edges in common. Then B(Δ) = A(Δ) if and only if each connected component of G<sub>Δ</sub> is a bipartite graph or an odd cycle.



• A subset  $\mathcal{B} \in 2^{[n]}$  is called Borel, if whenever  $F \in B$  and i < j for some  $i \in [n] \setminus F$  and  $j \in F$ , then  $(F \setminus \{j\}) \cup \{i\} \in \mathcal{B}$ .

- A subset  $\mathcal{B} \in 2^{[n]}$  is called Borel, if whenever  $F \in B$  and i < j for some  $i \in [n] \setminus F$  and  $j \in F$ , then  $(F \setminus \{j\}) \cup \{i\} \in \mathcal{B}$ .
- Elements  $F_1, \ldots, F_m \in \mathcal{B}$  are called Borel generators of  $\mathcal{B}$ , denoted by  $\mathcal{B} = B(F_1, \ldots, F_m)$ , if  $\mathcal{B}$  is the smallest Borel subset of  $2^{[n]}$  such that  $F_1, \ldots, F_m \in \mathcal{B}$ .

- A subset  $\mathcal{B} \in 2^{[n]}$  is called Borel, if whenever  $F \in B$  and i < j for some  $i \in [n] \setminus F$  and  $j \in F$ , then  $(F \setminus \{j\}) \cup \{i\} \in \mathcal{B}$ .
- Elements  $F_1, \ldots, F_m \in \mathcal{B}$  are called Borel generators of  $\mathcal{B}$ , denoted by  $\mathcal{B} = B(F_1, \ldots, F_m)$ , if  $\mathcal{B}$  is the smallest Borel subset of  $2^{[n]}$  such that  $F_1, \ldots, F_m \in \mathcal{B}$ .
- A Borel set B is called principal, if there exists  $F \in \mathcal{B}$  such that  $\mathcal{B} = \mathcal{B}(F)$ .

A squarefree monomial ideal I ⊆ S is called a (principal) squarefree Borel ideal, if there exists a (principal) Borel set B ⊆ 2<sup>[n]</sup> such that

$$I = (\{x_F \colon F \in \mathcal{B}\}).$$

If  $\mathcal{B} = B(F_1, \dots, F_m)$ , then the monomials  $x_{F_1}, \dots, x_{F_m}$  are called the Borel generators of I.

• **Theorem.** Let  $\mathcal{B} = B(F)$  be a principal Borel set with Borel generator  $F = \{i_1 < i_2 < \cdots < i_d\}$ , and let  $\Delta$  be the simplicial complex with  $\mathcal{F}(\Delta) = \mathcal{B}$ . Then the S-algebra  $B(\Delta)$  is generated by the elements  $x_H t^k$ , for  $k=1,\ldots,d$ , where

$$H \in B(\{q, q+1, \dots i_{k+q-1}\}): q = 1, \dots, d-k+1.$$

 In order to compute the generators of B(Δ) in more general case, one can use the fact (I + J)<sup>∨</sup> = I<sup>∨</sup> ∩ J<sup>∨</sup> for all monomial ideals I and J.

- In order to compute the generators of B(Δ) in more general case, one can use the fact (I + J)<sup>∨</sup> = I<sup>∨</sup> ∩ J<sup>∨</sup> for all monomial ideals I and J.
- **Proposition.** Let  $\mathcal{B} = B(F_1, \dots, F_m)$  be a Borel set such that  $|F_i| = |F_j|$  for all i, j, and suppose  $\Delta$  is a simplicial complex with  $\mathcal{F}(\Delta) = \mathcal{B}$ . Then  $L_k(\Delta)^{sq}$  is a squarefree Borel ideal for all k.

• **Theorem.** Let  $\mathcal{B} = B(F)$  be a principal Borel set with Borel generator  $F = \{i_1 < i_2 < \cdots < i_d\}$ , and let  $\Delta$  be the simplicial complex with  $\mathcal{F}(\Delta) = \mathcal{B}$ . Then  $B(\Delta^{(j)}) = A(\Delta^{(j)})$  for every  $j = 0, \ldots, d-1$ .

• **Corollary.** Let  $\Sigma_n$  denote the simplex of all subsets of [n]. Then the S-algebra  $A(\Sigma_n^{(d-1)})$  is minimally generated by the monomials  $x_{j_1}x_{j_2}\cdots x_{j_{n-d+k}}t^k$ , where  $k=1,\ldots,d$  and  $1 \leq j_1 < j_2 < \cdots < j_{n-d+k} \leq n$ .

- **Corollary.** Let  $\Sigma_n$  denote the simplex of all subsets of [n]. Then the S-algebra  $A(\Sigma_n^{(d-1)})$  is minimally generated by the monomials  $x_{j_1}x_{j_2}\cdots x_{j_{n-d+k}}t^k$ , where  $k=1,\ldots,d$  and  $1\leq j_1< j_2<\cdots< j_{n-d+k}\leq n$ .
- **Proposition.** Let  $\mathcal{B} = B(F)$  be a principal Borel set with Borel generator  $F = \{i_1 < i_2 < \cdots < i_d\}$ , and let  $\Delta$  be the simplicial complex with  $\mathcal{F}(\Delta) = \mathcal{B}$ . Then  $x_1 x_2 \cdots x_{i_d} t^d$  belongs to the minimal set of monomial generators of  $A(\Delta)$  if and only if  $i_1 \neq 1$ .