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Vertex cover algebras

Let ∆ be a simplicial complex on [n], and k a nonnegative
integer. A k-cover of ∆ is a nonzero vector
c = (c1, . . . , cn) ∈ N

n with
∑

i∈F ci ≥ k for all F ∈ F(∆).
The k-cover c is called squarefree if ci ∈ {0,1} for all i .



Vertex cover algebras

Let ∆ be a simplicial complex on [n], and k a nonnegative
integer. A k-cover of ∆ is a nonzero vector
c = (c1, . . . , cn) ∈ N

n with
∑

i∈F ci ≥ k for all F ∈ F(∆).
The k-cover c is called squarefree if ci ∈ {0,1} for all i .

A k-cover c is decomposable if there exist an i-cover a and
a j-cover b as follows:

1 c = a + b;
2 k = i + j;
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monomials xc where c is a k-cover.

Jk (∆) ⊆ S is an ideal.

Jk (∆)Jℓ(∆) ⊆ Jk+ℓ(∆) for all k and ℓ.

Vertex cover algebra

A(∆) =
⊕

k≥0

Jk (∆)tk ⊆ S[t]



For any subset F ⊆ [n], let PF denotes the prime ideal of S
generated by the variables xi with i ∈ F . Then

I(∆)∨ =
⋂
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For any subset F ⊆ [n], let PF denotes the prime ideal of S
generated by the variables xi with i ∈ F . Then

I(∆)∨ =
⋂

F∈F(∆)

PF .

where I(∆) is the facet ideal of ∆.

A(∆) is the symbolic Rees algebra of I(∆)∨.



Squarefree vertex cover algebra

Let B(∆) be the S-subalgebra of S[t] generated by the
elements xctk where c is a squarefree k-cover. The
algebra B(∆) is called the squarefree vertex cover algebra
of ∆.



Squarefree vertex cover algebra

Let B(∆) be the S-subalgebra of S[t] generated by the
elements xctk where c is a squarefree k-cover. The
algebra B(∆) is called the squarefree vertex cover algebra
of ∆.

Observe that B(∆) is a graded S-algebra,

B(∆) =
⊕

k≥0

Lk (∆)tk .

Each Lk (∆) is a monomial ideal in S and Lk (∆) ⊆ Jk (∆).
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For a monomial ideal I ⊆ S, we denote by Isq the
squarefree monomial ideal generated by all squarefree
monomials u ∈ I.

The k-th squarefree power of a monomial ideal I, denoted
by I〈k〉, is defined to be (Ik )sq .

Proposition.
(i) Lk (∆)sq =

⋂
F∈F(∆) PF

〈k〉.

(ii) The algebra B(∆) is standard graded if and only if

⋂

F∈F(∆)

PF
〈k〉 = (

⋂

F∈F(∆)

PF )
〈k〉

.
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Corollary. Let ∆ be a pure simplicial complex of
dimension d − 1. Then

Lj(∆
(d−i))sq = Li(∆

(d−j))sq
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It is of great interest to know when A(∆) is a standard
graded algebra.

Combinatorially, that means every k-cover of ∆ can be
written as a sum of k 1-covers.

Ideal-theoretically, that means the symbolic powers of
I(∆)∨ coincide with the ordinary powers.

By a result of Herzog, Hibi and Trung, the Rees algebra of
I(∆)∨ is a Cohen-Macaulay normal domain. Therefore, the
associated graded ring of I(∆)∨ is also Cohen-Macaulay.
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Furthermore, by a result of Huneke, Ulrich and
Vasconcelos, the associated graded ring of I(∆)∨ is
reduced, and I(∆)∨ is normally torsion free.

(Herzog, Hibi, Trung and Zheng) In addition, assume that
I(∆)∨ is generated in one degree. Let k [I(∆)∨] denote the
toric ring generated by the monomial generators of I(∆)∨.
Then k [I(∆)∨] is a normal Cohen-Macaulay domain.



Questions

(1) Is A(∆) standard graded if and only if B(∆) is standard
graded?

(2) When do we have A(∆) = B(∆)?
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Let ∆ be the simplicial complex with the following facets:

{1,2}, {3,4}, {5,6}, {7,8}, {1,3,7}, {1,4,8},
{3,5,7}, {4,5,8}, {2,3,6,8}, {2,4,6,7}

The vector c = (1,1,1,1,2,0,1,1) is an indecomposable
2-cover of ∆, and hence A(∆) is not standard graded.

However B(∆) is standard graded.
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Theorem. Let G be a graph, and suppose ∆ is the
simplicial complex with I(∆) = I(G)∨. Then B(∆) is
standard graded if and only if A(∆) is standard graded.
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A subcomplex Γ of ∆, denoted by Γ ⊆ ∆, is a simplicial
complex such that F(Γ) ⊆ F(∆).

A cycle of length r of ∆ is a sequence
i1,F1, i2, . . . ,Fr , ir+1 = i1 where Fj ∈ F(∆), ij ∈ [n] and
vj , vj+1 ∈ Fj for j = 1, . . . , r .

A cycle is called special if each facet of the cycle contains
exactly two vertices of the cycle.



Theorem. Let ∆ be a simplicial complex. Then the
following conditions are equivalent:

(i) The algebra B(Γ) is standard graded for all Γ ⊆ ∆;
(ii) The algebra A(Γ) is standard graded for all Γ ⊆ ∆;
(iii) ∆ has no special odd cycles.



Equality of the algebras

Theorem. Let G be a finite graph on [n]. Then the
following conditions are equivalent:

(i) A(G) = B(G);
(ii) For every cycle C of G of odd length and for every vertex i

of G there exist a vertex j of the cycle C such that {i, j} is
an edge of G.



The facets of ∆ form the special odd cycle 6,F1,2,F2,4,F3,6 of
length 3 and the equality B(∆) = A(∆) holds.

b b b

b b

b
1

6 2

5 4 3

F1

F2F3



This figure shows a simplicial complex ∆ of dimension 2 such
that

1,F1,2,F2,3,F3,4,F4,5,F5,1

is a special odd cycle of length 5. In this case B(∆) 6= A(∆).
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Equality of the algebras

Let ∆ be a simplicial complex with F(∆) = {F1, . . . ,Fm}.
We say that ∆ has the strict intersection property if
(i) |Fi ∩ Fj | ≤ 1 for all i 6= j ;
(ii) Fi ∩ Fj ∩ Fk = ∅ for pairwise distinct i ,j and k .
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Equality of the algebras

Let ∆ be a simplicial complex with F(∆) = {F1, . . . ,Fm}.
We say that ∆ has the strict intersection property if
(i) |Fi ∩ Fj | ≤ 1 for all i 6= j ;
(ii) Fi ∩ Fj ∩ Fk = ∅ for pairwise distinct i ,j and k .

We define the intersection graph G∆ of such a simplicial
complex ∆ as follows:
V (G∆) = {v1, . . . , vm}
E(G∆) = {{vi , vj} : i 6= j and Fi ∩ Fj 6= ∅}

Let ∆ be a simplicial complex satisfying the strict
intersection property and suppose that no two cycles of
G∆ have precisely two edges in common. Then
B(∆) = A(∆) if and only if each connected component of
G∆ is a bipartite graph or an odd cycle.



b b

b

b b

F3

F4

F1

F2

1 2

34

5

b b

b

b b

b

F3

F4

F1

F2

1 2

3

45

6

b

b

b

b

v1

v2

v3

v4

The intersection graph of ∆1 and ∆2
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Vertex cover algebra of Borel sets

A subset B ∈ 2[n] is called Borel, if whenever F ∈ B and
i < j for some i ∈ [n] \F and j ∈ F , then (F \ {j})∪ {i} ∈ B.

Elements F1, . . . ,Fm ∈ B are called Borel generators of B,
denoted by B = B(F1, . . . ,Fm), if B is the smallest Borel
subset of 2[n] such that F1, . . . ,Fm ∈ B.

A Borel set B is called principal, if there exists F ∈ B such
that B = B(F ).



Vertex cover algebra of Borel sets

A squarefree monomial ideal I ⊆ S is called a (principal)
squarefree Borel ideal, if there exists a (principal) Borel set
B ⊆ 2[n] such that

I = ({xF : F ∈ B}).

If B = B(F1, . . . ,Fm), then the monomials xF1 , . . . , xFm are
called the Borel generators of I.



Vertex cover algebra of Borel sets

Theorem. Let B = B(F ) be a principal Borel set with Borel
generator F = {i1 < i2 < · · · < id}, and let ∆ be the
simplicial complex with F(∆) = B. Then the S-algebra
B(∆) is generated by the elements xH tk , for k=1,. . . ,d,
where

H ∈ B({q,q + 1, . . . ik+q−1} : q = 1, . . . ,d − k + 1).
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general case, one can use the fact (I + J)∨ = I∨ ∩ J∨ for all
monomial ideals I and J.



Vertex cover algebra of Borel sets

In order to compute the generators of B(∆) in more
general case, one can use the fact (I + J)∨ = I∨ ∩ J∨ for all
monomial ideals I and J.

Proposition. Let B = B(F1, . . . ,Fm) be a Borel set such
that |Fi | = |Fj | for all i , j , and suppose ∆ is a simplicial
complex with F(∆) = B. Then Lk (∆)sq is a squarefree
Borel ideal for all k .



Vertex cover algebra of Borel sets

Theorem. Let B = B(F ) be a principal Borel set with Borel
generator F = {i1 < i2 < · · · < id}, and let ∆ be the
simplicial complex with F(∆) = B. Then B(∆(j)) = A(∆(j))
for every j = 0, . . . ,d − 1.
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Vertex cover algebra of Borel sets

Corollary. Let Σn denote the simplex of all subsets of [n].
Then the S-algebra A(Σ(d−1)

n ) is minimally generated by
the monomials xj1xj2 · · · xjn−d+k

tk , where k = 1, . . . ,d and
1 ≤ j1 < j2 < · · · < jn−d+k ≤ n.

Proposition. Let B = B(F ) be a principal Borel set with
Borel generator F = {i1 < i2 < · · · < id}, and let ∆ be the
simplicial complex with F(∆) = B. Then x1x2 · · · xid td

belongs to the minimal set of monomial generators of A(∆)
if and only if i1 6= 1.


