Boij-Söderberg theory

Gunnar Fløystad

February 1, 2012
Conjectures

Conjecture 1

All extremal rays of pure type do exist: For any sequence of integers \(d_0 < d_1 < \cdots < d_c\) there exists a CM-module of codimension \(c\) with resolution

\[
S(-d_0)^{\beta_0} \leftarrow S(-d_1)^{\beta_1} \leftarrow \cdots \leftarrow S(-d_c)^{\beta_c}.
\]

Conjecture 2

Pure diagrams account for *all* the extremal rays: There are no more extremal rays in the cone of Betti diagrams than those coming from pure diagrams.
Conjecture 3

The algorithm always works in order to write a Betti diagram β as a positive linear combination of pure diagrams: It gives a chain of degree sequences $d^1 < d^2 < \cdots < d^r$ such that

$$\beta = c_1 \pi(d^1) + c_2 \pi(d^2) + \cdots + c_r \pi(d^r).$$
Conjectures

Conjecture 3

The algorithm always works in order to write a Betti diagram β as a positive linear combination of pure diagrams: It gives a chain of degree sequences $d_1 < d_2 < \cdots < d'_r$ such that

$$\beta = c_1 \pi(d_1) + c_2 \pi(d_2) + \cdots + c_r \pi(d'_r).$$

Note. Conjecture 3 implies conjecture 2.
Koszul complexes

Example

Pure resolution of type \((0,1,2,3)\).

\[S \leftarrow S(-1)^3 \leftarrow S(-2)^3 \leftarrow S(-3). \]
Koszul complexes

Example

Pure resolution of type \((0, 1, 2, 3)\).

\[S \leftarrow S(-1)^3 \leftarrow S(-2)^3 \leftarrow S(-3). \]

Let \(S = Symm(V) \) where \(V \) is a \(k \)-vector space of dimension \(n \). Consider \(\wedge^p V \) to have degree \(p \). Pure resolution of type \((0, 1, 2, \ldots, n)\):

\[S \leftarrow S \otimes_k V \leftarrow S \otimes_k \wedge^2 V \leftarrow \cdots \leftarrow S \otimes_k \wedge^n V. \]
Powers of maximal ideals

Example

Let \(m \subseteq k[x_1, x_2, x_3] \) be the maximal ideal. Resolution of \(m^2 \) has type \((0, 2, 3, 4)\):

\[
S \leftarrow S(-2)^6 \leftarrow S(-3)^8 \leftarrow S(-4)^3.
\]

Let \(S_r(V) \) be the \(r \)'th graded piece of \(S = Symm(V) \). Let \(m \) the maximal ideal in \(S \). The resolution of \(m^r \) has type \((0, r, r + 1, r + 2, \ldots, n + r - 1)\):

\[
S \leftarrow S \otimes_k S_r(V) \leftarrow S \otimes_k S_{r,1}(V) \leftarrow \cdots \leftarrow S \otimes_k S_{r,1,\ldots,1}(V) \leftarrow \cdots.
\]
The general linear group $GL(V)$ consists of all automorphisms of the vector space V. Let $n = \dim_k V$. For every partition into n parts

$$\lambda : \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n,$$

there is an irreducible $GL(V)$-representation, denoted $S_\lambda(V)$.

Example

$$S_{1,1,\ldots,1}(V) = \wedge^r V, \quad S_{r,0,\ldots,0}(V) = S_r(V).$$

r copies of 1
Pure resolutions of type length three

char. $k = 0$ (Eisenbud, F., Weyman)

Let $S = k[x_1, x_2, x_3]$. Want pure resolution:

$$S^\beta_0 \leftarrow S(-e_1)^\beta_1 \leftarrow S(-e_1 - e_2)^\beta_2 \leftarrow S(-e_1 - e_2 - e_3)^\beta_3.$$
Pure resolutions of type length three
char. $k = 0$ (Eisenbud, F., Weyman)

Let $S = k[x_1, x_2, x_3]$. Want pure resolution:

$$S^{\beta_0} \leftarrow S(-e_1)^{\beta_1} \leftarrow S(-e_1 - e_2)^{\beta_2} \leftarrow S(-e_1 - e_2 - e_3)^{\beta_3}.$$

Try:

$$S \otimes_k S_{\lambda_1, \lambda_2, \lambda_3} \leftarrow S \otimes_k S_{\lambda_1 + e_1, \lambda_2, \lambda_3} \leftarrow S \otimes_k S_{\lambda_1 + e_1, \lambda_2 + e_2, \lambda_3} \leftarrow S \otimes_k S_{\lambda_1 + e_1, \lambda_2 + e_2, \lambda_3 + e_3}.$$
Pure resolutions of type length three
char. $k = 0$ (Eisenbud, F., Weyman)

Let $S = k[x_1, x_2, x_3]$. Want pure resolution:

$$S^{\beta_0} \leftarrow S(-e_1)^{\beta_1} \leftarrow S(-e_1 - e_2)^{\beta_2} \leftarrow S(-e_1 - e_2 - e_3)^{\beta_3}. $$

Try:

$$S \otimes_k S_{\lambda_1, \lambda_2, \lambda_3} \leftarrow S \otimes_k S_{\lambda_1 + e_1, \lambda_2, \lambda_3} \leftarrow S \otimes_k S_{\lambda_1 + e_1, \lambda_2 + e_2, \lambda_3} \leftarrow S \otimes_k S_{\lambda_1 + e_1, \lambda_2 + e_2, \lambda_3 + e_3}. $$

This works! Let:

$$\lambda_3 = 0, \quad \lambda_2 = e_3 - 1, \quad \lambda_1 = (e_2 - 1) + (e_3 - 1).$$
Pure resolutions of type length three

\(\text{char.} k = 0 \) (Eisenbud, F., Weyman)

Let \(S = k[x_1, x_2, x_3] \). Want pure resolution:

\[
S^{\beta_0} \leftarrow S(-e_1)^{\beta_1} \leftarrow S(-e_1 - e_2)^{\beta_2} \leftarrow S(-e_1 - e_2 - e_3)^{\beta_3}.
\]

Try:

\[
S \otimes_k S_{\lambda_1, \lambda_2, \lambda_3} \leftarrow S \otimes_k S_{\lambda_1 + e_1, \lambda_2, \lambda_3} \leftarrow S \otimes_k S_{\lambda_1 + e_1, \lambda_2 + e_2, \lambda_3} \leftarrow S \otimes_k S_{\lambda_1 + e_1, \lambda_2 + e_2, \lambda_3 + e_3}.
\]

This works! Let:

\[
\lambda_3 = 0, \quad \lambda_2 = e_3 - 1, \quad \lambda_1 = (e_2 - 1) + (e_3 - 1).
\]

The construction generalizes to resolutions of any length \(n \).
Divided powers $D_r(V) = S_r(V^*)^*$. Let

$$\tilde{D}_r(V) = D_r(V) \otimes \wedge^\dim_k V V.$$
Eagon-Northcott complex

Divided powers $D_r(V) = S_r(V^*)^*$. Let

$$\tilde{D}_r(V) = D_r(V) \otimes \wedge^{\dim_k V} V.$$

Let A and B be vector spaces with $b = \dim_k B \leq \dim_k A$.

$$S \leftarrow \wedge^b A \otimes \tilde{D}_0(B^*) \otimes S(-b) \leftarrow \wedge^{b+1} A \otimes \tilde{D}_1(B^*) \otimes S(-b-1) \leftarrow \wedge^{b+2} A \otimes \tilde{D}_2(B^*) \otimes S(-b-2) \leftarrow \cdots$$
Extends to family of complexes
Pure resolutions with two linear parts

Buchsbaum-Rim complex:

\[S_1(B) \otimes S \leftarrow A \otimes S_0(B) \otimes S(-1) \leftarrow \wedge^{b+1} A \otimes \tilde{D}_0(B^*) \otimes S(-b - 1) \leftarrow \wedge^{b+2} A \otimes \tilde{D}_1(B^*) \otimes S(-b - 2) \]
Boij-Söderberg conjectures
Construction of pure resolutions
The equations of the exterior facets of the cone
Pairings with cohomology tables of vector bundles on projectives

Extends to family of complexes
Pure resolutions with two linear parts

Buchsbaum-Rim complex:

\[S_1(B) \otimes S \leftarrow A \otimes S_0(B) \otimes S(-1) \]
\[\leftarrow \wedge^{b+1} A \otimes \tilde{D}_0(B^*) \otimes S(-b-1) \leftarrow \wedge^{b+2} A \otimes \tilde{D}_1(B^*) \otimes S(-b-2) \]

Further complexes:

\[S_2(B) \otimes S \leftarrow A \otimes S_1(B) \otimes S(-1) \leftarrow \wedge^2 A \otimes S_0(B) \otimes S(-2) \]
\[\leftarrow \wedge^{b+2} A \otimes \tilde{D}_0(B^*) \otimes S(-b-2) \leftarrow \wedge^{b+3} A \otimes \tilde{D}_1(B^*) \otimes S(-b-3) \]
Boij-Söderberg conjectures

Construction of pure resolutions

The equations of the exterior facets of the cone

Pairings with cohomology tables of vector bundles on projectiv

Extends to family of complexes
Pure resolutions with two linear parts

Buchsbaum-Rim complex:

\[S_1(B) \otimes S \leftarrow A \otimes S_0(B) \otimes S(-1) \]
\[\leftarrow \wedge^{b+1} A \otimes \tilde{D}_0(B^*) \otimes S(-b - 1) \leftarrow \wedge^{b+2} A \otimes \tilde{D}_1(B^*) \otimes S(-b - 2) \]

Further complexes:

\[S_2(B) \otimes S \leftarrow A \otimes S_1(B) \otimes S(-1) \leftarrow \wedge^2 A \otimes S_0(B) \otimes S(-2) \]
\[\leftarrow \wedge^{b+2} A \otimes \tilde{D}_0(B^*) \otimes S(-b - 2) \leftarrow \wedge^{b+3} A \otimes \tilde{D}_1(B^*) \otimes S(-b - 3) \]

\[S_p(B) \otimes S \leftarrow \cdots \leftarrow \wedge^p A \otimes S_0(B) \otimes S(-p) \]
\[\leftarrow \wedge^{p+b} A \otimes \tilde{D}_0(B^*) \otimes S(-p - b) \leftarrow \wedge^{p+b+1} A \otimes \tilde{D}_1(B^*) \otimes S(-p - b) \]
Two vector spaces B_1 and B_2 of dimensions b_1 and b_2.

\[S_p(B_1) \otimes S_q(B_2) \otimes S \leftarrow A \otimes S_{p-1}(B_1) \otimes S_{q-1}(B_2) \otimes S(-1) \leftarrow \cdots \]

\[\leftarrow \wedge^p A \otimes S_0(B_1) \otimes S_{q-p}(B_2) \otimes S(-p) \]

twist jump
Pure resolutions with three linear parts

(Eisenbud, Schreyer), (Berkesch, Erman, Kummini, Sam)

Two vector spaces B_1 and B_2 of dimensions b_1 and b_2.

$S_p(B_1) \otimes S_q(B_2) \otimes S \leftarrow A \otimes S_{p-1}(B_1) \otimes S_{q-1}(B_2) \otimes S(-1) \leftarrow \ldots$

$\leftarrow \wedge^p A \otimes S_0(B_1) \otimes S_{q-p}(B_2) \otimes S(-p)$

twist jump
Two vector spaces B_1 and B_2 of dimensions b_1 and b_2.

$$S_p(B_1) \otimes S_q(B_2) \otimes S \leftarrow A \otimes S_{p-1}(B_1) \otimes S_{q-1}(B_2) \otimes S(-1) \leftarrow \cdots$$

$$\leftarrow \wedge^p A \otimes S_0(B_1) \otimes S_{q-p}(B_2) \otimes S(-p)$$

twist jump

$$\leftarrow \wedge^{p+b_1} A \otimes \tilde{D}_0(B_1^*) \otimes S_{q-p-b_1}(B_2) \otimes S(-p - b_1)$$

$$\leftarrow \wedge^{p+b_1+1} A \otimes \tilde{D}_1(B_1^*) \otimes S_{q-p-b_1-1}(B_2) \otimes S(-p - b_1 - 1) \leftarrow \cdots$$

$$\leftarrow \wedge^q A \otimes \tilde{D}_{q-p-b_1}(B_1^*) \otimes S_0(B_2) \otimes S(-q)$$

twist jump

$$\leftarrow \wedge^{q+b_2} \otimes \tilde{D}_{q-p-b_1-b_2}(B_1^*) \otimes \tilde{D}_0(B_2^*) \otimes S(-q - b_2) \cdots$$

$$\leftarrow \wedge^{q+b_2+1} \otimes \tilde{D}_{q-p-b_1+b_2+1}(B_1^*) \otimes \tilde{D}_1(B_2^*) \otimes S(-q - b_2 - 1) \cdots$$
The simplicial fan

Fix two degree sequences
\[a = (a_0 < a_1 < \ldots < a_n), \quad b = (b_0 < b_1 < \ldots < b_n). \]

Consider chain of degree sequences
\[a \leq d^1 < d^2 < \cdots < d^r \leq b. \]
The simplicial fan

Fix two degree sequences

\[a = (a_0 < a_1 < \ldots < a_n), \quad b = (b_0 < b_1 < \ldots < b_n). \]

Consider chain of degree sequences

\[a \leq d^1 < d^2 < \ldots < d^r \leq b. \]

Get pure diagrams

\[\pi(d^1), \pi(d^2), \ldots, \pi(d^r). \]

These are linearly independent so they generate a simplicial cone. Varying over all chains, we get a simplicial fan \(F \).
Geometric version of Boij-Söderberg conjectures

BS conjecture 1 says: $|F| \subseteq B$.

BS conjecture 3 says: $B \subseteq |F|$.

Cone B of Betti diagrams

Simplicial fan F generated by pure diagrams
Geometric version of Boij-Söderberg conjectures

BS conjecture 1 says:
\[|F| \subseteq B. \]

BS conjecture 3 says:
\[B \subseteq |F|. \]

Conclusion: \[B = |F|. \]

Note that BS conjecture 3 implies BS conjecture 2.

Cone \(B \) of Betti diagrams

Simplicial fan \(F \) generated by pure diagrams
Strategy for proof
(Eisenbud, Schreyer)

BS conjecture 1: The existence of pure resolutions shows that $|F| \subseteq B$.
BS conjecture 1: The existence of pure resolutions shows that $|F| \subseteq B$.

BS conjecture 3:
- Find equations h of supporting hyperplanes for the exterior facets of F.
Strategy for proof
(Eisenbud, Schreyer)

BS conjecture 1: The existence of pure resolutions shows that $|F| \subseteq B$.

BS conjecture 3:
- Find equations h of supporting hyperplanes for the exterior facets of F.
- For each exterior facet equation h and Betti diagram β of a Cohen-Macaulay module, show that $h(\beta) \geq 0$.
Strategy for proof
(Eisenbud, Schreyer)

BS conjecture 1: The existence of pure resolutions shows that $|F| \subseteq B$.

BS conjecture 3:
- Find equations h of supporting hyperplanes for the exterior facets of F.
- For each exterior facet equation h and Betti diagram β of a Cohen-Macaulay module, show that $h(\beta) \geq 0$.
- This shows that $B \subseteq |F|$.
Facet equations

Exterior facets have equations:

$$
\sum_{i=0, \ldots, c} c_{ij} \beta_{ij} = 0,
$$

which we represent by an array:

\[\begin{array}{c|ccc}
\text{i} & \text{j} & \cdots & c_{ij} \\
\end{array}\]
Facet equations

Exterior facets have equations:

$$\sum_{i=0,\ldots,c} c_{ij} \beta_{ij} = 0,$$

which we represent by an array:

$$\begin{array}{c|c|c|c}
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\cdot & \cdot & \cdot & \cdot \\
i & & & j \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
j & \cdots & c_{ij} & \\
\end{array}$$

There are three types of exterior facets. Types 1 and 2 have the simple equations $\beta_{ij} = 0$ for suitable i and j.
Facet equations of type 3

Example

There is a maximal chain

\[\mathbf{a} = (0, 1, 3) < (0, 2, 3) < (0, 2, 4) < (0, 3, 4) = \mathbf{b}. \]

Get four-dimensional simplicial cone generated by

\[\pi(0, 1, 3) = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \pi(0, 2, 3), \pi(0, 2, 4), \pi(0, 3, 4). \]
Facet equations of type 3

Example

There is a maximal chain

\[a = (0, 1, 3) < (0, 2, 3) < (0, 2, 4) < (0, 3, 4) = b. \]

Get four-dimensional simplicial cone generated by

\[\pi(0, 1, 3) = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \pi(0, 2, 3), \pi(0, 2, 4), \pi(0, 3, 4). \]

The facet generated by

\[\pi(0, 1, 3), \pi(0, 2, 3), \pi(0, 3, 4) \]

is an exterior facet of type 3.
Facet equations of type 3

Exterior facets of type 3 occurs when the maximal chain is

\[\cdots < (\ldots, r-1, r, \ldots) < (\ldots, r-1, r+1, \ldots) < (\ldots, r, r+1, \ldots) < \cdots, \]

and we form the simplicial cone generated by the pure diagrams of these elements, except \(f = (\ldots, r - 1, r + 1, \ldots). \)
Equations of exterior facets of type 3

Example

\[D : \cdots < (-1, 0, 1, 3) < (-1, 0, 2, 3) < (-1, 1, 2, 3) < \cdots \]

Equation of hyperplane \(h_{D,f} \) is the following diagram rotated 90° degrees counterclockwise.

\[
\begin{array}{cccccccccccc}
6 & 5 & 4 & 3 & 2 & 1 & 0 & -1 & -2 & -3 \\
\cdots & 5 & 0 & -3 & -4 & -3 & 0 & 5 & 12 & 21 & 32 & \cdots \\
\cdots & -12 & -5 & 0 & 3 & 4 & 3 & 0 & -5 & -12 & -21 & \cdots \\
\cdots & 21 & 12 & 5 & 0 & -3 & -4 & -3 & 0 & 5 & 12 & \cdots \\
\end{array}
\]

The numbers in the first row are the values of \((d - 1)(d + 3)\).
When h is the equation of an exterior facet of the fan F. Show that $h(\beta) \geq 0$ for any Betti diagram β of a Cohen-Macaulay module.
When \(h \) is the equation of an exterior facet of the fan \(F \). Show that
\[
h(\beta) \geq 0 \text{ for any Betti diagram } \beta \text{ of a Cohen-Macaulay module.}
\]

This makes us conclude that \(B \subseteq |F| \).
There exists a vector bundle \mathcal{E} on \mathbb{P}^2 with Hilbert polynomial $\chi_\mathcal{E}(d) = (d - 1)(d + 3)$ whose cohomology table is:

<table>
<thead>
<tr>
<th>d</th>
<th>\cdots</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dim_k H^2_\mathcal{E}(d)$</td>
<td>\cdots</td>
<td>21</td>
<td>12</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\dim_k H^1_\mathcal{E}(d)$</td>
<td>\cdots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\dim_k H^0_\mathcal{E}(d)$</td>
<td>\cdots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>12</td>
<td>21</td>
</tr>
</tbody>
</table>
A vector bundle \mathcal{E} on \mathbb{P}^m is said to have supernaturl cohomology if there are integers $z_1 > z_2 > \cdots > z_m$ such that:

1. The Hilbert polynomial

 $$\chi_{\mathcal{E}}(d) = c(d - z_1) \cdots (d - z_m).$$

2. In each column of the cohomology table there is at most one nonzero value.

Theorem

For each sequence $z_1 > \cdots > z_m$ such a bundle exists.
Pairing between betti diagrams and cohomology tables

For a module M let $\beta_{ij} = \beta_{ij}(M)$ be its Betti numbers.

For a coherent sheaf \mathcal{F} on \mathbb{P}^{n-1} let $\gamma_{ij} = H^i(\mathbb{P}^{n-1}, \mathcal{F}(j))$ be its cohomology numbers.
For a module M let $\beta_{ij} = \beta_{ij}(M)$ be its Betti numbers.

For a coherent sheaf \mathcal{F} on \mathbb{P}^{n-1} let $\gamma_{ij} = H^i(\mathbb{P}^{n-1}, \mathcal{F}(j))$ be its cohomology numbers.

Let $e \in \mathbb{Z}$ and $0 \leq \tau \leq n - 1$, and define $\gamma_{\leq i, d}$ to be $\gamma_{0, d} - \gamma_{1, d} + \cdots + (-1)^i \gamma_{i, d}$. Define the pairing $\langle \beta, \gamma \rangle_{e, \tau}$ as the expression:
Pairing between betti diagrams and cohomology tables

For a module M let $\beta_{ij} = \beta_{ij}(M)$ be its Betti numbers.

For a coherent sheaf \mathcal{F} on \mathbb{P}^{n-1} let $\gamma_{ij} = H^i(\mathbb{P}^{n-1}, \mathcal{F}(j))$ be its cohomology numbers.

Let $e \in \mathbb{Z}$ and $0 \leq \tau \leq n - 1$, and define $\gamma_{\leq i,d}$ to be $\gamma_{0,d} - \gamma_{1,d} + \cdots + (-1)^i \gamma_{i,d}$. Define the pairing $\langle \beta, \gamma \rangle_{e,\tau}$ as the expression:

\[
\sum_{i < \tau, d \in \mathbb{Z}} (-1)^i \beta_{i,d} \gamma_{\leq i,-d} + \sum_{d \leq e} (-1)^\tau \beta_{\tau,d} \gamma_{\leq \tau,-d} + \sum_{d > e} (-1)^\tau \beta_{\tau,d} \gamma_{\leq \tau-1,-d} + \sum_{d \leq e+1} (-1)^{\tau+1} \beta_{\tau+1,d} \gamma_{\leq \tau,-d} + \sum_{d > e+1} (-1)^{\tau+1} \beta_{\tau+1,d} \gamma_{\leq \tau-1,-d} + \sum_{i > \tau+1} (-1)^i \beta_{i,d} \gamma_{\leq i,-d}.
\]
Theorem (Eisenbud, Schreyer)

For any module M and any coherent sheaf \mathcal{F} the pairing:

$$\langle \beta(M), \gamma(\mathcal{F}) \rangle_{e, \tau} \geq 0.$$
Conclusion

As we saw earlier in the example:

Theorem

The degree sequence corresponding to an exterior facet of type 3:

\[f = (f_0 < f_1 < \cdots < f_{\tau} < f_{\tau+1} < \cdots < f_n). \]

Let \(E \) be the vector bundle on \(\mathbb{P}^{n-1} \) with supernatural cohomology and root sequence \(-f_0 > -f_1 > \cdots > -f_{\tau-1} > -f_{\tau+2} > \cdots > -f_n.\)
Conclusion

As we saw earlier in the example:

Theorem

The degree sequence corresponding to an exterior facet of type 3:

\[f = (f_0 < f_1 < \cdots < f_\tau < f_{\tau+1} < \cdots < f_n). \]

Let \(E \) be the vector bundle on \(\mathbb{P}^{n-1} \) with supernatural cohomology and root sequence \(-f_0 > -f_1 > \cdots > -f_{\tau-1} > -f_{\tau+2} > \cdots > -f_n.\)

Then the hyperplane equation of the exterior facet obtained by omitting the pure diagram \(\pi(f) \) is:

\[h_{D,f}(\beta) = \langle \beta, \gamma(E) \rangle_{e,\tau} \]

where \(e = f_\tau. \)
Conclusion

We may then finally conclude:

Corollary

\[h_{D,f}(\beta) \geq 0 \text{ for all Betti diagrams } \beta = \beta(M). \]

Hence the cone of Betti diagrams \(B \) is inside the geometric realization \(|F| \) of the fan \(F \).