The Existence of Relative Pure Injective Envelopes

Fatemeh Zareh-Khoshchehreh

The 10th Seminar on Commutative Algebra and Related Topics

IPM, Tehran
December 18-19, 2013
The Existence of Relative Pure Injective Envelopes

- S-pure Exact Sequences
- S-pure Homological Dimensions
- S-Pure Injective Envelopes
The notion of purity was introduced by Cohn (1959) for left R-modules and by Łoś (1957) for abelian groups. In 1967, Kiełpiński has introduced the notion of relative Γ-purity and proved that any R-module possesses a relative Γ-pure injective envelope. Two years later, Warfield has proved that any R-module admits a pure injective envelope. Also, he introduced the notion of S-purity for any class S of R-modules.
Def. Let S be a class of R-modules. An exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ of R-modules and R-homomorphisms is called S-pure exact if for all $U \in S$ the induced R-homomorphism $\text{Hom}_R(U, B) \to \text{Hom}_R(U, C)$ is surjective.
Def.

Let S be a class of R-modules. An exact sequence

$$0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$$

of R-modules and R-homomorphisms is called **S-pure exact** if for all $U \in S$ the induced R-homomorphism $\text{Hom}_R(U, B) \rightarrow \text{Hom}_R(U, C)$ is surjective.

In this situation, $f, g, f(A)$ and C are called **S-pure monomorphism**, **S-pure epimorphism**, **S-pure submodule** of B, and **S-pure homomorphic image** of B; respectively.
Def.

Let S be a class of R-modules. An exact sequence
$0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ of R-modules and R-homomorphisms is called S- pure exact if for all $U \in S$ the induced R-homomorphism $\text{Hom}_R(U, B) \rightarrow \text{Hom}_R(U, C)$ is surjective.

In this situation, $f, g, f(A)$ and C are called S- pure monomorphism, S- pure epimorphism, S- pure submodule of B, and S- pure homomorphic image of B; respectively.

Def.

Let S be a class of R-modules. An exact sequence
$0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ of R-modules and R-homomorphisms is called S- copure exact if for all $U \in S$ the induced R-homomorphism $\text{Hom}_R(B, U) \rightarrow \text{Hom}_R(A, U)$ is surjective.
Def.

An R-module P is called S-pure projective (resp. S-copure projective) if for any S-pure exact sequence (resp. S-copure exact sequence) $0 \to A \overset{f}{\to} B \overset{g}{\to} C \to 0$, the induced R-homomorphism $\text{Hom}_R(P, B) \to \text{Hom}_R(P, C)$ is surjective.
Def.

An R-module P is called S-pure projective (resp. S-copure projective) if for any S-pure exact sequence (resp. S-copure exact sequence) $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, the induced R-homomorphism $\text{Hom}_R(P, B) \to \text{Hom}_R(P, C)$ is surjective.

An R-module E is called S-pure injective (resp. S-copure injective) if for any S-pure exact sequence (resp. S-copure exact sequence) $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, the induced R-homomorphism $\text{Hom}_R(B, E) \to \text{Hom}_R(A, E)$ is surjective.
The existence of relative pure injective envelopes

\section*{S-pure Exact Sequences}

\textbf{Def.}

An R-module P is called \textit{S-} pure projective (resp. \textit{S-} copure projective) if for any \textit{S-}pure exact sequence (resp. \textit{S-}copure exact sequence) $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$, the induced R-homomorphism $\text{Hom}_R(P, B) \rightarrow \text{Hom}_R(P, C)$ is surjective.

An R-module E is called \textit{S-} pure injective (resp. \textit{S-} copure injective) if for any \textit{S-}pure exact sequence (resp. \textit{S-}copure exact sequence) $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$, the induced R-homomorphism $\text{Hom}_R(B, E) \rightarrow \text{Hom}_R(A, E)$ is surjective.

Also, an R-module F is called \textit{S-} pure flat (resp. \textit{S-} copure flat) if for any \textit{S-}pure exact sequence (resp. \textit{S-}copure exact sequence) $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$, the induced R-homomorphism $F \otimes_R A \rightarrow F \otimes_R B$ is injective.
Def.

An R-module M is called cyclically-presented if it is isomorphic to a module of the form R^n/G for some $n \in \mathbb{N}$ and some cyclic submodule G of R^n.

An R-module M is called cyclic cyclically-presented if it is isomorphic to a module of the form R/Rr for some $r \in R$.

If S is the class of all finitely presented (resp. cyclic cyclically-presented) R-modules, then S-purity is called purity (resp. RD-purity).

If S is the class of all cyclically-presented R-modules, then S-purity is called cyclically purity.
The Existence of Relative Pure Injective Envelopes

S-pure Exact Sequences

Def.

Let \mathcal{F} (resp. \mathcal{G}) be a class of R-modules and M an R-module. An R-homomorphism $\phi : F \to M$ (resp. $\phi : M \to G$) where $F \in \mathcal{F}$ (resp. $G \in \mathcal{G}$) is called an \mathcal{F}-precover (resp. a \mathcal{G}-preenvelope) of M if for any $F' \in \mathcal{F}$ (resp. $G' \in \mathcal{G}$), the induced R-homomorphism $\text{Hom}_R(F', F) \to \text{Hom}_R(F', M)$ (resp. $\text{Hom}_R(G, G') \to \text{Hom}_R(M, G')$) is surjective.
The Existence of Relative Pure Injective Envelopes

S-pure Exact Sequences

Def.

Let \mathcal{F} (resp. \mathcal{G}) be a class of R-modules and M an R-module. An R-homomorphism $\phi : F \to M$ (resp. $\phi : M \to G$) where $F \in \mathcal{F}$ (resp. $G \in \mathcal{G}$) is called an \mathcal{F}-precover (resp. a \mathcal{G}-preenvelope) of M if for any $F' \in \mathcal{F}$ (resp. $G' \in \mathcal{G}$), the induced R-homomorphism $\text{Hom}_R(F', F) \to \text{Hom}_R(F', M)$ (resp. $\text{Hom}_R(G, G') \to \text{Hom}_R(M, G')$) is surjective.

If $\phi : F \to M$ (resp. $\phi : M \to G$) is an \mathcal{F}-precover (resp. a \mathcal{G}-preenvelope) of M and any R-homomorphism $f : F \to F$ (resp. $f : G \to G$) such that $\phi f = \phi$ (resp. $f \phi = \phi$) is an automorphism, then ϕ is called an \mathcal{F}-cover (resp. a \mathcal{G}-envelope) of M.
The Existence of Relative Pure Injective Envelopes

Def.

Let \mathcal{F} (resp. \mathcal{G}) be a class of R-modules and M an R-module. An R-homomorphism $\phi: F \to M$ (resp. $\phi: M \to G$) where $F \in \mathcal{F}$ (resp. $G \in \mathcal{G}$) is called an \mathcal{F}-precover (resp. a \mathcal{G}-preenvelope) of M if for any $F' \in \mathcal{F}$ (resp. $G' \in \mathcal{G}$), the induced R-homomorphism $\text{Hom}_R(F', F) \to \text{Hom}_R(F', M)$ (resp. $\text{Hom}_R(G, G') \to \text{Hom}_R(M, G')$) is surjective.

If $\phi: F \to M$ (resp. $\phi: M \to G$) is an \mathcal{F}-precover (resp. a \mathcal{G}-preenvelope) of M and any R-homomorphism $f: F \to F$ (resp. $f: G \to G$) such that $\phi f = \phi$ (resp. $f \phi = \phi$) is an automorphism, then ϕ is called an \mathcal{F}-cover (resp. a \mathcal{G}-envelope) of M.

The class \mathcal{F} (resp. \mathcal{G}) is called (pre)covering (resp. (pre)enveloping) if every R-module admits an \mathcal{F}-(pre)cover (resp. a \mathcal{G}-(pre)envelope).
Def.

We call a class \mathcal{S} of R-modules **set-presentable** if it has a subset \mathcal{S}^*, with the property that for any $U \in \mathcal{S}$ there is a $U^* \in \mathcal{S}^*$ with $U \cong U^*$.

Any class of **finitely presented** R-modules which is **closed under isomorphisms** is set-presentable.
The Existence of Relative Pure Injective Envelopes

S-pure Exact Sequences

Def.

We call a class S of R-modules set-presentable if it has a subset S^*, with the property that for any $U \in S$ there is a $U^* \in S^*$ with $U \cong U^*$. Any class of finitely presented R-modules which is closed under isomorphisms is set-presentable.

Warfield (1969)

Let S be a set-presentable class of finitely presented R-modules containing R. Then every R-module possesses an S-pure projective precover.

F. Zareh-Khoshchehreh

The existence of relative pure injective envelopes
Question
Let S be a set-presentable class of finitely presented R-modules containing R. Does any R-module admit an S-pure injective envelope?
Question

Let S be a set-presentable class of finitely presented R-modules containing R. Does any R-module admit an S-pure injective envelope?

For S

- =All finitely presented R-modules, was proved by Warfield (1969). ✓
The Existence of Relative Pure Injective Envelopes

Question

Let S be a set-presentable class of finitely presented R-modules containing R. Does any R-module admit an S-pure injective envelope?

For S

- =All finitely presented R-modules, was proved by Warfield (1969). ✓
- =All cyclic cyclically-presented R-modules, was proved by Warfield (1969). ✓
Question

Let S be a set-presentable class of finitely presented R-modules containing R. Does any R-module admit an S-pure injective envelope?

For S

- All finitely presented R-modules, was proved by Warfield (1969). ✓
- All cyclic cyclically-presented R-modules, was proved by Warfield (1969). ✓
- All cyclically-presented R-modules, was proved by Divaani-Aazar, Esmkhani and Tousi (2005). ✓
The Existence of Relative Pure Injective Envelopes

S-pure Exact Sequences

Question

Let S be a set-presentable class of finitely presented R-modules containing R. Does any R-module admit an S-pure injective envelope?

For S

- All finitely presented R-modules, was proved by Warfield (1969).
- All cyclic cyclically-presented R-modules, was proved by Warfield (1969).
- All cyclically-presented R-modules, was proved by Divaani-Aazar, Esmkhani and Tousi (2005).
Question

Let S be a set-presentable class of finitely presented R-modules containing R. Does any R-module admit an S-pure injective envelope?

For S

- =All finitely presented R-modules, was proved by Warfield (1969). ✓
- =All cyclic cyclically-presented R-modules, was proved by Warfield (1969). ✓
- =All cyclically-presented R-modules, was proved by Divaani-Aazar, Esmkhani and Tousi (2005). ✓
In what follows we denote the Pontryagin duality functor $\text{Hom}_{\mathbb{Z}}(-, \mathbb{Q}/\mathbb{Z})$ by $(-)^+$.
In what follows we denote the Pontryagin duality functor $\text{Hom}_\mathbb{Z}(-, \mathbb{Q}/\mathbb{Z})$ by $(-)^+$.

Lemma

Let S be a class of R-modules. An R-module M is S-pure flat if and only if M^+ is S-pure injective.
In what follows we denote the Pontryagin duality functor \(\text{Hom}_\mathbb{Z}(-, \mathbb{Q}/\mathbb{Z}) \) by \((-)^+\).

Lemma

Let \(S \) be a class of \(R \)-modules. An \(R \)-module \(M \) is \(S \)-pure flat if and only if \(M^+ \) is \(S \)-pure injective.

Cor.

Let \(S \) be a class of \(R \)-modules. Then the class of \(S \)-pure flat \(R \)-modules is covering.
Def.

For any two natural integers \(n, k \) and any \(R \)-homomorphism \(\mu : R^k \to R^n \), let \(\mu^t : R^n \to R^k \) denote the \(R \)-homomorphism given by the transpose of the matrix corresponding to \(\mu \). Let \(U \) be a finitely presented \(R \)-module and \(R^k \xrightarrow{\mu} R^n \xrightarrow{\pi} U \to 0 \) a finitely presentation of \(U \). Then, the Auslander transpose of \(U \) is defined by \(\text{tr} (U) := \text{coker} \, \mu^t \). It is unique up to projective direct summands.
For any two natural integers \(n, k \) and any \(R \)-homomorphism \(\mu : R^k \rightarrow R^n \), let \(\mu^t : R^n \rightarrow R^k \) denote the \(R \)-homomorphism given by the transpose of the matrix corresponding to \(\mu \). Let \(U \) be a finitely presented \(R \)-module and \(R^k \xrightarrow{\mu} R^n \xrightarrow{\pi} U \rightarrow 0 \) a finitely presentation of \(U \). Then, the Auslander transpose of \(U \) is defined by \(\text{tr}(U) \coloneqq \text{coker} \mu^t \). It is unique up to projective direct summands.

In what follows, for a class \(S \) of finitely presented \(R \)-modules, we denote the class \(\{ \text{tr}(U) | U \in S \} \) by \(\text{tr}(S) \).
Let S be a class of finitely presented R-modules. Obviously, if $R \in S$, then $R \in \text{tr}(S)$. If S is set-presentable, then $\text{tr}(S)$ has a subclass \tilde{S}, which is a set and $\text{tr}(S)$-purity coincides with \tilde{S}-purity.
Let S be a class of finitely presented R-modules. Obviously, if $R \in S$, then $R \in \text{tr}(S)$. If S is set-presentable, then $\text{tr}(S)$ has a subclass \tilde{S}, which is a set and $\text{tr}(S)$-purity coincides with \tilde{S}-purity.

- If S is the class of all cyclic free R-modules, then S-pure exact sequences are the usual exact sequences. So, S-pure projective, S-pure injective and S-pure flat R-modules are the usual projective, injective and flat R-modules; respectively. Moreover, $S = \text{tr}(S)$.
Let S be a class of finitely presented R-modules. Obviously, if $R \in S$, then $R \in \text{tr}(S)$. If S is set-presentable, then $\text{tr}(S)$ has a subclass \tilde{S}, which is a set and $\text{tr}(S)$-purity coincides with \tilde{S}-purity.

- If S is the class of all cyclic free R-modules, then S-pure exact sequences are the usual exact sequences. So, S-pure projective, S-pure injective and S-pure flat R-modules are the usual projective, injective and flat R-modules; respectively. Moreover, $S = \text{tr}(S)$.
- If S is the class of all finitely presented R-modules or the class of all cyclic cyclically-presented R-modules then $S = \text{tr}(S)$.
Let \mathcal{S} be a class of finitely presented R-modules. Obviously, if $R \in \mathcal{S}$, then $R \in \text{tr}(\mathcal{S})$. If \mathcal{S} is set-presentable, then $\text{tr}(\mathcal{S})$ has a subclass $\tilde{\mathcal{S}}$, which is a set and $\text{tr}(\mathcal{S})$-purity coincides with $\tilde{\mathcal{S}}$-purity.

- If \mathcal{S} is the class of all cyclic free R-modules, then \mathcal{S}-pure exact sequences are the usual exact sequences. So, \mathcal{S}-pure projective, \mathcal{S}-pure injective and \mathcal{S}-pure flat R-modules are the usual projective, injective and flat R-modules; respectively. Moreover, $\mathcal{S} = \text{tr}(\mathcal{S})$.
- If \mathcal{S} is the class of all finitely presented R-modules or the class of all cyclic cyclically-presented R-modules then $\mathcal{S} = \text{tr}(\mathcal{S})$.
- If \mathcal{S} is the class of all cyclically-presented R-modules, then $\tilde{\mathcal{S}} = \{R/I | I \text{ is a finitely generated ideal of } R\}$.

F. Zareh-Khoshcheghreh

The existence of relative pure injective envelopes
The Existence of Relative Pure Injective Envelopes

S-pure Exact Sequences

Let S be a class of finitely presented R-modules. Obviously, if $R \in S$, then $R \in \text{tr}(S)$. If S is set-presentable, then $\text{tr}(S)$ has a subclass \tilde{S}, which is a set and $\text{tr}(S)$-purity coincides with \tilde{S}-purity.

- If S is the class of all cyclic free R-modules, then S-pure exact sequences are the usual exact sequences. So, S-pure projective, S-pure injective and S-pure flat R-modules are the usual projective, injective and flat R-modules; respectively. Moreover, $S = \text{tr}(S)$.
- If S is the class of all finitely presented R-modules or the class of all cyclic cyclically-presented R-modules then $S = \text{tr}(S)$.
- If S is the class of all cyclically-presented R-modules, then $\tilde{S} = \{R/I | I$ is a finitely generated ideal of $R\}$.
Let S be a class of finitely presented R-modules. Obviously, if $R \in S$, then $R \in \text{tr}(S)$. If S is set-presentable, then $\text{tr}(S)$ has a subclass \tilde{S}, which is a set and $\text{tr}(S)$-purity coincides with \tilde{S}-purity.

- If S is the class of all cyclic free R-modules, then S-pure exact sequences are the usual exact sequences. So, S-pure projective, S-pure injective and S-pure flat R-modules are the usual projective, injective and flat R-modules; respectively. Moreover, $S = \text{tr}(S)$.
- If S is the class of all finitely presented R-modules or the class of all cyclic cyclically-presented R-modules then $S = \text{tr}(S)$.
- If S is the class of all cyclically-presented R-modules, then $\tilde{S} = \{ R/I | I \text{ is a finitely generated ideal of } R \}$.
Prop.

Let S be a class of finitely presented R-modules and $E = 0 \rightarrow A \overset{i}{\rightarrow} B \overset{\psi}{\rightarrow} C \rightarrow 0$ an exact sequence of R-modules and R-homomorphisms. The following are equivalent:

1. E is S-pure exact.
2. $\text{tr}(U) \otimes_R E$ is exact for all $U \in S$.
3. $\mu(A^k) = A^n \cap \mu(B^k)$ for all matrices $\mu \in \text{Hom}_R(R^k, R^n)$ with $\text{coker} \mu^t \in S$.
4. for any matrix $(r_{ij}) \in \text{Hom}_R(R^n, R^k)$ with $\text{coker} (r_{ij}) \in S$ and any $a_1, \ldots, a_n \in A$ if the linear equations $\sum_{i=1}^k r_{ij}x_i = a_j; 1 \leq j \leq n$ are soluble in B, then they are also soluble in A.

F. Zareh-Khoshchehreh

The existence of relative pure injective envelopes
Lemma

Let S be a class of R-modules and $X = \cdots \to X_{i+1} \xrightarrow{d_{i+1}} X_i \xrightarrow{d_i} X_{i-1} \to \cdots$ an exact complex of R-modules. For each $i \in \mathbb{Z}$, set $X_i := 0 \to \text{Im} d_{i+1} \hookrightarrow X_i \to \text{Im} d_i \to 0$. Then

1. $\text{Hom}_R(U, X)$ is exact for all $U \in S$ if and only if X_i is S-pure exact for all $i \in \mathbb{Z}$.

2. $\text{Hom}_R(X, V)$ is exact for all $V \in S$ if and only if X_i is S-copure exact for all $i \in \mathbb{Z}$.
The Existence of Relative Pure Injective Envelopes

S-pure Exact Sequences

Lemma

Let S be a class of R-modules and $\mathbf{X} = \cdots \rightarrow X_{i+1} \xrightarrow{d_{i+1}} X_i \xrightarrow{d_i} X_{i-1} \rightarrow \cdots$ an exact complex of R-modules. For each $i \in \mathbb{Z}$, set $X_i := 0 \rightarrow \text{Im} \ d_{i+1} \hookrightarrow X_i \rightarrow \text{Im} \ d_i \rightarrow 0$. Then

1. $\text{Hom}_R(U, \mathbf{X})$ is exact for all $U \in S$ if and only if X_i is S-pure exact for all $i \in \mathbb{Z}$.

2. $\text{Hom}_R(\mathbf{X}, V)$ is exact for all $V \in S$ if and only if X_i is S-copure exact for all $i \in \mathbb{Z}$.

Def.

Let S be a class of R-modules. An exact complex \mathbf{X} of R-modules is said to be S-pure exact (resp. S-copure exact) if it satisfies the equivalent conditions of part (1) (resp. (2)) of the above Lemma.
Lemma

Let S be a class of finitely presented R-modules and

$$X = \cdots \xrightarrow{d_{i+2}} X_{i+1} \xrightarrow{d_{i+1}} X_i \xrightarrow{d_i} X_{i-1} \xrightarrow{d_{i-1}} \cdots$$

an exact complex of R-modules and R-homomorphisms. Then the following conditions are equivalent:

1. X is S-pure exact.
2. $\text{Hom}_R(P, X)$ is exact for all S-pure projective R-modules P.
3. $\text{Hom}_R(X, E)$ is exact for all S-pure injective R-modules E.
4. $F \otimes_R X$ is exact for all S-pure flat R-modules F.
Lemma

Let S be a class of finitely presented R-modules and

$$X = \cdots \xrightarrow{d_{i+2}} X_{i+1} \xrightarrow{d_{i+1}} X_i \xrightarrow{d_i} X_{i-1} \xrightarrow{d_{i-1}} \cdots$$

an exact complex of R-modules and R-homomorphisms. Then the following conditions are equivalent:

1. X is S-pure exact.
2. $\text{Hom}_R(P, X)$ is exact for all S-pure projective R-modules P.
3. $\text{Hom}_R(X, E)$ is exact for all S-pure injective R-modules E.
4. $F \otimes_R X$ is exact for all S-pure flat R-modules F.
Prop. Let S be a set-presentable class of finitely presented R-modules containing R. Then, every R-module M admits an S-pure injective preenvelope.
Prop.
Let S be a set-presentable class of finitely presented R-modules containing R. Then, every R-module M admits an S-pure injective preenvelope.

Cor.
Let S be a set-presentable class of finitely presented R-modules containing R. Then, an R-module E is S-pure injective if and only if it is isomorphic to a direct summand of a direct product of elements in $\text{tr}(S^*)^+ = \{ \text{tr}(U)^+ | U \in S^* \}$.
Let M be an R-module and \mathcal{F} (resp. \mathcal{G}) a class of R-modules. A left \mathcal{F} (resp. right \mathcal{G})-resolution of M is a Hom$_R(\mathcal{F}, -)$ (resp. Hom$_R(-, \mathcal{G})$) exact (not necessarily exact) complex

$$F_\bullet = \cdots \rightarrow F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_0 \rightarrow M \rightarrow 0$$

(resp.

$$G_\bullet = 0 \rightarrow M \rightarrow G^0 \rightarrow \cdots \rightarrow G^n \rightarrow G^{n+1} \rightarrow \cdots$$

with $F_n \in \mathcal{F}$ (resp. $G^n \in \mathcal{G}$) for all $n \geq 0$.

Def.

Let M be an R-module and \mathcal{F} (resp. \mathcal{G}) a class of R-modules. A left \mathcal{F} (resp. right \mathcal{G})-resolution of M is a \(\text{Hom}_R(\mathcal{F}, -)\) (resp. $\text{Hom}_R(-, \mathcal{G})$) exact (not necessarily exact) complex

\[
\mathcal{F} \cdots \rightarrow F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_0 \rightarrow M \rightarrow 0
\]

(resp.

\[
\mathcal{G} \cdots \rightarrow 0 \rightarrow M \rightarrow G^0 \rightarrow \cdots \rightarrow G^n \rightarrow G^{n+1} \rightarrow \cdots
\]

with $F_n \in \mathcal{F}$ (resp. $G^n \in \mathcal{G}$) for all $n \geq 0$.

Let \mathcal{F} be a precovering (resp. \mathcal{G} be a preenveloping) class of R-modules. Then every R-module has a left \mathcal{F} (resp. right \mathcal{G})-resolution.
Def.

Let \mathcal{F} and \mathcal{G} be two classes of R-modules. The functor $\text{Hom}_R(−, \sim)$ is called right balanced by $\mathcal{F} \times \mathcal{G}$, if for each R-module M there exists a $\text{Hom}_R(−, \mathcal{G})$ exact complex

$$F_\bullet = \cdots \rightarrow F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_0 \rightarrow M \rightarrow 0$$

with $F_n \in \mathcal{F}$ for all $n \geq 0$ and a $\text{Hom}_R(\mathcal{F}, \sim)$ exact complex

$$G_\bullet = 0 \rightarrow M \rightarrow G^0 \rightarrow \cdots \rightarrow G^n \rightarrow G^{n+1} \rightarrow \cdots$$

with $G^n \in \mathcal{G}$ for all $n \geq 0$.
Let \mathcal{F} be a precovering class and \mathcal{G} a preenveloping class of R-modules. Assume that

$$F_\bullet = \cdots \rightarrow F_n \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$

is a left \mathcal{F}-resolution of an R-module M and

$$G^\bullet = 0 \rightarrow N \rightarrow G^0 \rightarrow G^1 \rightarrow \cdots \rightarrow G^n \rightarrow \cdots$$

is a right \mathcal{G}-resolution of an R module N. Set:

$$F_\circ := \cdots \rightarrow F_n \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow 0$$

and

$$G^\circ := 0 \rightarrow G^0 \rightarrow G^1 \rightarrow \cdots \rightarrow G^n \rightarrow \cdots$$
Let \mathcal{F} be a precovering class and \mathcal{G} a preenveloping class of R-modules. Assume that

$$F_\bullet = \cdots \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$$

is a left \mathcal{F}-resolution of an R-module M and

$$G^\bullet = 0 \to N \to G^0 \to G^1 \to \cdots \to G^n \to \cdots$$

is a right \mathcal{G}-resolution of an R module N. Set:

$$F_\circ := \cdots \to F_n \to \cdots \to F_1 \to F_0 \to 0$$

and

$$G^\circ := 0 \to G^0 \to G^1 \to \cdots \to G^n \to \cdots$$

Define $\text{Ext}^i_{\mathcal{F}}(M, N) := H^i(\text{Hom}_R(F_\circ, N))$ and $\text{Ext}^i_{\mathcal{G}}(M, N) := H^i(\text{Hom}_R(M, G^\circ))$ for all $i \geq 0$.
The concept of pure homological dimensions was introduced in a special case by Griffith (1970), and in a general setting by Kiełpiński and Simson (1975).
The concept of pure homological dimensions was introduced in a special case by Griffith (1970), and in a general setting by Kiełpiński and Simson (1975).

Let S be a class of R-modules with the property that the class of S-pure projective R-modules is precovering and the class of S-pure injective R-modules is preenveloping. Denote the class of all S-pure projective (resp. S-pure injective) R-modules by $S\mathcal{P}$ (resp. $S\mathcal{I}$).
The concept of pure homological dimensions was introduced in a special case by Griffith (1970), and in a general setting by Kiełpiński and Simson (1975).

Let S be a class of R-modules with the property that the class of S-pure projective R-modules is precovering and the class of S-pure injective R-modules is preenveloping. Denote the class of all S-pure projective (resp. S-pure injective) R-modules by \mathcal{SP} (resp. \mathcal{SI}).

For an R-module M, we define the S-pure projective dimension (resp. S-pure injective dimension) of M as the infimum of the lengths of left \mathcal{SP} (resp. right \mathcal{SI})-resolutions of M.
The concept of pure homological dimensions was introduced in a special case by Griffith (1970), and in a general setting by Kiełpiński and Simson (1975).

Let S be a class of R-modules with the property that the class of S-pure projective R-modules is precovering and the class of S-pure injective R-modules is preenveloping. Denote the class of all S-pure projective (resp. S-pure injective) R-modules by SP (resp. SI).

For an R-module M, we define the S-pure projective dimension (resp. S-pure injective dimension) of M as the infimum of the lengths of left SP (resp. right SI)-resolutions of M.

Then, the global S-pure projective (resp. injective) dimension of R is defined to be the supremum of the S-pure projective (resp. injective) dimensions of all R-modules.
Cor.

Let S be a set-presentable class of finitely presented R-modules containing R. Denote the class of all S-pure projective (resp. S-pure injective) R-modules by SP (resp. SI). Then the functor $\text{Hom}_R(-, \sim)$ is right balanced by $SP \times SI$. Consequently, $\text{Ext}^n_{SP}(M, N) \cong \text{Ext}^n_{SI}(M, N)$ for all R-modules M and N and all $n \geq 0$. Accordingly, the global S-pure projective dimension of R is equal to its global S-pure injective dimension.
Thm.

Let S be a set-presentable class of finitely presented R-modules containing R. Then every R-module M possesses an S-pure injective envelope.
The Existence of Relative Pure Injective Envelopes

Thank You