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Castelnuovo-Mumford Regularity
Simplicial Complexes

S = K [x1, . . . , xn] polynomial ring over K .
M = ⊕i∈ZMi a finitely generated graded S-module.

M has a graded minimal free resolution

· · · → Fi =
⊕

j

S(−j)β
K
i,j → · · · → F1 → F0 → M → 0

where, βK
i,j = dimK TorS

i (K ,M)j are called the graded Betti numbers of
M as S-module.

For every i ∈ N ∪ {0}, one defines:

tS
i (M) = max{j : βK

i,j (M) 6= 0},
and tS

i (M) = −∞, if it happens that TorS
i (K ,M) = 0.

The Castelnuovo-Mumford regularity of M, reg (M), is given by:

reg (M) = sup{tS
i (M)− i : i ∈ Z}.
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Castelnuovo-Mumford Regularity
Simplicial Complexes

initial degree of 0 6= M = ⊕i∈ZMi :

indeg (M) = inf{i : Mi 6= 0}.
d-linear resolution: reg (M) = indeg(M).

Theorem
Let M 6= 0 be a finitely generated graded S-module. The
followings are equivalent:

(i) M has a d-linear resolution.
(ii) βK

i,i+j(M) = 0, for all j 6= d.
(iii) The graded minimal free resolution of M is of the form,

0→ SβK
ρ (−d−ρ)→ · · · → SβK

1 (−d−1)→ SβK
0 (−d)→ M → 0.

(iv) reg (M) = d and M has a minimal homogeneous generator
all of degree d.

A. A. Yazdan Pour, R. Zaare-Nahandi Two results on the regularity 4/22
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Simplicial Complexes

Definition (Simplicial complex)

A simplicial complex ∆ over a set of vertices V = {v1, . . . , vn}, is a
collection of subsets of V , with the property that:

(a) {vi} ∈ ∆, for all i ;

(b) if F ∈ ∆, then all subsets of F are also in ∆ (including the empty set).

For F ⊂ {v1, . . . , vn}, we set xF =
∏

vi∈F xi . The non-face ideal or the
Stanley-Reisner ideal of ∆ is defined as follows:

I∆ = 〈xF : F /∈ ∆〉 ⊂ K [x1, . . . , xn]

Theorem (Hochster formula)

Let ∆ be a simplicial complex over n = {1, . . . ,n}, and K be a field.
Then,

βK
i,j (I∆) =

∑
W⊂[n]
|W |=j

dimK H̃j−i−2(∆W ; K ).
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Main Theorem
Applications

Proposition (Y-Z (2013))

Let ∆ be a simplicial complex on vertex set [n] and
A = {a1, . . . ,ad} be a d-subset of [n] such that A /∈ ∆. Let
I := I∆ ⊂ K [x1, . . . , xn] be the Stanley-Reisener ideal of ∆ and
i ≥ 0, j ≥ i + d be non-negative integers with,

βK
i,j(I) = βK

i,j+1(I) = · · · = βK
i,j+(d−1)(I) = 0.

If W is a subset of [n] with |W | = j + d and A ⊂W, then:

H̃j−i+(d−t−3)

 d⋃
i=j0

∆W\{a1,...,at ,ai}; K

 = 0

for all t , j0, with 0 ≤ t ≤ d − 1 and t < j0 ≤ d.

A. A. Yazdan Pour, R. Zaare-Nahandi Two results on the regularity 7/22
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Theorem (Y-Z (2013))

Let ∆ be a simplicial complex on vertex set [n] and
I = I∆ ⊂ K [x1, . . . , xn] be the Stanley-Reisener ideal of ∆. Let
d = t0(I). If i ≥ 0 and j ≥ i + d be non-negative integers such that,

βK
i,j (I) = βK

i,j+1(I) = · · · = βK
i,j+(d−1)(I) = 0

then, βK
i+1,j+d (I) = 0.

Corollary (Y-Z (2013))

Let I ⊂ K [x1, . . . , xn] be a monomial ideal and d = t0(I). If i ≥ 0 and
j ≥ i + d be non-negative integers such that,

βK
i,j (I) = βK

i,j+1(I) = · · · = βK
i,j+(d−1)(I) = 0

then, βK
i+1,j+d (I) = 0.
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Main Theorem
Applications

Corollary (Y-Z (2013))

Let I ⊂ S := K [x1, . . . , xn] be a non-zero monomial ideal,
ρ = projdim(I) and d = t0(I). Then,

(i) ti+1 (S/I) ≤ ti(S/I) + t1(S/I).
(ii) reg (I) ≤ ρ(d − 1) + d.

Corollary (Y-Z (2013))

Let I ⊂ S := K [x1, . . . , xn] be a monomial ideal, c = indeg(I) and
d = t0(I). Then,

(i) If βK
i,j(I) 6= 0, then i + c ≤ j ≤ d(i + 1).

(ii) If I is square-free monomial ideal and βK
i,j(I) 6= 0, then

i + c ≤ j ≤ min{n,d(i + 1)}.

A. A. Yazdan Pour, R. Zaare-Nahandi Two results on the regularity 9/22
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(ii) reg (I) ≤ ρ(d − 1) + d.

Corollary (Y-Z (2013))

Let I ⊂ S := K [x1, . . . , xn] be a monomial ideal, c = indeg(I) and
d = t0(I). Then,

(i) If βK
i,j(I) 6= 0, then i + c ≤ j ≤ d(i + 1).

(ii) If I is square-free monomial ideal and βK
i,j(I) 6= 0, then

i + c ≤ j ≤ min{n,d(i + 1)}.
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Definition
If I is a graded ideal of S, then we write I〈j〉 for the ideal generated by all
homogeneous polynomials of degree j belonging to I. We say that a graded
ideal I ⊂ S is componentwise linear if I〈j〉 has a linear resolution for all j .

Definition
Let I ⊂ S be a square-free monomial ideal. For each j , we write I[j] for the
ideal generated by all the square-free monomials of degree j belonging to I.
We say that I is square-free componentwise linear, if I[j] has a linear
resolution for all j .

Proposition (J. Herzog and T. Hibi (1999))

Suppose that I ⊂ S be a square-free monomials. Then I is
componentwise linear if and only if I is square-free componentwise
linear.
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Theorem (Y-Z (2013))

Let ∆ be a simplicial complex on vertex set [n],
I := I∆ ⊂ K [x1, . . . , xn] its Stanley-Reisner ideal and d = t0(I).
For t ≥ d, let

∆t = ∆ ∪ 〈all (t − 1)-subsets of [n]〉 = ∆ ∪ 〈[n]〉(t−2).

Then,

(i) I∆t = I[t];

(ii) If j − i > t , then βK
i,j(I) = βK

i,j(I[t]).
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Passing to square-free case

Corollary (Y-Z (2013))

Let I ⊂ K [x1, . . . , xn] be a square-free monomial ideal and
d = t0(I). Then,

(i) reg
(
I[t]
)

= max {t , reg (I)}, for all t ≥ d;
(ii) reg (I) = min

{
t : t ≥ d and I[t] has a t-linear resolution

}
;

(iii) If I has a d-linear resolution, then I[t] has a t-linear
resolution for all t ≥ d.
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Corollary (Y-Z (2013))

Let G 6= Cn,2 be a graph and C be the 3-uniform clutter

C = {C : C is a 3-cycle in G}.

Let I = I(Ḡ), J = I(C̄). Then,

(i) J = I[3].
(ii) J has a 3-linear resolution if and only if reg (I) ≤ 3.

(iii) If G is a chordal graph, then the ideal J has a 3-linear
resolution.

A. A. Yazdan Pour, R. Zaare-Nahandi Two results on the regularity 14/22



Preliminaries
On the growth of the degree of syzygies
Regularity via square-free components

Main Theorem
Applications

Corollary (Y-Z (2013))

Let G 6= Cn,2 be a graph and C be the 3-uniform clutter

C = {C : C is a 3-cycle in G}.
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Let I = I(Ḡ), J = I(C̄). Then,
(i) J = I[3].

(ii) J has a 3-linear resolution if and only if reg (I) ≤ 3.
(iii) If G is a chordal graph, then the ideal J has a 3-linear

resolution.

A. A. Yazdan Pour, R. Zaare-Nahandi Two results on the regularity 14/22



Preliminaries
On the growth of the degree of syzygies
Regularity via square-free components

Main Theorem
Applications

Example 1

Let G be the the following wheel graph and C be the 3-uniform
clutter consisting of all 3-cycles of G.

That is:

G = Cn ∪
{
{i ,n + 1} : 1 ≤ i ≤ n

}
,

C = {C : C is a 3-cycle in G}.
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Example 1

Note that, Ḡ = C̄n. Since reg
(
I(Ḡ)

)
= reg

(
I(C̄n)

)
= 3, the ideal

J= I
(
C̄
)

= I
(
Cn+1,3 \ C

)
=
(
xixjxk : {i , j} /∈ E(G), 1 ≤ k ≤ n + 1, k /∈ {i , j}

)
has a 3-linear resolution by the previous Corollary.
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Example 2 (Bipyramid)
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Figure : A Bipyramid Pn
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Corollary (Y-Z (2013))
Let Pn be a bipyramid on Cn,n > 3 and G be the following
graph:

G = Cn ∪
{
{i ,n + 1} : i ∈ [n]

}
∪
{
{i ,n + 2} : i ∈ [n]

}
.

Let I = I(Ḡ), J = I(P̄n) be the corresponding circuit ideal in
S = K [x1, . . . , xn+2]. Then, the ideal J does not have linear
resolution and reg (J) = 4.
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