Two results on the regularity of monomial ideals

Ali Akbar Yazdan Pour, Rashid Zaare-Nahandi

π
Institute for Advanced Studies
in Basic Sciences
Gava Zang, Zanjan, Iran

Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

18 December 2013

Outline

(1) Preliminaries

- Castelnuovo-Mumford Regularity
- Simplicial Complexes

2 On the growth of the degree of syzygies
(3) Regularity via square-free components

$S=K\left[x_{1}, \ldots, x_{n}\right] \quad$ polynomial ring over K. $M=\oplus_{i \in \mathbb{Z}} M_{i} \quad$ a finitely generated graded S-module.

$S=K\left[x_{1}, \ldots, x_{n}\right] \quad$ polynomial ring over K. $M=\oplus_{i \in \mathbb{Z}} M_{i} \quad$ a finitely generated graded S-module.
M has a graded minimal free resolution

$$
\cdots \rightarrow F_{i}=\bigoplus S(-j)^{\beta_{i, j}^{K}} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

$S=K\left[x_{1}, \ldots, x_{n}\right] \quad$ polynomial ring over K. $M=\oplus_{i \in \mathbb{Z}} M_{i} \quad$ a finitely generated graded S-module.
M has a graded minimal free resolution

$$
\cdots \rightarrow F_{i}=\bigoplus S(-j)^{\beta_{i, j}^{K}} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

where, $\beta_{i, j}^{K}=\operatorname{dim}_{K} \operatorname{Tor}_{i}^{S}(K, M)_{j}$ are called the graded Betti numbers of M as S-module.
$S=K\left[x_{1}, \ldots, x_{n}\right] \quad$ polynomial ring over K.
$M=\oplus_{i \in \mathbb{Z}} M_{i} \quad$ a finitely generated graded S-module .
M has a graded minimal free resolution

$$
\cdots \rightarrow F_{i}=\bigoplus S(-j)^{\beta_{i, j}^{K}} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

where, $\beta_{i, j}^{K}=\operatorname{dim}_{K} \operatorname{Tor}_{i}^{S}(K, M)_{j}$ are called the graded Betti numbers of M as S-module.

For every $i \in \mathbb{N} \cup\{0\}$, one defines:

$$
t_{i}^{S}(M)=\max \left\{j: \quad \beta_{i, j}^{K}(M) \neq 0\right\}
$$

and $t_{i}^{S}(M)=-\infty$, if it happens that $\operatorname{Tor}_{i}^{S}(K, M)=0$.
$S=K\left[x_{1}, \ldots, x_{n}\right] \quad$ polynomial ring over K.
$M=\oplus_{i \in \mathbb{Z}} M_{i} \quad$ a finitely generated graded S-module.
M has a graded minimal free resolution

$$
\cdots \rightarrow F_{i}=\bigoplus S(-j)^{\beta_{i, j}^{K}} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

where, $\beta_{i, j}^{K}=\operatorname{dim}_{K} \operatorname{Tor}_{i}^{S}(K, M)_{j}$ are called the graded Betti numbers of M as S-module.

For every $i \in \mathbb{N} \cup\{0\}$, one defines:

$$
t_{i}^{S}(M)=\max \left\{j: \quad \beta_{i, j}^{K}(M) \neq 0\right\}
$$

and $t_{i}^{S}(M)=-\infty$, if it happens that $\operatorname{Tor}_{i}^{S}(K, M)=0$.
The Castelnuovo-Mumford regularity of M, reg (M), is given by:

$$
\operatorname{reg}(M)=\sup \left\{t_{i}^{S}(M)-i: \quad i \in \mathbb{Z}\right\}
$$

initial degree of $0 \neq M=\oplus_{i \in \mathbb{Z}} M_{i}$:

$$
\operatorname{indeg}(M)=\inf \left\{i: \quad M_{i} \neq 0\right\}
$$

initial degree of $0 \neq M=\oplus_{i \in \mathbb{Z}} M_{i}$:

$$
\operatorname{indeg}(M)=\inf \left\{i: \quad M_{i} \neq 0\right\} .
$$

d-linear resolution: $\quad \operatorname{reg}(M)=\operatorname{indeg}(M)$.
initial degree of $0 \neq M=\oplus_{i \in \mathbb{Z}} M_{i}$:

$$
\operatorname{indeg}(M)=\inf \left\{i: \quad M_{i} \neq 0\right\} .
$$

d-linear resolution: $\quad \operatorname{reg}(M)=\operatorname{indeg}(M)$.

Theorem

Let $M \neq 0$ be a finitely generated graded S-module. The followings are equivalent:
initial degree of $0 \neq M=\oplus_{i \in \mathbb{Z}} M_{i}$:

$$
\operatorname{indeg}(M)=\inf \left\{i: \quad M_{i} \neq 0\right\} .
$$

d-linear resolution: $\quad \operatorname{reg}(M)=\operatorname{indeg}(M)$.

Theorem

Let $M \neq 0$ be a finitely generated graded S-module. The followings are equivalent:
(i) M has a d-linear resolution.
initial degree of $0 \neq M=\oplus_{i \in \mathbb{Z}} M_{i}$:

$$
\operatorname{indeg}(M)=\inf \left\{i: \quad M_{i} \neq 0\right\}
$$

d-linear resolution: \quad reg $(M)=\operatorname{indeg}(M)$.

Theorem

Let $M \neq 0$ be a finitely generated graded S-module. The followings are equivalent:
(i) M has a d-linear resolution.
(ii) $\beta_{i, i+j}^{K}(M)=0$, for all $j \neq d$.
initial degree of $0 \neq M=\oplus_{i \in \mathbb{Z}} M_{i}$:

$$
\operatorname{indeg}(M)=\inf \left\{i: \quad M_{i} \neq 0\right\}
$$

d-linear resolution: \quad reg $(M)=\operatorname{indeg}(M)$.

Theorem

Let $M \neq 0$ be a finitely generated graded S-module. The followings are equivalent:
(i) M has a d-linear resolution.
(ii) $\beta_{i, i+j}^{K}(M)=0$, for all $j \neq d$.
(iii) The graded minimal free resolution of M is of the form,

$$
0 \rightarrow S_{\rho}^{\beta_{\rho}^{K}}(-d-\rho) \rightarrow \cdots \rightarrow S^{\beta_{1}^{K}}(-d-1) \rightarrow S^{\beta_{0}^{K}}(-d) \rightarrow M \rightarrow 0 .
$$

initial degree of $0 \neq M=\oplus_{i \in \mathbb{Z}} M_{i}$:

$$
\operatorname{indeg}(M)=\inf \left\{i: \quad M_{i} \neq 0\right\}
$$

d-linear resolution: \quad reg $(M)=\operatorname{indeg}(M)$.

Theorem

Let $M \neq 0$ be a finitely generated graded S-module. The followings are equivalent:
(i) M has a d-linear resolution.
(ii) $\beta_{i, i+j}^{K}(M)=0$, for all $j \neq d$.
(iii) The graded minimal free resolution of M is of the form,

$$
0 \rightarrow S_{\rho}^{\beta_{\rho}^{K}}(-d-\rho) \rightarrow \cdots \rightarrow S^{\beta_{1}^{K}}(-d-1) \rightarrow S^{\beta_{0}^{K}}(-d) \rightarrow M \rightarrow 0 .
$$

(iv) $\operatorname{reg}(M)=d$ and M has a minimal homogeneous generator all of degree d.

Definition (Simplicial complex)

A simplicial complex Δ over a set of vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$, is a collection of subsets of V, with the property that:
(a) $\left\{v_{i}\right\} \in \Delta$, for all i;
(b) if $F \in \Delta$, then all subsets of F are also in Δ (including the empty set).

Definition (Simplicial complex)

A simplicial complex Δ over a set of vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$, is a collection of subsets of V, with the property that:
(a) $\left\{v_{i}\right\} \in \Delta$, for all i;
(b) if $F \in \Delta$, then all subsets of F are also in Δ (including the empty set).

For $F \subset\left\{v_{1}, \ldots, v_{n}\right\}$, we set $\mathbf{x}_{F}=\prod_{v_{i} \in F} x_{i}$. The non-face ideal or the Stanley-Reisner ideal of Δ is defined as follows:

$$
I_{\Delta}=\left\langle\mathbf{x}_{F}: \quad F \notin \Delta\right\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]
$$

Definition (Simplicial complex)

A simplicial complex Δ over a set of vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$, is a collection of subsets of V, with the property that:
(a) $\left\{v_{i}\right\} \in \Delta$, for all i;
(b) if $F \in \Delta$, then all subsets of F are also in Δ (including the empty set).

For $F \subset\left\{v_{1}, \ldots, v_{n}\right\}$, we set $\mathbf{x}_{F}=\prod_{v_{i} \in F} x_{i}$. The non-face ideal or the Stanley-Reisner ideal of Δ is defined as follows:

$$
I_{\Delta}=\left\langle\mathbf{x}_{F}: \quad F \notin \Delta\right\rangle \subset K\left[x_{1}, \ldots, x_{n}\right]
$$

Theorem (Hochster formula)

Let Δ be a simplicial complex over $n=\{1, \ldots, n\}$, and K be a field. Then,

$$
\beta_{i, j}^{K}\left(I_{\Delta}\right)=\sum_{\substack{W \subset[n] \\|W|=j}} \operatorname{dim}_{K} \tilde{H}_{j-i-2}\left(\Delta_{W} ; K\right) .
$$

Outline

(1)
 Preliminaries

2) On the growth of the degree of syzygies

- Main Theorem
- Applications
(3) Regularity via square-free components

Proposition (Y-Z (2013))

Let Δ be a simplicial complex on vertex set $[n]$ and
$A=\left\{a_{1}, \ldots, a_{d}\right\}$ be a d-subset of $[n]$ such that $A \notin \Delta$. Let $I:=I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ be the Stanley-Reisener ideal of Δ and
$i \geq 0, j \geq i+d$ be non-negative integers with,

$$
\beta_{i, j}^{K}(I)=\beta_{i, j+1}^{K}(I)=\cdots=\beta_{i, j+(d-1)}^{K}(I)=0 .
$$

If W is a subset of $[n]$ with $|W|=j+d$ and $A \subset W$, then:

$$
\tilde{H}_{j-i+(d-t-3)}\left(\bigcup_{i=j_{0}}^{d} \Delta_{W \backslash\left\{a_{1}, \ldots, a_{t}, a_{i}\right\}} ; K\right)=0
$$

for all t, j_{0}, with $0 \leq t \leq d-1$ and $t<j_{0} \leq d$.

Theorem (Y-Z (2013))

Let Δ be a simplicial complex on vertex set $[n]$ and $I=I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ be the Stanley-Reisener ideal of Δ. Let $d=t_{0}(I)$. If $i \geq 0$ and $j \geq i+d$ be non-negative integers such that,

$$
\beta_{i, j}^{K}(I)=\beta_{i, j+1}^{K}(I)=\cdots=\beta_{i, j+(d-1)}^{K}(I)=0
$$

then, $\beta_{i+1, j+d}^{K}(I)=0$.

Theorem (Y-Z (2013))

Let Δ be a simplicial complex on vertex set $[n]$ and
$I=I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ be the Stanley-Reisener ideal of Δ. Let $d=t_{0}(I)$. If $i \geq 0$ and $j \geq i+d$ be non-negative integers such that,

$$
\beta_{i, j}^{K}(I)=\beta_{i, j+1}^{K}(I)=\cdots=\beta_{i, j+(d-1)}^{K}(I)=0
$$

then, $\beta_{i+1, j+d}^{K}(I)=0$.

Corollary (Y-Z (2013))

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal and $d=t_{0}(I)$. If $i \geq 0$ and $j \geq i+d$ be non-negative integers such that,

$$
\beta_{i, j}^{K}(I)=\beta_{i, j+1}^{K}(I)=\cdots=\beta_{i, j+(d-1)}^{K}(I)=0
$$

then, $\beta_{i+1, j+d}^{K}(I)=0$.

Corollary (Y-Z (2013))

Let $I \subset S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero monomial ideal, $\rho=\operatorname{projdim}(I)$ and $d=t_{0}(I)$. Then,

Corollary (Y-Z (2013))

Let $I \subset S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero monomial ideal, $\rho=\operatorname{projdim}(I)$ and $d=t_{0}(I)$. Then,
(i) $t_{i+1}(S / I) \leq t_{i}(S / I)+t_{1}(S / I)$.

Corollary (Y-Z (2013))

Let $I \subset S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero monomial ideal, $\rho=\operatorname{projdim}(I)$ and $d=t_{0}(I)$. Then,
(i) $t_{i+1}(S / I) \leq t_{i}(S / I)+t_{1}(S / I)$.
(ii) $\operatorname{reg}(I) \leq \rho(d-1)+d$.

Corollary (Y-Z (2013))

Let $I \subset S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero monomial ideal, $\rho=\operatorname{projdim}(I)$ and $d=t_{0}(I)$. Then,
(i) $t_{i+1}(S / I) \leq t_{i}(S / I)+t_{1}(S / I)$.
(ii) $\operatorname{reg}(I) \leq \rho(d-1)+d$.

Corollary (Y-Z (2013))

Let $I \subset S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal, $c=\operatorname{indeg}(I)$ and $d=t_{0}(I)$. Then,

Corollary (Y-Z (2013))

Let $I \subset S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero monomial ideal, $\rho=\operatorname{projdim}(I)$ and $d=t_{0}(I)$. Then,
(i) $t_{i+1}(S / I) \leq t_{i}(S / I)+t_{1}(S / I)$.
(ii) $\operatorname{reg}(I) \leq \rho(d-1)+d$.

Corollary (Y-Z (2013))

Let $I \subset S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal, $c=\operatorname{indeg}(I)$ and $d=t_{0}(I)$. Then,
(i) If $\beta_{i, j}^{K}(I) \neq 0$, then $i+c \leq j \leq d(i+1)$.

Corollary (Y-Z (2013))

Let $I \subset S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero monomial ideal, $\rho=\operatorname{projdim}(I)$ and $d=t_{0}(I)$. Then,
(i) $t_{i+1}(S / I) \leq t_{i}(S / I)+t_{1}(S / I)$.
(ii) $\operatorname{reg}(I) \leq \rho(d-1)+d$.

Corollary (Y-Z (2013))

Let $I \subset S:=K\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal, $c=\operatorname{indeg}(I)$ and $d=t_{0}(I)$. Then,
(i) If $\beta_{i, j}^{K}(I) \neq 0$, then $i+c \leq j \leq d(i+1)$.
(ii) If I is square-free monomial ideal and $\beta_{i, j}^{K}(I) \neq 0$, then $i+c \leq j \leq \min \{n, d(i+1)\}$.

Outline

(1) Preliminaries

2 On the growth of the degree of syzygies
(3) Regularity via square-free components

- Main Theorem
- Applications

Definition

If I is a graded ideal of S, then we write $I_{\langle j\rangle}$ for the ideal generated by all homogeneous polynomials of degree j belonging to l. We say that a graded ideal $I \subset S$ is componentwise linear if $I_{(j)}$ has a linear resolution for all j.

Definition

If I is a graded ideal of S, then we write $I_{\langle j\rangle}$ for the ideal generated by all homogeneous polynomials of degree j belonging to l. We say that a graded ideal $I \subset S$ is componentwise linear if $I_{\langle j\rangle}$ has a linear resolution for all j.

Definition

Let $I \subset S$ be a square-free monomial ideal. For each j, we write $I_{[]}$for the ideal generated by all the square-free monomials of degree j belonging to l. We say that I is square-free componentwise linear, if $I_{[j]}$ has a linear resolution for all j.

Definition

If I is a graded ideal of S, then we write $I_{j j\rangle}$ for the ideal generated by all homogeneous polynomials of degree j belonging to l. We say that a graded ideal $I \subset S$ is componentwise linear if $I_{(j)}$ has a linear resolution for all j.

Definition

Let $I \subset S$ be a square-free monomial ideal. For each j, we write $I_{[J]}$ for the ideal generated by all the square-free monomials of degree j belonging to l. We say that l is square-free componentwise linear, if $I_{[j]}$ has a linear resolution for all j.

Proposition (J. Herzog and T. Hibi (1999))

Suppose that $I \subset S$ be a square-free monomials. Then I is componentwise linear if and only if I is square-free componentwise linear.

Theorem (Y-Z (2013))

Let Δ be a simplicial complex on vertex set [n], $I:=I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ its Stanley-Reisner ideal and $d=t_{0}(I)$.
For $t \geq d$, let

$$
\Delta_{t}=\Delta \cup\langle\text { all }(t-1) \text {-subsets of }[n]\rangle=\Delta \cup\langle[n]\rangle{ }^{(t-2)} .
$$

Then,

Theorem (Y-Z (2013))

Let Δ be a simplicial complex on vertex set [n], $I:=I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ its Stanley-Reisner ideal and $d=t_{0}(I)$.
For $t \geq d$, let

$$
\Delta_{t}=\Delta \cup\langle\text { all }(t-1) \text {-subsets of }[n]\rangle=\Delta \cup\langle[n]\rangle{ }^{(t-2)} .
$$

Then,
(i) $I_{\Delta_{t}}=I_{[t]}$;

Theorem (Y-Z (2013))

Let Δ be a simplicial complex on vertex set [n], $I:=I_{\Delta} \subset K\left[x_{1}, \ldots, x_{n}\right]$ its Stanley-Reisner ideal and $d=t_{0}(I)$.
For $t \geq d$, let

$$
\Delta_{t}=\Delta \cup\langle\text { all }(t-1) \text {-subsets of }[n]\rangle=\Delta \cup\langle[n]\rangle{ }^{(t-2)} .
$$

Then,
(i) $I_{\Delta_{t}}=I_{[t]}$;
(ii) If $j-i>t$, then $\beta_{i, j}^{K}(I)=\beta_{i, j}^{K}\left(I_{[t]}\right)$.

Passing to square-free case

Corollary (Y-Z (2013))

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a square-free monomial ideal and $d=t_{0}(I)$. Then,

Passing to square-free case

Corollary (Y-Z (2013))

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a square-free monomial ideal and $d=t_{0}(I)$. Then,
(i) $\operatorname{reg}\left(I_{[t]}\right)=\max \{t, \operatorname{reg}(I)\}$, for all $t \geq d$;

Passing to square-free case

Corollary (Y-Z (2013))

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a square-free monomial ideal and $d=t_{0}(I)$. Then,
(i) $\operatorname{reg}\left(I_{[t]}\right)=\max \{t, \operatorname{reg}(I)\}$, for all $t \geq d$;
(ii) $\operatorname{reg}(I)=\min \left\{t: \quad t \geq d\right.$ and $I_{[t]}$ has a t-linear resolution $\}$;

Passing to square-free case

Corollary (Y-Z (2013))

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a square-free monomial ideal and $d=t_{0}(I)$. Then,
(i) $\operatorname{reg}\left(I_{[t]}\right)=\max \{t, \operatorname{reg}(I)\}$, for all $t \geq d$;
(ii) $\operatorname{reg}(I)=\min \left\{t: \quad t \geq d\right.$ and $I_{[t]}$ has a t-linear resolution $\}$;
(iii) If I has a d-linear resolution, then $I_{[t]}$ has a t-linear resolution for all $t \geq d$.

Corollary (Y-Z (2013))

Let $G \neq \mathcal{C}_{n, 2}$ be a graph and \mathcal{C} be the 3 -uniform clutter

$$
\mathcal{C}=\{C: \quad C \text { is a 3-cycle in } G\} .
$$

Let $I=I(\bar{G}), J=I(\overline{\mathcal{C}})$. Then,

Corollary (Y-Z (2013))

Let $G \neq \mathcal{C}_{n, 2}$ be a graph and \mathcal{C} be the 3 -uniform clutter

$$
\mathcal{C}=\{C: \quad C \text { is a 3-cycle in } G\} .
$$

Let $I=I(\bar{G}), J=I(\overline{\mathcal{C}})$. Then,
(i) $J=I_{[3]}$.

Corollary (Y-Z (2013))

Let $G \neq \mathcal{C}_{n, 2}$ be a graph and \mathcal{C} be the 3 -uniform clutter

$$
\mathcal{C}=\{C: \quad C \text { is a 3-cycle in } G\} .
$$

Let $I=I(\bar{G}), J=I(\overline{\mathcal{C}})$. Then,
(i) $J=I_{[3]}$.
(ii) J has a 3-linear resolution if and only if reg $(I) \leq 3$.

Corollary (Y-Z (2013))

Let $G \neq \mathcal{C}_{n, 2}$ be a graph and \mathcal{C} be the 3 -uniform clutter

$$
\mathcal{C}=\{C: \quad C \text { is a 3-cycle in } G\} .
$$

Let $I=I(\bar{G}), J=I(\overline{\mathcal{C}})$. Then,
(i) $J=I_{[3]}$.
(ii) J has a 3-linear resolution if and only if reg $(I) \leq 3$.
(iii) If G is a chordal graph, then the ideal J has a 3-linear resolution.

Example 1

Let G be the the following wheel graph and \mathcal{C} be the 3-uniform clutter consisting of all 3-cycles of G.

Example 1

Let G be the the following wheel graph and \mathcal{C} be the 3-uniform clutter consisting of all 3 -cycles of G. That is:

$$
\begin{aligned}
& G=C_{n} \cup\{\{i, n+1\}: \quad 1 \leq i \leq n\}, \\
& \mathcal{C}=\{C: \quad C \text { is a 3-cycle in } G\} .
\end{aligned}
$$

Example 1

Note that, $\bar{G}=\bar{C}_{n}$. Since reg $(I(\bar{G}))=\operatorname{reg}\left(I\left(\bar{C}_{n}\right)\right)=3$, the ideal

$$
\begin{aligned}
J & =I(\overline{\mathcal{C}})=I\left(\mathcal{C}_{n+1,3} \backslash \mathcal{C}\right) \\
& =\left(x_{i} x_{j} x_{k}: \quad\{i, j\} \notin E(G), 1 \leq k \leq n+1, k \notin\{i, j\}\right)
\end{aligned}
$$

has a 3 -linear resolution by the previous Corollary.

Example 2 (Bipyramid)

Example 2 (Bipyramid)

Figure: A Bipyramid \mathfrak{P}_{n}

Corollary (Y-Z (2013))

Let \mathfrak{P}_{n} be a bipyramid on $C_{n}, n>3$ and G be the following graph:

$$
G=C_{n} \cup\{\{i, n+1\}: i \in[n]\} \cup\{\{i, n+2\}: i \in[n]\} .
$$

Let $I=I(\bar{G}), J=I\left(\overline{\mathfrak{P}}_{n}\right)$ be the corresponding circuit ideal in $S=K\left[x_{1}, \ldots, x_{n+2}\right]$. Then, the ideal J does not have linear resolution and reg $(J)=4$.

For Further Reading I

D. Bayer and M. Stillman, A criterion for detecting \mathfrak{m}-regularity, Invent. Math., 87, 1-11 (1987).

Q O. Fernández-Ramos and P. Gimenez, First Nonlinear Syzygies of Ideals Associated to Graphs, Communications in Algebra 37 (6), pp. 1921-1933, (2009). arXiv:0811.1865v1
© O. Fernández-Ramos and P. Gimenez, Regularity 3 in edge ideals associated to bipartite graphs, ArXiv e-prints, preprint (2012). arXiv:1207.5553v1
© J. Herzog and T. Hibi, Monomial Ideals, in: GTM 260, Springer, London, (2010).

For Further Reading II

Q J. Herzog, T. Hibi, Componentwise linear ideals, Nagoya Math. J., 153, 141-153 (1999)
H. T. Hà and A. Van Tuyl, Resolutions of square-free monomial ideals via facet ideals: a survey, Contemporary Mathematics. 448 (2007) 91-117.
arXiv:math/0604301v2
H. T. Hà and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin. 27 (2) (2008) 215-245. arXiv:math/0606539v2
M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A 113 (2006), 435-454. arXiv:math/0408016v2

For Further Reading III

Q Jason McCullough, A polynomial bound on the regularity of an ideal in terms of half the syzygies, Prerint 2012, arXiv:1112.0058
Q M. Morales, A. Nasrollah Nejad, A. A. Yazdan Pour and R. Zaare-Nahandi, Monomial ideals with 3-linear resolutions, Annales de la Faculté des Sciences de Toulouse, To Appear, arXiv:1207.1790v1

Q M. Morales, A. A. Yazdan Pour and R. Zaare-Nahandi, Regularity and Free Resolution of Ideals which are Minimal to d-linearity, Math. Scand., To appear, arXiv:1207.1789v1

Thanks for your attention.

