The 11th Seminar on Commutative Algebra and Related Topics, November 10 and 11, 2014 School of Mathematics, IPM, Tehran

Gorenstein Homology, Relative Pure Homology and Virtually Gorenstein Rings

Fatemeh Zareh-Khoshchehreh

Buein Zahra Technical University

Iran

Let R be a commutative ring with identity and \mathcal{GP} and \mathcal{GI} denote the classes of Gorenstein projective and Gorenstein injective R-modules, respectively. Warfield [2] has introduced a notion of \mathscr{X} -purity for any class \mathscr{X} of R-modules. Recall from [2] that an exact sequence $0 \to A \to B \to C \to 0$ of R-modules is called \mathscr{X} - pure exact if for any $U \in \mathscr{X}$ the induced R-homomorphism $\operatorname{Hom}_R(U, B) \to \operatorname{Hom}_R(U, C)$ is surjective. An R-module Mis called \mathscr{X} -pure projective (respectively \mathscr{X} - pure injective; \mathscr{X} -pure flat) if the functor $\operatorname{Hom}_R(M, -)$ (respectively $\operatorname{Hom}_R(-, M)$; $M \otimes_R -$) leaves any \mathscr{X} -pure exact sequence exact.

Let \mathscr{X} be a class of *R*-modules. We say a homology theory \mathcal{T} is a \mathscr{X} -pure homology if an *R*-module *M* is projective (respectively injective; flat) in \mathcal{T} if and only if it is \mathscr{X} -pure projective (respectively \mathscr{X} -pure injective; \mathscr{X} -pure flat). In this talk, we investigate the question: Is Gorenstein homology a \mathscr{X} -pure homology for an appropriate class \mathscr{X} of *R*-modules? Our candidate for a such class \mathscr{X} is \mathcal{GP} . To treat this question, we focus on Noetherian rings of finite Krull dimension. So, from now to the end of the abstract, assume that *R* is Noetherian of finite Krull dimension. It is not hard to verify that

$$\mathcal{GP} = \{ M \in R - \operatorname{Mod} | M \text{ is } \mathcal{GP} - \text{pure projective} \}.$$

On the other hand, we show that if the classes of Gorenstein injectives and \mathcal{GP} -pure injectives are the same, then also the classes of Gorenstein flats and \mathcal{GP} -pure flats are the same. Therefore, our question reduces to: Are the classes of Gorenstein injectives and \mathcal{GP} -pure injectives the same?

For any class \mathscr{X} of *R*-modules, let \mathscr{X}^{\perp} (respectively ${}^{\perp}\mathscr{X}$) denotes the class of *R*-modules *M* with the property that $\operatorname{Ext}^{1}_{R}(X, M) = 0$ (respectively $\operatorname{Ext}^{1}_{R}(M, X) = 0$) for all *R*-modules $X \in \mathscr{X}$, we show that ${}^{\perp}\mathcal{GI} \subseteq \mathcal{GP}^{\perp}$. We call *R virtually Gorenstein* if ${}^{\perp}\mathcal{GI} = \mathcal{GP}^{\perp}$. This generalizes the notion of virtually Gorenstein Artin algebras which

was introduced by Beligiannis and Reiten in [1]. Our main results make such algebras relevant also in commutative ring theory. We prove that Gorenstein homology is a \mathcal{GP} pure homology if and only if the functor $\operatorname{Hom}_R(-, \sim)$ is right balanced by $\mathcal{GP} \times \mathcal{GI}$ and if and only if R is virtually Gorenstein. This talk is based on a joint work with Mohsen Asgharzadeh and Kamran Divaani-Aazar [3].

References

- A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc., 188 (883), (2007).
- [2] R.B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math., 28 (3), (1969), 699-719.
- [3] F. Zareh-Khoshchehreh, M. Asgharzadeh and K. Divaani-Aazar, Gorenstein homology, relative pure homology and virtually Gorenstein rings, J. Pure Appl. Algebra, 218 (12), (2014), 2356-2366.