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We present a polynomial wavelet-type system on Sd such that any
continuous function can be expanded with respect to these wavelets.
The order of the growth of the degree of the polynomials is optimal.
The coefficients in the expansion are the inner product of the function and
the corresponding element of a dual wavelet system.
The dual wavelet system is also a polynomial system with the same growth
of degree of polynomials. The system is redundant.

.

......

A construction of a polynomial basis is also presented. In constrast to our
wavelet-type system, this basis is not suitable for implementation, because
of two drawbacks: first there are no explicit formoula for the coefficient
functionals and, secend, the growth of the degree of polynomials is too
rapid.
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1961, Foias and Singer found the first polynomial basis for C[a, b].

1987, Privalov, consrucrtd optimal polynomial basis for the space of
continuous functions in both the trigonometric and the algebraic
cases.

1994, Lorentz and Saakyan , proved that packets of periodic Meyer
wavelets are such bases. That is orthogonal.

1988, Freeden and Schreiner, proposed the wavelet-type polynomial
systems on the two-dimensional sphere.

1988, Farkov extended their construction to the multidimensional
case.

2001, Skopina, found a similar wavelet system in L2[a, b] and proved
that the corresponding wavelet packets are optimal plynomial
orthogonal bases for the space C[a, b].

Askari-Hemmat (askari@mail.uk.ac.ir) Polynomial Wavelet Type Expansions on the Spline Jan., 06, 2014 3 / 22



logo.jpg logo.bb

. . . . . .

History

.

......

1961, Foias and Singer found the first polynomial basis for C[a, b].

1987, Privalov, consrucrtd optimal polynomial basis for the space of
continuous functions in both the trigonometric and the algebraic
cases.

1994, Lorentz and Saakyan , proved that packets of periodic Meyer
wavelets are such bases. That is orthogonal.

1988, Freeden and Schreiner, proposed the wavelet-type polynomial
systems on the two-dimensional sphere.

1988, Farkov extended their construction to the multidimensional
case.

2001, Skopina, found a similar wavelet system in L2[a, b] and proved
that the corresponding wavelet packets are optimal plynomial
orthogonal bases for the space C[a, b].

Askari-Hemmat (askari@mail.uk.ac.ir) Polynomial Wavelet Type Expansions on the Spline Jan., 06, 2014 3 / 22



logo.jpg logo.bb

. . . . . .

History

.

......

1961, Foias and Singer found the first polynomial basis for C[a, b].

1987, Privalov, consrucrtd optimal polynomial basis for the space of
continuous functions in both the trigonometric and the algebraic
cases.

1994, Lorentz and Saakyan , proved that packets of periodic Meyer
wavelets are such bases. That is orthogonal.

1988, Freeden and Schreiner, proposed the wavelet-type polynomial
systems on the two-dimensional sphere.

1988, Farkov extended their construction to the multidimensional
case.

2001, Skopina, found a similar wavelet system in L2[a, b] and proved
that the corresponding wavelet packets are optimal plynomial
orthogonal bases for the space C[a, b].

Askari-Hemmat (askari@mail.uk.ac.ir) Polynomial Wavelet Type Expansions on the Spline Jan., 06, 2014 3 / 22



logo.jpg logo.bb

. . . . . .

History

.

......

1961, Foias and Singer found the first polynomial basis for C[a, b].

1987, Privalov, consrucrtd optimal polynomial basis for the space of
continuous functions in both the trigonometric and the algebraic
cases.

1994, Lorentz and Saakyan , proved that packets of periodic Meyer
wavelets are such bases. That is orthogonal.

1988, Freeden and Schreiner, proposed the wavelet-type polynomial
systems on the two-dimensional sphere.

1988, Farkov extended their construction to the multidimensional
case.

2001, Skopina, found a similar wavelet system in L2[a, b] and proved
that the corresponding wavelet packets are optimal plynomial
orthogonal bases for the space C[a, b].

Askari-Hemmat (askari@mail.uk.ac.ir) Polynomial Wavelet Type Expansions on the Spline Jan., 06, 2014 3 / 22



logo.jpg logo.bb

. . . . . .

History

.

......

1961, Foias and Singer found the first polynomial basis for C[a, b].

1987, Privalov, consrucrtd optimal polynomial basis for the space of
continuous functions in both the trigonometric and the algebraic
cases.

1994, Lorentz and Saakyan , proved that packets of periodic Meyer
wavelets are such bases. That is orthogonal.

1988, Freeden and Schreiner, proposed the wavelet-type polynomial
systems on the two-dimensional sphere.

1988, Farkov extended their construction to the multidimensional
case.

2001, Skopina, found a similar wavelet system in L2[a, b] and proved
that the corresponding wavelet packets are optimal plynomial
orthogonal bases for the space C[a, b].

Askari-Hemmat (askari@mail.uk.ac.ir) Polynomial Wavelet Type Expansions on the Spline Jan., 06, 2014 3 / 22



logo.jpg logo.bb

. . . . . .

History

.

......

1961, Foias and Singer found the first polynomial basis for C[a, b].

1987, Privalov, consrucrtd optimal polynomial basis for the space of
continuous functions in both the trigonometric and the algebraic
cases.

1994, Lorentz and Saakyan , proved that packets of periodic Meyer
wavelets are such bases. That is orthogonal.

1988, Freeden and Schreiner, proposed the wavelet-type polynomial
systems on the two-dimensional sphere.

1988, Farkov extended their construction to the multidimensional
case.

2001, Skopina, found a similar wavelet system in L2[a, b] and proved
that the corresponding wavelet packets are optimal plynomial
orthogonal bases for the space C[a, b].

Askari-Hemmat (askari@mail.uk.ac.ir) Polynomial Wavelet Type Expansions on the Spline Jan., 06, 2014 3 / 22



logo.jpg logo.bb

. . . . . .

History

.

......

1961, Foias and Singer found the first polynomial basis for C[a, b].

1987, Privalov, consrucrtd optimal polynomial basis for the space of
continuous functions in both the trigonometric and the algebraic
cases.

1994, Lorentz and Saakyan , proved that packets of periodic Meyer
wavelets are such bases. That is orthogonal.

1988, Freeden and Schreiner, proposed the wavelet-type polynomial
systems on the two-dimensional sphere.

1988, Farkov extended their construction to the multidimensional
case.

2001, Skopina, found a similar wavelet system in L2[a, b] and proved
that the corresponding wavelet packets are optimal plynomial
orthogonal bases for the space C[a, b].

Askari-Hemmat (askari@mail.uk.ac.ir) Polynomial Wavelet Type Expansions on the Spline Jan., 06, 2014 3 / 22



logo.jpg logo.bb

. . . . . .

.

......

We show that, for any function f ∈ C(Sd), certain spherical wavelets
provide a uniformly convergent polynomial expansion.

.

......

The following notations will be used:

The inner product

x.y = x1y1 + · · ·+ xdyd.

πd
n : is the space of polynomials in d variables of degree at most n.

Bd =
{
x ∈ Rd|∥x∥ ≤ 1

}
, Sd = ∂Bd+1.
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G
(λ)
n : Denotes the nth Gegenbauer polynomial of order λ.

Jacobi’s polynomials, {P (α,β)
n (x)}, are defined as orthogonal

polynomials with respect to the weight function (1− x)α(1 + x)β on
(−1, 1). (α > −1, β > −1)

If we put α = β in the above definition and define A
(λ)
0 = 1,

A(0)
n =

2n+1(n− 1)

1.3. . . . .(2n− 1)
, n ≥ 1

A(λ)
n =

2n(2λ)(2λ+ 1) · · · (2λ+ n− 1)

(2λ+ 1) · · · (2(λ+ n)− 1)
, n ≥ 1, λ ̸= 0

then Gegenbauer polynomials are defined as

G(λ)
n = A(λ)

n P (α,α)
n (x), λ = (α+

1

2
), n ≥ 0.
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The area of d-dimensional sphere (Sd):

ωd =

∫
sd
ds(x) =

2π( d+1
2

)

Γ(d+1
2 )

.

For functions F,G ∈ L2(S
d), the inner product is defined as follows.

< F,G >=

∫
Sd

F (x)Ḡ(x)ds(x).

The restriction to Sd of a homogeneous harmonic polynomial of
degree n is called a spherical harmonic of degree n.

For a fixed integer n, Hd
n denotes the class of spherical harmonics of

degree n.

The spaces Hd
n are mutually orthogonal.
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⊕n
l=1H

d
l comprises the restrictions to of all algebraic polynomials in

d+ 1 variables of degree not exceeding n.

Dimension of Hd
n is given by:

δdn := dimHd
n =

{
2n+d+1
n+d−1

(
n+d−1

n

)
if n ≥ 1

1 if n = 0

⊕∞
n=1H

d
n is dense in L2(S

d).

Muller’s formula (1966): Let
{
Ynk, k = 1, · · · δdn be an orthonormal

basis for Hd
n, then

δdn∑
k=0

Ynk(x)Ynk(y) =
(2n+ d− 1)

ωd(d− 1)
G

d−1
2

n (x.y) (1)

for all x, y ∈ Sd and for all n = 0, 1, . . . .
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There is constants Nd and Ad depending only on d so that for any finite
set {ηl}l∈Ω of distinct points ηl ∈ Sd and for any positive integer N ≥ Nd

satisfying
N max

x∈Sd
min
l∈Ω

|x− ηl| ≤ Ad

there exist nonnegative weights al, l ∈ Ω such that∫
Sd

P (x)ds(x) =
∑
l∈Ω

alP (ηl)

for all P ∈ πd+1
N .
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Because of this theorem, to each positive integer j we can assign a set

{η(j)l }l∈Ωj
of distinct points η

(j)
l ∈ Sd and a set {a(j)l }l∈Ωj

of nonnegative
weights the following properties:
card(Ωj)∼ 2dj , ∫

Sd

P (x)ds(x) =
∑
l∈Ωj

a
(j)
l P (η

(j)
l )

for any P ∈ πd+1
2j

. Additionally, we introduce the set Ω0 := {0} and put

a
(0)
0 = ωd.
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of nonnegative
weights with the following properties:

card(Ωj)∼ 2dj . ∫
Sd

P (x)ds(x) =
∑
l∈Ωj

a
(j)
l P (η

(j)
l ) (2)

for any P ∈ πd+1
2j

.

Additionally we introduce the set Ω0 := {0} and put a
(0)
0 = ωd.

Let hj(n) =
(2

j−n+d−1
d )

(2
j+d−1

2j−1 )
for n = 0, ..., 2j − 1, hj(n) = 0 for

n = 2j , 2j + 1, ....

An inequality due to kogbeliantz states that

n∑
n=0

(
N − n+ d

d

)
(2n+d−1)G

( d−1
2

)
n (t) ≥ 0, for all t ∈ [−1, 1]. (3)
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Now we are going to define our wavelet-type functions.
Set for j = 1, ..., n = 0, 1, ...:

gj(n) = hj(n) + hj−1(n)

g̃j(n) = hj(n)− hj−1(n)

g0(0) = h0(0) + 1, g̃0(0) = h0(0)− 1, g0(n) = g̃0(n) = 0, for n = 1, 2, ....

For each nonnegative integer j and for each l ∈ Ωj+1, define the wavelet

function Ψjl, the dual wavelet function Ψ̃jl and the scaling function
Φ(j+1)l by

Ψjl(x) =
1

ωd(d− 1)

∑
n∈z+

gj(n)(2n+ d− 1)×G
( d−1

2
)

n (η
(j+1)
l . x)

Ψ̃jl(x) =
1

ωd(d− 1)

∑
n∈z+

g̃j(n)(2n+ d− 1)×G
( d−1

2
)

n (η
(j+1)
l . x)
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Φ(j+1)l(x) =
1

ωd(d− 1)

∑
n∈z+

h(n)(2n+ d− 1)×G
( d−1

2
)

n (η
(j+1)
l . x)

Complete this collection by the function Φ0,0 =
1
ωd

and set Φ0 =
√
ωdΦ0,0.

For F ∈ C(Sd), we will study the convergence of the series

< F,Φ0 > Φ0 +
∞∑
i=0

∑
l∈Ωi+1

a
(i+1)
l < F, Ψ̃il > Ψil.

Set

Λj,ω(F ) =< F,Φ0 > Φ0+

j−1∑
i=0

∑
l∈Ωi+1

a
(i+1)
l < F, Ψ̃il > Ψil

+
∑
l∈ω

a
(j+1)
l < F, Ψ̃jl > Ψjl

where ω is a subset of Ωj+1.
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For any F ∈ C(Sd)
lim
j→∞

∥F − Λj,ω(F )∥ = 0 (4)

First we will prove that the operators Λj,ω : C(Sd) −→ C(Sd), are
uniformly bounded. We show that (4) holds on the set of spherical
polynomials and our claim is a consequence of Banach-Steinhaus
theorem. To prove the main theorem we need the following lemma:

.
Lemma
..

......

For any F ∈ C(Sd)

< F,Φ0 > Φ0+

j−1∑
i=0

∑
l∈Ωi+1

a
(i+1)
l < F, Ψ̃il > Ψil

=
∑
l∈Ωj

a
(j)
l < F,Φjl > Φjl. (5)
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Construct a polynomial basis for C(Sd).

.

......

The following theorem due to Krein-Milman-Rutman plays the main
role:
Let {Qk}∞k=0 be a basis for a Banach space H and let αk ∈ H∗,
k = 0, 1, ..., be coefficient functionals for this basis. If Pk ∈ H
and ∥Pk −Qk∥ ≤ 2−k−2

∥αk∥ =: λk for all k = 0, 1, ..., then the

sequence {Pk}∞k=0 is a basis for H.

If we can find a basis, say {Qn}, for C(Sd) and set λk = 2−k−2

∥αk∥ where

{αk}∞k=1 is the sequence of corresponding coefficient functional.
So to construct a polynomial basis for C(Sd) it’s enough to construct
a basis for it.

We start with finding an initial basis {Qk} for C(Sd)
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Construct a polynomial basis for C(Sd).

.
Step 1.
..

......

Counstruction a basis for the space C([0, 1]d) and

C0([0, 1]
d) :=

{
f ∈ C([0, 1]d) : f(x) = 0, ∀x ∈ ∂([0, 1]d)

}
.

Let {fn}∞n=0 be the Faber-Cshaude basis for C[0, 1] defined by

f0(x) = 1, x ∈ [0, 1]

f1(x) = x, x ∈ [0, 1],

for n = 2k + i, k = 0, 1, ..., i = 1, 2, ..., 2k, fn is linear and continuous on
[ i−1
2k

, 2i−1
2k+1 ] and on [2i−1

2k+1 ,
i
2k
],

fn(x) =

{
0 if x /∈ ( i−1

2k
, i
2k
)

1 if x = 2i−1
2k+1
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Construct a polynomial basis for C(Sd).

.
Step 1.
..

......

The tensor product of d systems fn is a basis for C([0, 1]d), say
B = {Fk}∞k=1. Elements of B are functions of the form

F (x) = fn1(x)fn2(x) · · · fnd
(x), xj ∈ [0, 1], nj ∈ Z+, j = 1, · · · , d.

Denote by B′ the subset of B that contains of all the functions F such
that nj ̸= 0, nj ̸= 1, j = 1, · · · , d. Then B′ is a basis foe C0([0, 1]

d).

.
Step 2.
..

......

Construction of basis for the space C(Bd) and

C0(B
d) :=

{
f ∈ C(Bd) : f(x) = 0, ∀x ∈ ∂Bd

}
.

By a change of variable, we can replace [0, 1]d by [−1, 1]d, preserving the
same notation B, B′ for the corresponding basis.
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Construct a polynomial basis for C(Sd).

.
Step 2.
..

......

Define a map
ϕ : Bd −→ [−1, 1]d

ϕ(x) = (ρr(θ), θ)

where x = (ρ, θ), 0 ≤ ρ ≤ 1, θ ∈ Sd−1 and r(θ) is the length of the
segment {

y = (t, θ) : t ≥ 0, y ∈ [−1, 1]d
}
.

Then θ is bijective and the functions Gk := Fk(ϕ), k = 1, 2, ..., constitute
a basis for C(Bd). Denote this basis by B′.

A basis B′
′ = {G(0)

k }∞k=1 for C0(B
d) can be constructed similarly from

B′.
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Construct a polynomial basis for C(Sd).

.
Step 3.
..

......

Construction of a basis for C(Sd).

Let C(o)(Sd) and C(e)(Sd) be respectively the set of functions f ∈ C(Sd)
such that

f(x1, x2, ..., xd, xd+1) = f(x1, x2, ..., xd,−xd+1)

and the set of functions f ∈ C(Sd) such that

f(x1, x2, ..., xd, xd+1) = −f(x1, x2, ..., xd,−xd+1).

Each f ∈ C(Sd) can be represented in the form f = f (e) + f (o), where

f (e) ∈ C(e)(Sd), f (o) ∈ C(o)(Sd). It is obvious that if {H(e)
k }∞k=1 and

{H(o)
k }∞k=1 are bases for C(e)(Sd) and C(o)(Sd), then the system

{H(e)
k ,H

(o)
k }∞k=1 is a basis for C(Sd).
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Construct a polynomial basis for C(Sd).

.
Step 3.
..

......

So it remaines to find bases for C(e)(Sd) and C(o)(Sd).
For x = (x1, x2, ..., xd+1) ∈ Sd, set

H
(e)
k (x) = Gk(x1, x2, ..., xd)

H
(o)
k (x) =

{
G

(o)
k (x1, x2, ..., xd) if xd+1 ≥ 0

−G
(o)
k (x1, x2, ..., xd) if xd+1 ≤ 0

{H(e)
k }∞k=1 and {H(o)

k }∞k=1 are the required bases.
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