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@ Equivalently, ¢ is a wavelet for the representation 7 of the
ax + b-group.
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Wavelets

G locally compact group.

7 unitary representation of G.

For & € H,, define Ve : Hr — C(G), Ve(n) = (n,7(-)§).
Definition

¢is awavelet if V; : H, — L2(G) isometry.

If = has a wavelet &,
@ 7 is a sub-representation of .
@ V; intertwines m and A.
@ Every irreducible sub-representation of A\ has wavelets.
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Matrix coefficient functions

G: locally compact group.
‘H: Hilbert space.
U(H): unitary operators on H.

@ A unitary representation 7 : G — U(#H ) satisfies
o m(xy) = m(X)7(y).
o m(x ") =7(x)"" = r(x)*.
e The map G — H, x — w(x)& is continuous for every &.
@ Matrix coefficient function ¢ : G — C, x — (w(Xx)&, n).
@ Functions of positive type
P(G) = {(m(-)&, &) : 7 unitary representation, & € H,}.

Theorem (Bochner’s Theorem)

For Abelian locally compact group G, B(G) = spansP(G).
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Fourier-Stieltjes algebra

G locally compact group.
Y .= {Classes of unitary representations of G}.

@ Fourier-Stieltjes algebra
B(G) = {<7T()£717> VIS zafﬂ? € Hﬂ'}

@ C*(G)=enveloping C*—algebra the of L1(G)

@ B(G) = C*(G)* via ( =[5 f(x)u(x)dx for u € B(G)
and f € L'(G).

@ Norm || - ||g(g) is defined by the above duality.

(B(G), || - ||g) with pointwise operations is a commutative unital
Banach algebra.
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Coefficient spaces A

Subspaces of matrix coefficient functions

7 unitary representation of G.
@ Coefficient space associated with =
A~(G) = spanc{(x(VE.7) - €. € Hr) 2.
@ A.(G) closed subspace of B(G), left and right translation
invariant.

@ These are all of left and right translation-invariant closed
subspaces of B(G).

@ C/(G)n B(G)”'”B(G) = A\(G), with X left regular rep’n.

Fourier algebra A(G) := A,(G) = W”"‘B(G)_
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f € L'(G) is a projection if f x f = f = f*, where f*(x) =

@ Construct projections in L' (G) using matrix coefficient
functions.

@ Identify all L'-projections produced from certain subspaces
of matrix coefficient functions.
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Projections in L'(G)

G: l.c.g, G: irreducible unitary representations of G.

e fc L'(G) projection: f* f = f = f*.

@ Partial order on L'-projections: f < gif fxg = f.

@ f minimal projection: g < fimpliesthatg=0o0rg=".
Unitary rep’'n 7 : G — U(H) extends to rep'n L' (G) — B(Hx),

n(f) = [5 f(x)m(x)dx.

@ Support of projection Supp(f) = {r € G : «(f) # 0}.

Support of an L'-projection is a compact open subset of G.
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L'-projections of Abelian groups

G: locally compact Abelian group.

f: projection in L'(G).
o P=F=*%
® Supp(f) = {x~" : f(x) # 0}.
® F=isuppin-
e L'-projections come from compact open subsets of G.

Theorem

f+— Supp(f) isa 1-1 correspondence from L' -projections to
compact open subsets of G.

e L'(R) and L'(Z) do not have any nontrivial projections.
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Projections

The dual of compact groups

G: compact group.
G is discrete.
Every = € G is finite-dimensional.

Orthogonality relations

Form,0 € G,

(no. o (X)Eo) : T=0
S, m(x)&1) (n2, o(x)E2) Ax = { () (M 7(;72><§1,€2> i

@ In particular, if [|£|| = dim(7)2

/G (11, w(X)E) (s TOOE) O = (11, m2).

@ The map V; : H. — L2(G), Ve(n) = (n, n(-)€) is isometry.
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Projections

L'-projections of compact groups

G: compact group, 7 € G.
Ve(n) = (n,7(-)¢) for &, € Hr.
It 1|¢]| = dim(m)2 then (Ve(m), Ve(n2)) i2(q) = (msm2)-

Fix € with [|€]] = dim(r)z.
0 Ve(&)" = Ve(6).
0 V(&) * Ve(§) = V(&)

Proof.

Ve(€) x Ve(€)(x) = /GVs(ﬁ)(y)Va(f)(y1X)dy

- /G (& 7 ()ENE 7y )E)dy
= (Ve(©), Ve(m(x)€)) 2@ = (€ 7(2)E).
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Projections

Minimal L'-projections of compact groups

G: compact group, 7 € G.

Fix ¢ with [|¢]| = dim()z.
o Ve(&) = (&, m(-)¢) is L'-projection.
@ Supp( V() = {n}.
@ V(&) minimal L'-projection.

Can we characterize all minimal L'-projections of G?

Every minimal projection of L'(G) is of the form (¢, (-)¢) for
some 7 € G.
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Projections and A,

L'-projections of locally compact groups

G l.c.g, f projection in L'(G).
Assume f € L2(G).
@ fis continuous a.e.
o f=-(\(19.9) € JZAG).
@ Sometimes \ decomposes into irreducible representations.

@ G=R xR*. Then
@ N=00 - Poo-T_.

o A(G) = A, ®A,_.

® G = My(R) x GL,(R). Then
@ A=oc0-T.

o A(G) = A..




Projections and A,

Theorem (Alaghmandan-Gh.-Taylor)

G unimodular locally compact group.
u a projection in L'(G). Then,
ue A(G)NLP(G) forevery1 < p < oc.
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