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Wavelet transform on R

Fix ψ ∈ L2(R) satisfying “admissibility condition”∫
R\{0}

|ψ̂(w)|2

|w |
dw = 1.

For a ∈ R \ {0} and b ∈ R, define ψb,a(x) = |a|
1
2ψ(x−b

a ).

Reconstruction formula

f =

∫
R

∫
R\{0}

〈f , ψb,a〉ψb,a
da db
|a|2

.

Equivalently, ψ is a wavelet for the representation π of the
ax + b-group.
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Wavelets

G locally compact group.
π unitary representation of G.
For ξ ∈ Hπ, define Vξ : Hπ → C(G), Vξ(η) = 〈η, π(·)ξ〉.

Definition

ξ is a wavelet if Vξ : Hπ → L2(G) isometry.

If π has a wavelet ξ,

π is a sub-representation of λ.
Vξ intertwines π and λ.
Every irreducible sub-representation of λ has wavelets.
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Matrix coefficient functions

G: locally compact group.
H: Hilbert space.
U(H): unitary operators on H.

A unitary representation π : G→ U(H) satisfies
π(xy) = π(x)π(y).
π(x−1) = π(x)−1 = π(x)∗.
The map G→ H, x 7→ π(x)ξ is continuous for every ξ.

Matrix coefficient function φ : G→ C, x 7→ 〈π(x)ξ, η〉.
Functions of positive type
P(G) = {〈π(·)ξ, ξ〉 : π unitary representation, ξ ∈ Hπ}.

Theorem (Bochner’s Theorem)

For Abelian locally compact group G, B(G) = spanCP(G).
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Fourier-Stieltjes algebra

G locally compact group.
Σ := {Classes of unitary representations of G}.

Fourier-Stieltjes algebra

B(G) = {〈π(·)ξ, η〉 : π ∈ Σ, ξ, η ∈ Hπ}.

C∗(G)=enveloping C∗-algebra the of L1(G).
B(G) = C∗(G)∗ via 〈f ,u〉 =

∫
G f (x)u(x)dx for u ∈ B(G)

and f ∈ L1(G).
Norm ‖ · ‖B(G) is defined by the above duality.

Theorem
(B(G), ‖ · ‖B) with pointwise operations is a commutative unital
Banach algebra.
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Subspaces of matrix coefficient functions

π unitary representation of G.
Coefficient space associated with π
Aπ(G) = spanC{〈π(·)ξ, η〉 : ξ, η ∈ Hπ}

‖·‖B(G) .

Aπ(G) closed subspace of B(G),

left and right translation
invariant.
These are all of left and right translation-invariant closed
subspaces of B(G).

Example

Cc(G) ∩ B(G)
‖·‖B(G) = Aλ(G), with λ left regular rep’n.

Fourier algebra A(G) := Aλ(G) = B(G) ∩ Cc(G)
‖·‖B(G) .
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Definition

f ∈ L1(G) is a projection if f ∗ f = f = f ∗, where f ∗(x) = f (x−1)
∆(x) .

Goal

Construct projections in L1(G) using matrix coefficient
functions.
Identify all L1-projections produced from certain subspaces
of matrix coefficient functions.
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Projections in L1(G)

G: l.c.g,

Ĝ: irreducible unitary representations of G.

f ∈ L1(G) projection: f ∗ f = f = f ∗.

Partial order on L1-projections: f � g if f ∗ g = f .
f minimal projection: g � f implies that g = 0 or g = f .

Unitary rep’n π : G→ U(Hπ) extends to rep’n L1(G)→ B(Hπ),

π(f ) =
∫

G f (x)π(x)dx .

Support of projection Supp(f ) = {π ∈ Ĝ : π(f ) 6= 0}.

Remark

Support of an L1-projection is a compact open subset of Ĝ.
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Wavelet Analysis Wavelets Coefficient spaces Aπ Projections Projections and Aπ

Projections in L1(G)
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L1-projections of Abelian groups

G: locally compact Abelian group.

f : projection in L1(G).

f̂ 2 = f̂ = f̂ .
Supp(f ) = {χ−1 : f̂ (χ) 6= 0}.
f̂ = 1[Supp(f )]−1 .

L1-projections come from compact open subsets of Ĝ.

Theorem

f 7→ Supp(f ) is a 1-1 correspondence from L1-projections to
compact open subsets of Ĝ.

L1(R) and L1(Z) do not have any nontrivial projections.
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The dual of compact groups

G: compact group.
Ĝ is discrete.
Every π ∈ Ĝ is finite-dimensional.

Orthogonality relations

For π, σ ∈ Ĝ,

∫
G〈η1, π(x)ξ1〉〈η2, σ(x)ξ2〉dx =

{
1

dim(π)〈η1, η2〉〈ξ1, ξ2〉 π = σ

0 π 6∼ δ

In particular, if ‖ξ‖ = dim(π)
1
2 ,∫

G
〈η1, π(x)ξ〉〈η2, π(x)ξ〉dx = 〈η1, η2〉.

The map Vξ : Hπ → L2(G), Vξ(η) = 〈η, π(·)ξ〉 is isometry.
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L1-projections of compact groups

G: compact group, π ∈ Ĝ.
Vξ(η) = 〈η, π(·)ξ〉 for ξ, η ∈ Hπ.
If ‖ξ‖ = dim(π)

1
2 then 〈Vξ(η1),Vξ(η2)〉L2(G) = 〈η1, η2〉.

Fix ξ with ‖ξ‖ = dim(π)
1
2 .

Vξ(ξ)∗ = Vξ(ξ).
Vξ(ξ) ∗ Vξ(ξ) = Vξ(ξ).

Proof.

Vξ(ξ) ∗ Vξ(ξ)(x) =

∫
G

Vξ(ξ)(y)Vξ(ξ)(y−1x)dy

=

∫
G
〈ξ, π(y)ξ〉〈ξ, π(y−1x)ξ〉dy

= 〈Vξ(ξ),Vξ(π(x)ξ)〉L2(G) = 〈ξ, π(x)ξ〉.
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2 then 〈Vξ(η1),Vξ(η2)〉L2(G) = 〈η1, η2〉.

Fix ξ with ‖ξ‖ = dim(π)
1
2 .

Vξ(ξ)∗ = Vξ(ξ).
Vξ(ξ) ∗ Vξ(ξ) = Vξ(ξ).

Proof.

Vξ(ξ) ∗ Vξ(ξ)(x) =

∫
G

Vξ(ξ)(y)Vξ(ξ)(y−1x)dy

=

∫
G
〈ξ, π(y)ξ〉〈ξ, π(y−1x)ξ〉dy

= 〈Vξ(ξ),Vξ(π(x)ξ)〉L2(G) = 〈ξ, π(x)ξ〉.
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Minimal L1-projections of compact groups

G: compact group, π ∈ Ĝ.
Fix ξ with ‖ξ‖ = dim(π)

1
2 .

Vξ(ξ) = 〈ξ, π(·)ξ〉 is L1-projection.
Supp(Vξ(ξ)) = {π}.
Vξ(ξ) minimal L1-projection.

Question

Can we characterize all minimal L1-projections of G?

Answer

Every minimal projection of L1(G) is of the form 〈ξ, π(·)ξ〉 for
some π ∈ Ĝ.
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L1-projections of locally compact groups

G l.c.g, f projection in L1(G).
Assume f ∈ L2(G).

f is continuous a.e.
f = 1√

∆
〈λ(·)g,g〉 ∈ 1√

∆
A(G).

Sometimes λ decomposes into irreducible representations.

Example

G = Ro R+. Then
λ =∞ · π+ ⊕∞ · π−.
A(G) = Aπ+ ⊕ Aπ− .

Example

G = M2(R) o GL2(R). Then
λ =∞ · π.
A(G) = Aπ.
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Theorem (Alaghmandan-Gh.-Taylor)

G unimodular locally compact group.
u a projection in L1(G). Then,
u ∈ A(G) ∩ Lp(G) for every 1 ≤ p ≤ ∞.
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