Weak and smooth synthesis sets of the Fourier algebras and their applicatons

Ebrahim Samei University of Saskatchewan

January 5, 2014

G: An *n*-dimensional Lie group $\mathcal{D}(G)$: compactly supported C^{∞} functions on G,

A(G): The Fourier algebra of G.

 $I(E) = \{f \in A(G) \mid f(x) = 0 \text{ for all } x \in E\},\$ $J(E) = \overline{\{a \in I(E) \mid \text{supp } a \text{ is compact}\}},\$ $J_{\mathcal{D}}(E) = \{f \in \mathcal{D}(G) \mid f(x) = 0 \text{ for all } x \in E\},\$ $I_0(E) = \{f \in A(G) \cap C_c(G) \mid \text{supp} f \cap E = \emptyset\}$

E is:

- a set of synthesis if $I(E) = I_0(E)$.
- a set of local syn. if $J(E) = \overline{I_0(E)}$.

• *E* is a set of weak synthesis of degree at most *d* if $I(E)^d = \overline{I_0(E)}$ for some positive integer *d*, i.e. if $I(E)/\overline{I_0(E)}$ is nilpotent of degree at most *d*.

• *E* is a set of local weak synthesis of degree at most *d* if $J(E)^d = \overline{I_0(E)}$ for some positive integer *d*, i.e. if $J(E)/\overline{I_0(E)}$ is nilpotent of degree at most *d*.

• *E* is a set of smooth synthesis if $J_{\mathcal{D}}(E) = I(E)$ and it is a set of local smooth synthesis if $J_{\mathcal{D}}(E) = J(E)$.

Theorem 1 (Ludwig-Turowska)

Let M be a smooth m-dimensional submanifold of G, and let $E \subseteq M$ be closed in G. Then:

(*i*) $J_{\mathcal{D}}(E)^{[\frac{m}{2}]+1} = \overline{I_0(E)}.$

(ii) If E is a set of smooth synthesis, then it is a set of weak synthesis of degree at most $\left[\frac{m}{2}\right] + 1$.

(iii) If E is a set of local smooth synthesis, then it is a set of local weak synthesis of degree at most $\left[\frac{m}{2}\right] + 1$.

Definition 2 (Domar, Kirsch-Müller, Ludwig-Turowska)

(i) Any pair $t \in G$ and $a \in Aut(G)$ give rise to a mapping $\varphi : G \rightarrow G$, $\varphi(s) = a(ts)$, which will be called an **affine transformation** of G.

(ii) A Lie group H is a group of affine transformation of G if H acts smoothly by affine transformations on G. Smoothly here means that the mapping $H \times G \to G$, $(a, x) \mapsto a(x)$ is smooth. (iii) Let M be a smooth m-dimensional submanifold of G. A subset E of M has the **cone property** if the following holds:

(1) E is closed in G.

(2) For every $x \in E$, there exists an open neighborhood U_x of $x \in G$ and a C^{∞} mapping ψ_x from an open subset $W_x \subset \mathbb{R}^m$ containing 0 into a Lie group of affine transformations H_x on G such that $\psi_x(0) = \operatorname{id}_G$ and there exists an open subset $W_x^0 \subset W_x$ such that:

(2.1) 0 is in the closure of W_x^0 .

(2.2) For every $y \in U_x \cap E$, $\psi_x(W_x^0)y$ is contained in E and open in M and the mapping $W_x^0 \to \psi_x(W_x^0)y$, $t \mapsto \psi_x(t)y$, is a diffeomorphism.

Theorem 3 (Ludwig-Turowska)

Let M be a smooth m-dimensional submanifold of G, and let $E \subseteq M$ be a subset with the cone property. Then: (i) E is a set of local smooth synthesis. (ii) E is a set of local weak synthesis of degree at most $[\frac{m}{2}] + 1$.

Anti-diagonal:

$$\check{\Delta}_G = \{ (g, g^{-1}) \in G \times G \mid g \in G \}.$$

Forrest-S.-Spronk:

For G compact, $\check{\Delta}_G$ is a set of syn. for $A(G \times G)$ iff G_e is abelian.

Theorem 4 (**Park-S.**) (i) $\check{\Delta}_G$ is a smooth manifold of dim. n with the cone prop. (ii) $\check{\Delta}_G$ is a set of local weak syn. of degree at most $[\frac{n}{2}] + 1$.

 $\psi: G \to \mathsf{Aff}(G \times G)$

 $\psi(r)(g,h) = (gr, r^{-1}h).$

Forrest-S.-Spronk: For G compact, $E = (\Delta_G \times \Delta_G) \Delta_{G \times G}$ is a set of syn. for $A(G^4)$ iff G_e is abelian.

Theorem 5 (**Park-S.**) (i) *E* is a closed smooth submanifold of G^4 of dimension 3n with the cone property. (ii) *E* is a set of loc. weak syn. for $A(G^4)$ of degree at most $[\frac{3n}{2}] + 1$.

 $\psi: G^3 \to \operatorname{Aff}(G^4), t = (p, q, r) \in G^3$

 $\psi(t)(g_1, g_2, g_3, g_4) =$

 $(pg_1, pg_2qp^{-1}, rg_3, rg_4qp^{-1}).$

Connection with (operator) weak amenability of A(G)!

A Banach algebra A is **amenable** if for any Banach A-bimodule X, any bounded derivation $D : A \to X^*$ is inner (i.e. $\exists x^* \in X^*$ s.t. $D(a) = ax^* - x^*a$).

A is weakly amenable if any bounded derivation $D: A \to A^*$ is inner.

B. E. Johnson:

(i) L¹(G) is amenable iff G is amenable.
(ii) L¹(G) is weakly amenable.
(iii) A(SU(2)) is not even weakly amenable!

Ruan: A(G) is operator amenable iff G is amenable.

Forrest-Runde:

A(G) is amenable iff G is admits an abelian subgroup of finite index.

Spronk 02; Samei 05:

A(G) is operator weakly amenable.

Missing part: When A(G) is weakly amenable?

Theorem 6 Let $E \subset G$ be a set of weak synthesis for A(G). Then TFAE: (i) E is a set of synthesis; (ii) E is essential (i.e $\overline{I^2(E)} = I(E)$); (iii) I(E) is operator weakly amenable.

Corollary 7 Let G be compact, connected, and non-abelian. Then I(E) is not operator weakly amenable for:

(i) $E = \check{\Delta}_G$;

(ii) $E = (\Delta_G \times \Delta_G) \Delta_{G \times G};$

(iii) G is semisimple and E is the conjugacy class of any regular element in G (**C. Meaney**). A closed subset $E \subset H$ is a **Helson set** if $A(H)|_E = C_0(E)$.

Theorem 8 Let *H* be an amenable, nondiscrete group, and $E \subset H$ be a Helsonset of non-synthesis for A(H). Then $\overline{I(E)^2} = I(E)$.

(Bade-Curtis-Sinclair for *H* abelian).

Back to weak amenability of A(G):

B. E. Johnson: A(SU(2)) is not weakly amenable.

Plymen: A(G) is not weakly amenable for every compact connected non-abelian Lie group.

Forrest-Runde: If G_e is abelian, then A(G) is weakly amenable.

Conjecture: The converse is also true!

Forrest-S.-Spronk: (i) For G maximally weakly almost periodic or SIN group, A(G) is weakly amenable iff G_e is abelian iff $E = \check{\Delta}_G$ is a set of syn. for $A(G \times G)$.

(ii) For G compact, the map on

 $P: A(G \times G) \to A_{\gamma}(G) , u \times v \mapsto u * v$

is a quotient map onto

$$A_{\gamma}(G) := \{f : \sum_{\pi \in \widehat{G}} d_{\pi}^2 \|\widehat{f}(\pi)\|_1 < \infty \}.$$

Also the map $f \mapsto \tilde{f}(s,t) = f(st)$ is a left-inverse of P and is an isometric algebra isomorphism. **Choi-Ghandehari:** A(G) is not weakly amenable if G is a semisimple Lie group, a simply connected nilpotent Lie group, or the ax + b-group.

Key idea: Constructing a bounded derivation from $A(G) \to A(G)^*$ in the form of

$$(f,g)\mapsto \int_{H} \frac{\partial f(x)}{\partial t} g(x) dx, (f,g \in \mathcal{D}(G))$$

where the integration is taken over a suitable closed Lie subgroup H of G and the differentiation is taken over a one-parameter curve in H.

Alternative approach:

G: a connected Lie group.

• If A(G) is weakly amenable, then $\check{\Delta}_G$ is a set of synthesis for $A(G \times G)$.

• If G is the reduced Heisenburg group or the ax + b-group, then $\check{\Delta}_G$ is a set of synthesis for $A(G \times G)$.

• Use the structure theory and synthesis property to extend the preceding result to other cases. **Theorem 9** Suppose that G is a connected Lie group for which $\check{\Delta}_G$ is a set of local synthesis for $A(G \times G)$. Then:

(*i*) G is solvable and does not have the ax + b-group as a closed subgroup;

(ii) if G is nilpotent, then G is abelian;

(*iii*) if $\check{\Delta}_L$ is not a set of local synthesis for $A(L \times L)$ for any 2-step solvable connected Lie group L, then G is abelian.