Group operator systems

Ivan Todorov (joint work with D. Farenick, A. Kavruk, V. I. Paulsen and M. Tomforde)

> 8 January 2014 Tehran

• The C*-algebra of a discrete group

- The C*-algebra of a discrete group
- Operator systems from discrete groups

- The C*-algebra of a discrete group
- Operator systems from discrete groups
- Particular cases of interest

- The C*-algebra of a discrete group
- Operator systems from discrete groups
- Particular cases of interest
- Tensor products of operator systems

- The C*-algebra of a discrete group
- Operator systems from discrete groups
- Particular cases of interest
- Tensor products of operator systems
- Connections with the Connes Embedding Problem

- The C*-algebra of a discrete group
- Operator systems from discrete groups
- Particular cases of interest
- Tensor products of operator systems
- Connections with the Connes Embedding Problem
- Quantum correlation boxes

- The C*-algebra of a discrete group
- Operator systems from discrete groups
- Particular cases of interest
- Tensor products of operator systems
- Connections with the Connes Embedding Problem
- Quantum correlation boxes
- Chromatic numbers of graphs

Let G be a discrete group. The group C^* -algebra $C^*(G)$ of G is the (unique up to a *-isomorphism) unital C^* -algebra with the properties:

Let G be a discrete group. The group C*-algebra $C^*(G)$ of G is the (unique up to a *-isomorphism) unital C*-algebra with the properties:

• G is a subgroup of the unitary group of $C^*(G)$;

Let G be a discrete group. The group C^* -algebra $C^*(G)$ of G is the (unique up to a *-isomorphism) unital C^* -algebra with the properties:

- G is a subgroup of the unitary group of $C^*(G)$;
- For every unitary representation $\pi: G \to \mathcal{B}(H)$ there exists a unique unital *-representation $\tilde{\pi}: C^*(G) \to \mathcal{B}(H)$ such that $\tilde{\pi}(g) = \pi(g)$ for every $g \in G$.

Let G be a discrete group. The group C*-algebra $C^*(G)$ of G is the (unique up to a *-isomorphism) unital C*-algebra with the properties:

- G is a subgroup of the unitary group of $C^*(G)$;
- For every unitary representation $\pi: G \to \mathcal{B}(H)$ there exists a unique unital *-representation $\tilde{\pi}: C^*(G) \to \mathcal{B}(H)$ such that $\tilde{\pi}(g) = \pi(g)$ for every $g \in G$.

To see that $C^*(G)$ exists, consider first the group algebra $\mathbb{C}[G]$ of G: it consists of all complex linear combinations $p = \sum_{\text{finite}} \lambda_g g$. Define a norm on $\mathbb{C}[G]$ by letting

$$\|p\| = \sup_{\pi} \|\sum_{\alpha} \lambda_{g} \pi(g)\|,$$

and complete to obtain $C^*(G)$.

An operator system is a subspace $S \subseteq \mathcal{B}(H)$ such that $I \in S$ and $T \in S \Rightarrow T^* \in S$.

An operator system is a subspace $S \subseteq \mathcal{B}(H)$ such that $I \in S$ and $T \in S \Rightarrow T^* \in S$.

"Matricial cones":

$$\mathcal{B}(H)^+ = \{T \in \mathcal{B}(H) : T \ge 0\} \qquad ((T\xi, \xi) \ge 0, \ \forall \ \xi \in H).$$

$$M_n(\mathcal{B}(H)) = \mathcal{B}(H^n)$$
, hence, we have a cone $M_n(\mathcal{B}(H))^+$.

$$M_n(S)^+ = M_n(S) \cap M_n(\mathcal{B}(H))^+$$
, $n \in \mathbb{N}$.

An operator system is a subspace $S \subseteq \mathcal{B}(H)$ such that $I \in S$ and $T \in S \Rightarrow T^* \in S$.

"Matricial cones":

$$\mathcal{B}(H)^+ = \{ T \in \mathcal{B}(H) : T \ge 0 \} \qquad ((T\xi, \xi) \ge 0, \ \forall \ \xi \in H).$$

$$M_n(\mathcal{B}(H)) = \mathcal{B}(H^n)$$
, hence, we have a cone $M_n(\mathcal{B}(H))^+$.

$$M_n(\mathcal{S})^+ = M_n(\mathcal{S}) \cap M_n(\mathcal{B}(H))^+, n \in \mathbb{N}.$$

The family $(M_n(S)^+)_{n\in\mathbb{N}}$ of cones satisfies the condition

•
$$A \in M_{n,k}, X \in M_n(S)^+ \Rightarrow A^*XA \in M_k(S)^+$$
.

An operator system is a subspace $S \subseteq \mathcal{B}(H)$ such that $I \in S$ and $T \in S \Rightarrow T^* \in S$.

"Matricial cones":

$$\mathcal{B}(H)^+ = \{T \in \mathcal{B}(H) : T \ge 0\} \qquad ((T\xi, \xi) \ge 0, \ \forall \ \xi \in H).$$

$$M_n(\mathcal{B}(H)) = \mathcal{B}(H^n)$$
, hence, we have a cone $M_n(\mathcal{B}(H))^+$.

$$M_n(\mathcal{S})^+ = M_n(\mathcal{S}) \cap M_n(\mathcal{B}(H))^+, n \in \mathbb{N}.$$

The family $(M_n(S)^+)_{n\in\mathbb{N}}$ of cones satisfies the condition

•
$$A \in M_{n,k}, X \in M_n(S)^+ \Rightarrow A^*XA \in M_k(S)^+$$
.

Effros - **Choi**: Conversely, if $(C_n)_{n\in\mathbb{N}}$ is a family of matricial cones $(C_n\subseteq M_n(\mathcal{S}))$ satisfying the above condition then \mathcal{S} can be "faithfully represented" as an operator system on some Hilbert space.

An operator system is a subspace $S \subseteq \mathcal{B}(H)$ such that $I \in S$ and $T \in S \Rightarrow T^* \in S$.

"Matricial cones":

$$\mathcal{B}(H)^+ = \{T \in \mathcal{B}(H) : T \ge 0\} \qquad ((T\xi, \xi) \ge 0, \ \forall \ \xi \in H).$$

$$M_n(\mathcal{B}(H)) = \mathcal{B}(H^n)$$
, hence, we have a cone $M_n(\mathcal{B}(H))^+$.

$$M_n(\mathcal{S})^+ = M_n(\mathcal{S}) \cap M_n(\mathcal{B}(H))^+, n \in \mathbb{N}.$$

The family $(M_n(S)^+)_{n\in\mathbb{N}}$ of cones satisfies the condition

•
$$A \in M_{n,k}, X \in M_n(S)^+ \Rightarrow A^*XA \in M_k(S)^+$$
.

Effros - **Choi**: Conversely, if $(C_n)_{n\in\mathbb{N}}$ is a family of matricial cones $(C_n\subseteq M_n(\mathcal{S}))$ satisfying the above condition then \mathcal{S} can be "faithfully represented" as an operator system on some Hilbert space.

Alternatively: operator systems are selfadjoint unital subspaces of C*-algebras.

Let $\mathcal S$ and $\mathcal T$ be operator systems, and $\phi:\mathcal S\to\mathcal T$ be a linear map.

Let $\mathcal S$ and $\mathcal T$ be operator systems, and $\phi:\mathcal S\to\mathcal T$ be a linear map.

Set
$$\phi^{(n)}: M_n(\mathcal{S}) \to M_n(\mathcal{T})$$
 by $\phi^{(n)}((x_{i,j})_{i,j}) = (\phi(x_{i,j}))_{i,j}$.

Let S and T be operator systems, and $\phi: S \to T$ be a linear map.

Set
$$\phi^{(n)}: M_n(\mathcal{S}) \to M_n(\mathcal{T})$$
 by $\phi^{(n)}((x_{i,j})_{i,j}) = (\phi(x_{i,j}))_{i,j}$.

The map ϕ is called *completely positive* if $\phi^{(n)}(M_n(S)^+) \subseteq M_n(T)^+$, $n \in \mathbb{N}$.

Let S and T be operator systems, and $\phi: S \to T$ be a linear map.

Set
$$\phi^{(n)}: M_n(\mathcal{S}) \to M_n(\mathcal{T})$$
 by $\phi^{(n)}((x_{i,j})_{i,j}) = (\phi(x_{i,j}))_{i,j}$.

The map ϕ is called *completely positive* if

$$\phi^{(n)}(M_n(\mathcal{S})^+)\subseteq M_n(\mathcal{T})^+,\ n\in\mathbb{N}.$$

 ϕ is called a *complete order isomorphism* if it is bijective and both ϕ and ϕ^{-1} are completely positive.

Let S and T be operator systems, and $\phi: S \to T$ be a linear map.

Set
$$\phi^{(n)}: M_n(\mathcal{S}) \to M_n(\mathcal{T})$$
 by $\phi^{(n)}((x_{i,j})_{i,j}) = (\phi(x_{i,j}))_{i,j}$.

The map ϕ is called *completely positive* if $\phi(n)(M(S)^+) \subset M(T)^+$ $n \in \mathbb{N}$

$$\phi^{(n)}(M_n(\mathcal{S})^+)\subseteq M_n(\mathcal{T})^+, n\in\mathbb{N}.$$

 ϕ is called a *complete order isomorphism* if it is bijective and both ϕ and ϕ^{-1} are completely positive.

-homomorphisms between C-algebras are completely positive.

Let S and T be operator systems, and $\phi: S \to T$ be a linear map.

Set
$$\phi^{(n)}: M_n(\mathcal{S}) \to M_n(\mathcal{T})$$
 by $\phi^{(n)}((x_{i,j})_{i,j}) = (\phi(x_{i,j}))_{i,j}$.

The map ϕ is called *completely positive* if

$$\phi^{(n)}(M_n(\mathcal{S})^+)\subseteq M_n(\mathcal{T})^+, n\in\mathbb{N}.$$

 ϕ is called a *complete order isomorphism* if it is bijective and both ϕ and ϕ^{-1} are completely positive.

-homomorphisms between C-algebras are completely positive.

Stinespring's Theorem

If \mathcal{A} is a C*-algebra and $\phi: \mathcal{A} \to \mathcal{B}(H)$ is a completely positive map then there exists a *-homomorsphism $\pi: \mathcal{A} \to \mathcal{B}(K)$ and an operator $V: H \to K$ such that

$$\phi(a) = V^*\pi(a)V, \quad a \in A.$$

Let G be a (discrete) group, generated by a subset $\mathfrak u$. Let

$$S(\mathfrak{u}) = \operatorname{span}\{e, u, u^* : u \in \mathfrak{u}\} \subseteq C^*(G).$$

Let G be a (discrete) group, generated by a subset $\mathfrak u$. Let

$$S(\mathfrak{u}) = \operatorname{span}\{e, u, u^* : u \in \mathfrak{u}\} \subseteq C^*(G).$$

A convenient fact:

Proposition

The C*-envelope $C_e^*(S(\mathfrak{u}))$ coincides with $C^*(G)$.

Let G be a (discrete) group, generated by a subset $\mathfrak u$. Let

$$S(\mathfrak{u}) = \operatorname{span}\{e, u, u^* : u \in \mathfrak{u}\} \subseteq C^*(G).$$

A convenient fact:

Proposition

The C*-envelope $C_e^*(S(\mathfrak{u}))$ coincides with $C^*(G)$.

The C*-envelope of an operator system \mathcal{S} is a C*-algebra $C_e^*(\mathcal{S})$ together with an embedding $\iota: \mathcal{S} \to C_e^*(\mathcal{S})$ such that if $\phi: \mathcal{S} \to \mathcal{B}(H)$ is a complete order embedding then there exists a *-epimorphism $\pi: C^*(\phi(\mathcal{S})) \to C_e^*(\mathcal{S})$ with $\pi(\phi(x)) = \iota(x)$, $x \in \mathcal{S}$.

Let G be a (discrete) group, generated by a subset $\mathfrak u$. Let

$$S(\mathfrak{u}) = \operatorname{span}\{e, u, u^* : u \in \mathfrak{u}\} \subseteq C^*(G).$$

A convenient fact:

Proposition

The C*-envelope $C_e^*(S(\mathfrak{u}))$ coincides with $C^*(G)$.

The C*-envelope of an operator system \mathcal{S} is a C*-algebra $C_e^*(\mathcal{S})$ together with an embedding $\iota: \mathcal{S} \to C_e^*(\mathcal{S})$ such that if $\phi: \mathcal{S} \to \mathcal{B}(H)$ is a complete order embedding then there exists a *-epimorphism $\pi: C^*(\phi(\mathcal{S})) \to C_e^*(\mathcal{S})$ with $\pi(\phi(x)) = \iota(x)$, $x \in \mathcal{S}$.

The C*-envelope of an operator system S is, heuristically, the smallest C*-algebra generated by S.

A particular cases of interest: \mathbb{F}_n

 \mathbb{F}_n : the free group on n generators u_1,\ldots,u_n

The operator system of \mathbb{F}_n will be denoted by \mathcal{S}_n . It does not depend on the choice of a particular set of n generators.

We have $S_n \subseteq C^*(\mathbb{F}_n)$.

A particular cases of interest: \mathbb{F}_n

 \mathbb{F}_n : the free group on n generators u_1,\ldots,u_n

The operator system of \mathbb{F}_n will be denoted by \mathcal{S}_n . It does not depend on the choice of a particular set of n generators.

We have $S_n \subseteq C^*(\mathbb{F}_n)$.

The operator system S_n is characterised by the following universal property: If T_1, \ldots, T_n are contractions on a Hilbert space H then there exists a (unique) unital completely positive map $\phi: S_n \to \mathcal{B}(H)$ such that $\phi(u_i) = T_i$, $i = 1, \ldots, n$.

Idea of proof: dilate the contarctions to unitaries acting on a common Hilbert space, and use the universal property of $C^*(\mathbb{F}_n)$.

Recall the *free product* G * H of groups G and H: the units of G and H are "glued" together in the unit of G * H while no additional relations are imposed between the elements of G and H.

 $h_i \in H$.

Recall the *free product* G*H of groups G and H: the units of G and H are "glued" together in the unit of G*H while no additional relations are imposed between the elements of G and G*H. Elements in G*H are of the form $g_1h_1g_2h_2\ldots$, with $g_i\in G$ and

Recall the *free product* G*H of groups G and H: the units of G and H are "glued" together in the unit of G*H while no additional relations are imposed between the elements of G and H.

Elements in G*H are of the form $g_1h_1g_2h_2...$, with $g_i\in G$ and $h_i\in H$.

Thus, $G = \mathbb{Z}_2 * \cdots * \mathbb{Z}_2$ (n copies) has elements of the form $h_{i_1}h_{i_2}\dots h_{i_k}$, where h_i is the generator of the ith copy of \mathbb{Z}_2 in G, and $i_1 \neq i_2 \neq \cdots \neq i_k$.

Recall the *free product* G*H of groups G and H: the units of G and H are "glued" together in the unit of G*H while no additional relations are imposed between the elements of G and H.

Elements in G*H are of the form $g_1h_1g_2h_2...$, with $g_i\in G$ and $h_i\in H$.

Thus, $G = \mathbb{Z}_2 * \cdots * \mathbb{Z}_2$ (n copies) has elements of the form $h_{i_1}h_{i_2} \dots h_{i_k}$, where h_i is the generator of the ith copy of \mathbb{Z}_2 in G, and $i_1 \neq i_2 \neq \cdots \neq i_k$.

 $NC(n) = \operatorname{span}\{1, h_1, \dots, h_n\}$: the operator system of G; it will be called the *operator system of the non-commutatuve n-cube*.

Note that $NC(n) \subseteq C^*(G) = C^*(\mathbb{Z}_2) * \cdots * C^*(\mathbb{Z}_2)$. After Fourier transform, we may consider NC(n) as the operator subsystem of $\ell_2^{\infty} * \cdots * \ell_2^{\infty}$ spanned by the copies of ℓ_2^{∞} .

Note that $NC(n) \subseteq C^*(G) = C^*(\mathbb{Z}_2) * \cdots * C^*(\mathbb{Z}_2)$. After Fourier transform, we may consider NC(n) as the operator subsystem of $\ell_2^{\infty} * \cdots * \ell_2^{\infty}$ spanned by the copies of ℓ_2^{∞} .

NC(n) is characterised by the following universal property: If T_1, \ldots, T_n are self-adjoint contractions on a Hilbert space H then there exists a (unique) unital completely positive map $\phi: NC(n) \to \mathcal{B}(H)$ such that $\phi(u_i) = T_i, i = 1, \ldots, n$.

Note that $NC(n) \subseteq C^*(G) = C^*(\mathbb{Z}_2) * \cdots * C^*(\mathbb{Z}_2)$. After Fourier transform, we may consider NC(n) as the operator subsystem of $\ell_2^{\infty} * \cdots * \ell_2^{\infty}$ spanned by the copies of ℓ_2^{∞} .

NC(n) is characterised by the following universal property: If T_1, \ldots, T_n are self-adjoint contractions on a Hilbert space H then there exists a (unique) unital completely positive map $\phi: NC(n) \to \mathcal{B}(H)$ such that $\phi(u_i) = T_i, i = 1, \ldots, n$.

Note that there also exists an operator system of the commutative *n*-cube: the above universal property is fulfilled for pairwise commuting selfadjoint contractions.

A worthwhile generalisation of NC(n) is the operator system S(n,c) of the group $\mathbb{Z}_c * \cdots * \mathbb{Z}_c$ (n copies).

A worthwhile generalisation of NC(n) is the operator system S(n,c) of the group $\mathbb{Z}_c * \cdots * \mathbb{Z}_c$ (n copies).

As before,

$$S(n,c) \subseteq \ell_c^{\infty} * \cdots * \ell_c^{\infty}$$

and

$$C_e^*(S(n,c)) = \ell_c^\infty * \cdots * \ell_c^\infty.$$

A worthwhile generalisation of NC(n) is the operator system S(n,c) of the group $\mathbb{Z}_c * \cdots * \mathbb{Z}_c$ (n copies).

As before,

$$S(n,c) \subseteq \ell_c^{\infty} * \cdots * \ell_c^{\infty}$$

and

$$C_e^*(S(n,c)) = \ell_c^\infty * \cdots * \ell_c^\infty.$$

Let $\{e_{v,i}: i=1,\ldots,c\}$ be the canonical basis of the v-th copy of ℓ_c^∞ in the free product, $v=1,\ldots,n$.

A worthwhile generalisation of NC(n) is the operator system S(n,c) of the group $\mathbb{Z}_c * \cdots * \mathbb{Z}_c$ (n copies).

As before,

$$S(n,c) \subseteq \ell_c^{\infty} * \cdots * \ell_c^{\infty}$$

and

$$C_e^*(S(n,c)) = \ell_c^\infty * \cdots * \ell_c^\infty.$$

Let $\{e_{v,i}: i=1,\ldots,c\}$ be the canonical basis of the v-th copy of ℓ_c^{∞} in the free product, $v=1,\ldots,n$.

Then
$$S(n, c) = \text{span}\{e_{v,i} : v = 1, ..., n, i = 1, ..., c\}.$$

A worthwhile generalisation of NC(n) is the operator system S(n,c) of the group $\mathbb{Z}_c * \cdots * \mathbb{Z}_c$ (n copies).

As before,

$$S(n,c) \subseteq \ell_c^{\infty} * \cdots * \ell_c^{\infty}$$

and

$$C_e^*(S(n,c)) = \ell_c^\infty * \cdots * \ell_c^\infty.$$

Let $\{e_{v,i}: i=1,\ldots,c\}$ be the canonical basis of the v-th copy of ℓ_c^{∞} in the free product, $v=1,\ldots,n$.

Then $S(n, c) = \text{span}\{e_{v,i} : v = 1, ..., n, i = 1, ..., c\}.$

Note the relations $\sum_{i=1}^{c} e_{v,i} = 1$, for all $v = 1, \dots, n$.

An operator system tensor product is an operator system structure α on the algebraic tensor product $\mathcal{S}\otimes\mathcal{T}$ of every pair of operator systems \mathcal{S} and \mathcal{T} , such that

An operator system tensor product is an operator system structure α on the algebraic tensor product $\mathcal{S} \otimes \mathcal{T}$ of every pair of operator systems \mathcal{S} and \mathcal{T} , such that

$$A \otimes B \in M_{nm}(S \otimes_{\alpha} \mathcal{T})^{+}$$
 whenever $A \in M_{n}(S)^{+}$, $B \in M_{m}(\mathcal{T})^{+}$;

An operator system tensor product is an operator system structure α on the algebraic tensor product $\mathcal{S} \otimes \mathcal{T}$ of every pair of operator systems \mathcal{S} and \mathcal{T} , such that

$$A \otimes B \in M_{nm}(\mathcal{S} \otimes_{\alpha} \mathcal{T})^{+}$$
 whenever $A \in M_{n}(\mathcal{S})^{+}$, $B \in M_{m}(\mathcal{T})^{+}$; $f \in CP(\mathcal{S}, M_{k})$, $g \in CP(\mathcal{T}, M_{l}) \Rightarrow f \otimes g \in CP(\mathcal{S} \otimes_{\alpha} \mathcal{T}, M_{kl})$.

An operator system tensor product is an operator system structure α on the algebraic tensor product $\mathcal{S}\otimes\mathcal{T}$ of every pair of operator systems \mathcal{S} and \mathcal{T} , such that

$$A \otimes B \in M_{nm}(\mathcal{S} \otimes_{\alpha} \mathcal{T})^{+}$$
 whenever $A \in M_{n}(\mathcal{S})^{+}$, $B \in M_{m}(\mathcal{T})^{+}$; $f \in CP(\mathcal{S}, M_{k})$, $g \in CP(\mathcal{T}, M_{l}) \Rightarrow f \otimes g \in CP(\mathcal{S} \otimes_{\alpha} \mathcal{T}, M_{kl})$. α is functorial if $\phi \in CP(\mathcal{S}, clS_{1})$, $\psi \in CP(\mathcal{T}, \mathcal{T}_{1}) \Rightarrow \phi \otimes \psi \in CP(\mathcal{S} \otimes_{\alpha} \mathcal{T}, \mathcal{S}_{1} \otimes_{\alpha} \mathcal{T}_{1})$.

The *minimal* tensor product: if $S \subseteq \mathcal{B}(H)$ and $\mathcal{T} \subseteq \mathcal{B}(K)$, represent $S \otimes \mathcal{T} \subseteq \mathcal{B}(H \otimes K)$; the resulting operator system is denoted $S \otimes_{\min} \mathcal{T}$.

The *minimal* tensor product: if $S \subseteq \mathcal{B}(H)$ and $\mathcal{T} \subseteq \mathcal{B}(K)$, represent $S \otimes \mathcal{T} \subseteq \mathcal{B}(H \otimes K)$; the resulting operator system is denoted $S \otimes_{\min} \mathcal{T}$.

The minimal tensor product has the largest possible cones satisfying the axioms of the definition.

The *minimal* tensor product: if $S \subseteq \mathcal{B}(H)$ and $\mathcal{T} \subseteq \mathcal{B}(K)$, represent $S \otimes \mathcal{T} \subseteq \mathcal{B}(H \otimes K)$; the resulting operator system is denoted $S \otimes_{\min} \mathcal{T}$.

The minimal tensor product has the largest possible cones satisfying the axioms of the definition.

The maximal tensor product $S \otimes_{max} T$:

take $A \in M_k(\mathcal{S})^+$, $B \in M_m(\mathcal{T})^+$, $X \in M_{n,km}$; then $X(A \otimes B)X^*$ is a typical element of $M_n(\mathcal{S} \otimes_{\max} \mathcal{T})^+$.

The *minimal* tensor product: if $S \subseteq \mathcal{B}(H)$ and $\mathcal{T} \subseteq \mathcal{B}(K)$, represent $S \otimes \mathcal{T} \subseteq \mathcal{B}(H \otimes K)$; the resulting operator system is denoted $S \otimes_{\min} \mathcal{T}$.

The minimal tensor product has the largest possible cones satisfying the axioms of the definition.

The maximal tensor product $S \otimes_{max} T$:

take $A \in M_k(\mathcal{S})^+$, $B \in M_m(\mathcal{T})^+$, $X \in M_{n,km}$; then $X(A \otimes B)X^*$ is a typical element of $M_n(\mathcal{S} \otimes_{\max} \mathcal{T})^+$.

The maximal tensor product has the largest possible cones satisfying the axioms of the definition.

The *minimal* tensor product: if $S \subseteq \mathcal{B}(H)$ and $\mathcal{T} \subseteq \mathcal{B}(K)$, represent $S \otimes \mathcal{T} \subseteq \mathcal{B}(H \otimes K)$; the resulting operator system is denoted $S \otimes_{\min} \mathcal{T}$.

The minimal tensor product has the largest possible cones satisfying the axioms of the definition.

The maximal tensor product $S \otimes_{max} T$:

take $A \in M_k(\mathcal{S})^+$, $B \in M_m(\mathcal{T})^+$, $X \in M_{n,km}$; then $X(A \otimes B)X^*$ is a typical element of $M_n(\mathcal{S} \otimes_{\max} \mathcal{T})^+$.

The maximal tensor product has the largest possible cones satisfying the axioms of the definition.

The *commuting* tensor product $\mathcal{S} \otimes_{\mathrm{c}} \mathcal{T}$:

 $u \in (\mathcal{S} \otimes_{\mathrm{c}} \mathcal{T})^+$ if $(\phi \cdot \psi)(u) \geq 0$ whenever $\phi : \mathcal{S} \to \mathcal{B}(H)$, $\psi : \mathcal{T} \to \mathcal{B}(H)$ have commuting ranges.

Here $\phi \cdot \psi(x \otimes y) = \phi(x)\psi(y)$.

The *minimal* tensor product: if $S \subseteq \mathcal{B}(H)$ and $\mathcal{T} \subseteq \mathcal{B}(K)$, represent $S \otimes \mathcal{T} \subseteq \mathcal{B}(H \otimes K)$; the resulting operator system is denoted $S \otimes_{\min} \mathcal{T}$.

The minimal tensor product has the largest possible cones satisfying the axioms of the definition.

The maximal tensor product $S \otimes_{max} T$:

take $A \in M_k(\mathcal{S})^+$, $B \in M_m(\mathcal{T})^+$, $X \in M_{n,km}$; then $X(A \otimes B)X^*$ is a typical element of $M_n(\mathcal{S} \otimes_{\max} \mathcal{T})^+$.

The maximal tensor product has the largest possible cones satisfying the axioms of the definition.

The *commuting* tensor product $\mathcal{S} \otimes_{c} \mathcal{T}$:

$$u \in (\mathcal{S} \otimes_{\mathrm{c}} \mathcal{T})^+$$
 if $(\phi \cdot \psi)(u) \geq 0$ whenever $\phi : \mathcal{S} \to \mathcal{B}(H)$,

 $\psi: \mathcal{T} o \mathcal{B}(\mathcal{H})$ have commuting ranges.

Here
$$\phi \cdot \psi(x \otimes y) = \phi(x)\psi(y)$$
.

$$\mathcal{S} \otimes_{\mathsf{max}} \mathcal{T} \to \mathcal{S} \otimes_{\mathsf{c}} \mathcal{T} \to \mathcal{S} \otimes_{\mathsf{min}} \mathcal{T}.$$

The Kirchberg Conjecture (KC)

This is a reformulation of the Connes Embedding Problem; it states that

$$C^*(\mathbb{F}_\infty) \otimes_{\mathsf{min}} C^*(\mathbb{F}_\infty) = C^*(\mathbb{F}_\infty) \otimes_{\mathsf{max}} C^*(\mathbb{F}_\infty).$$

The Kirchberg Conjecture (KC)

This is a reformulation of the Connes Embedding Problem; it states that

$$C^*(\mathbb{F}_{\infty}) \otimes_{\mathsf{min}} C^*(\mathbb{F}_{\infty}) = C^*(\mathbb{F}_{\infty}) \otimes_{\mathsf{max}} C^*(\mathbb{F}_{\infty}).$$

Theorem

The following are equivalent:

- (i) (KC) holds true;
- (ii) $S_n \otimes_{\min} S_m = S_n \otimes_{\mathbf{c}} S_m$ for every $n, m \geq 2$;
- (iii) $\mathcal{S}_2 \otimes_{\mathsf{min}} \mathcal{S}_2 = \mathcal{S}_2 \otimes_{\mathrm{c}} \mathcal{S}_2$.

The Kirchberg Conjecture (KC)

This is a reformulation of the Connes Embedding Problem; it states that

$$C^*(\mathbb{F}_{\infty}) \otimes_{\mathsf{min}} C^*(\mathbb{F}_{\infty}) = C^*(\mathbb{F}_{\infty}) \otimes_{\mathsf{max}} C^*(\mathbb{F}_{\infty}).$$

Theorem

The following are equivalent:

- (i) (KC) holds true;
- (ii) $S_n \otimes_{\min} S_m = S_n \otimes_{\mathbf{c}} S_m$ for every $n, m \geq 2$;
- (iii) $\mathcal{S}_2 \otimes_{\mathsf{min}} \mathcal{S}_2 = \mathcal{S}_2 \otimes_{\mathrm{c}} \mathcal{S}_2$.

Theorem

 $S_n \otimes_{\mathrm{c}} S_m \neq S_n \otimes_{\mathsf{max}} S_m$. In fact, the identity is not 2-positive as a map from $S_1 \otimes_{\mathsf{min}} S_1$ into $S_1 \otimes_{\mathsf{max}} S_1$.

Note that $S_1 = \operatorname{span}\{1, z, \bar{z}\}$, where z is the identity function on

Further equivalences

Theorem

The following are equivalent:

- (i) (KC) holds true;
- (ii) $\mathcal{NC}(n) \otimes_{\min} \mathcal{NC}(m) = \mathcal{NC}(n) \otimes_{c} \mathcal{NC}(m)$ for every $n, m \geq 3$;
- (iii) $\mathcal{NC}(3) \otimes_{min} \mathcal{NC}(3) = \mathcal{NC}(3) \otimes_{\mathrm{c}} \mathcal{NC}(3)$.

Further equivalences

Theorem

The following are equivalent:

- (i) (KC) holds true;
- (ii) $\mathcal{N}C(n) \otimes_{\min} \mathcal{N}C(m) = \mathcal{N}C(n) \otimes_{\mathrm{c}} \mathcal{N}C(m)$ for every $n, m \geq 3$;
- (iii) $\mathcal{N}C(3) \otimes_{\min} \mathcal{N}C(3) = \mathcal{N}C(3) \otimes_{\mathrm{c}} \mathcal{N}C(3)$.

Theorem (Tsirelson)

(ii) $\mathcal{NC}(n) \otimes_{\mathrm{c}} \mathcal{NC}(m) \neq \mathcal{NC}(n) \otimes_{\mathsf{max}} \mathcal{NC}(m)$ for every $n, m \geq 2$.

Suppose that Alice and Bob perform an experiment in which Alice is given an input value x and produces an output value a, while Bob is given an input value y and produces an output value b. Assume that the possible values of x, y, a, b are 0 and 1.

Suppose that Alice and Bob perform an experiment in which Alice is given an input value x and produces an output value a, while Bob is given an input value y and produces an output value b. Assume that the possible values of x, y, a, b are 0 and 1.

Let $p_{a|x}^1$ be the probability that Alice returns the value a provided she is given the input x and $p_{b|y}^2$ be the probability that Bob returns the value b provided he is given the input y.

Suppose that Alice and Bob perform an experiment in which Alice is given an input value x and produces an output value a, while Bob is given an input value y and produces an output value b. Assume that the possible values of x, y, a, b are 0 and 1.

Let $p_{a|x}^1$ be the probability that Alice returns the value a provided she is given the input x and $p_{b|y}^2$ be the probability that Bob returns the value b provided he is given the input y.

- $\bullet \ \ p^1_{a|_X} \geq 0, \ p^2_{b|_Y} \geq 0, \ \text{for all} \ \ a,b,x,y \in \{0,1\},$
- $m{\phi}_{0|x}^1 + m{
 ho}_{1|x}^1 = 1 \ {
 m for} \ x = 0,1, \ {
 m and}$
- $p_{0|y}^2 + p_{1|y}^2 = 1$ for y = 0, 1.

Suppose that Alice and Bob perform an experiment in which Alice is given an input value x and produces an output value a, while Bob is given an input value y and produces an output value b. Assume that the possible values of x, y, a, b are 0 and 1.

Let $p_{a|x}^1$ be the probability that Alice returns the value a provided she is given the input x and $p_{b|y}^2$ be the probability that Bob returns the value b provided he is given the input y.

•
$$p_{a|x}^1 \ge 0$$
, $p_{b|y}^2 \ge 0$, for all $a, b, x, y \in \{0, 1\}$,

$$m{\phi}_{0|x}^1 + m{
ho}_{1|x}^1 = 1 \ {
m for} \ x = 0,1, \ {
m and} \$$

•
$$p_{0|y}^2 + p_{1|y}^2 = 1$$
 for $y = 0, 1$.

Let
$$V = \{(u, v, w, t) : u + v = w + t\} \subseteq \ell_4^{\infty}$$
.

Let $p_{a,b|x,y}$ be the probability that the pair (a,b) is produced as an output by Alice and Bob, provided that Alice is given an input x and Bob is given an input y.

Let $p_{a,b|x,y}$ be the probability that the pair (a,b) is produced as an output by Alice and Bob, provided that Alice is given an input x and Bob is given an input y.

A bipartite correlation box (or simply a box) is a table of probabilities of the form $(p_{a,b|x,y})_{a,b,x,y}$, viewed as an element of ℓ_{16}^{∞} .

Let $p_{a,b|x,y}$ be the probability that the pair (a,b) is produced as an output by Alice and Bob, provided that Alice is given an input x and Bob is given an input y.

A bipartite correlation box (or simply a box) is a table of probabilities of the form $(p_{a,b|x,y})_{a,b,x,y}$, viewed as an element of ℓ_{16}^{∞} .

- $p_{a,b|x,y} \ge 0$, $a,b,x,y \in \{0,1\}$,
- $\sum_{a,b=0}^{1} p_{a,b|x,y} = 1$, $x,y \in \{0,1\}$.
- $p_{a,0|x,0} + p_{a,1|x,0} = p_{a,0|x,1} + p_{a,1|x,1} = p_{a|x}^1$, for all $a, x \in \{0, 1\}$,
- $p_{0,b|0,y} + p_{1,b|0,y} = p_{0,b|1,y} + p_{1,b|1,y} = p_{b|y}^2$, for all $b, y \in \{0,1\}$.

Local boxes

A box $(p_{a,b|x,y})_{a,b,x,y}$ is *local* if there exist $(r(\lambda))_{\lambda}$ with $\sum_{\lambda} r(\lambda) = 1$ and, for each λ , elements

$$\rho^k(\lambda) = (\rho^k_{0|0}(\lambda), \rho^k_{1|0}(\lambda), \rho^k_{0|1}(\lambda), \rho^k_{1|1}(\lambda)) \in \mathcal{V}^+,$$

$$p_{0|0}^k(\lambda) + p_{1|0}^k(\lambda) = 1$$
, $p_{0|0}^k(\lambda) + p_{1|0}^k(\lambda) = 1$ $k = 1, 2$, such that

$$p_{a,b|x,y} = \sum_{\lambda} r(\lambda) p_{a|x}^1(\lambda) p_{b|y}^2(\lambda), \quad a,b,x,y \in \{0,1\}.$$

Tsirelson in 1980 introduced *quantum* correlation boxes. These are the probability distributions $(p_{a,b|x,y})$ given by

$$p_{a,b|x,y} = Tr(\rho(A_x^a \otimes A_y^b)),$$

where A_x^a and A_x^b are positive operators acting on corresponding Hilbert spaces H_x and H_y such that $A_x^0 + A_x^1 = I$ and $A_y^0 + A_y^1 = I$ for all $x,y \in \{0,1\}$, and ρ is a positive trace-class operator of unit trace.

Tsirelson in 1980 introduced *quantum* correlation boxes. These are the probability distributions $(p_{a,b|x,y})$ given by

$$p_{a,b|x,y} = Tr(\rho(A_x^a \otimes A_y^b)),$$

where A_x^a and A_x^b are positive operators acting on corresponding Hilbert spaces H_x and H_y such that $A_x^0 + A_x^1 = I$ and $A_y^0 + A_y^1 = I$ for all $x,y \in \{0,1\}$, and ρ is a positive trace-class operator of unit trace.

Let $\mathcal P$ be the set of all correlation boxes, $\mathcal L$ be the closure of the set of all local correlation boxes, and $\mathcal Q$ be the closure of the set of all quantum correlation boxes. Clearly, $\mathcal L\subseteq\mathcal Q\subseteq\mathcal P$ and each of these sets is convex.

Conection with non-commutative cubes

A state s of NC(2) is determined by its values $s(e_{v,i})$, i = 1, 2, v = 1, 2.

Conection with non-commutative cubes

A state s of NC(2) is determined by its values $s(e_{v,i})$, i = 1, 2, v = 1, 2.

Note that

- $s(e_{v,i}) \geq 0$, for all i, v.
- $\sum_{i=1}^{2} s(e_{v,i}) = 1$, v = 1, 2.

Conection with non-commutative cubes

A state s of NC(2) is determined by its values $s(e_{v,i})$, i=1,2, v=1,2.

Note that

- $s(e_{v,i}) \geq 0$, for all i, v.
- $\sum_{i=1}^{2} s(e_{v,i}) = 1$, v = 1, 2.

Thus, $(s(e_{v,i} \otimes e_{w,j}))_{v,i,w,j}$ is a box.

Connection with tensor products

Theorem

We have the following identities:

$$\mathcal{P} = \{(s(e_{v,i} \otimes e_{w,j})) \ : \ s \text{ is a state on } \textit{NC}(2) \otimes_{\text{max}} \textit{NC}(2)\}$$

$$\mathcal{Q} = \{(s(e_{v,i} \otimes e_{w,j})) \ : \ s \text{ is a state on } \textit{NC}(2) \otimes_{min} \textit{NC}(2)\}$$

$$\mathcal{L} = \{(s(e_{v,i} \otimes e_{w,j})) : s \text{ is a state on } C(2) \otimes_{\min} C(2)\}.$$

Connection with tensor products

Theorem

We have the following identities:

$$\mathcal{P} = \{(s(e_{v,i} \otimes e_{w,j})) \ : \ s \text{ is a state on } \textit{NC}(2) \otimes_{\text{max}} \textit{NC}(2)\}$$

$$\mathcal{Q} = \{(s(e_{v,i} \otimes e_{w,j})) \ : \ s \text{ is a state on } \mathit{NC}(2) \otimes_{\min} \mathit{NC}(2)\}$$

$$\mathcal{L} = \{(s(e_{v,i} \otimes e_{w,j})) \ : \ s \text{ is a state on } C(2) \otimes_{\mathsf{min}} C(2)\}.$$

It follows that these three sets are pairwise distinct.

Connection with tensor products

Theorem

We have the following identities:

$$\mathcal{P} = \{(s(e_{v,i} \otimes e_{w,j})) \ : \ s \text{ is a state on } \mathit{NC}(2) \otimes_{\mathsf{max}} \mathit{NC}(2)\}$$

$$Q = \{(s(e_{v,i} \otimes e_{w,j})) : s \text{ is a state on } NC(2) \otimes_{\min} NC(2)\}$$

$$\mathcal{L} = \{(s(e_{v,i} \otimes e_{w,j})) : s \text{ is a state on } C(2) \otimes_{\min} C(2)\}.$$

It follows that these three sets are pairwise distinct.

Quantum corelation boxes are studied for larger than 2 number of exepriments and a larger than 2 number of players: in this case one needs to involve the operator systems S(n,c), $c \ge 2$. There is hence a direct link with Kirchberg's Conjecture.

Chromatic numbers of graphs

Recall that a c-colouring of a graph G = (V, E) is a map $r : V \to \{1, \ldots, c\}$ such that if $(v, w) \in E$ then $r(v) \neq r(v)$. Smallest such c: the chromatic number $\chi(G)$.

Chromatic numbers of graphs

Recall that a c-colouring of a graph G=(V,E) is a map $r:V \to \{1,\ldots,c\}$ such that if $(v,w) \in E$ then $r(v) \neq r(v)$. Smallest such c: the chromatic number $\chi(G)$. Let $D(n,c) = \mathbb{Z}_c \oplus \cdots \oplus \mathbb{Z}_c$ (n copies). $C^*(D(n,c)) \cong \ell_c^\infty \otimes \cdots \otimes \ell_c^\infty \cong \ell^\infty(\Delta_{n,c})$, where $\Delta_{n,c} = \{1,\ldots,c\}^n$.

Chromatic numbers of graphs

Recall that a c-colouring of a graph G = (V, E) is a map $r : V \to \{1, \ldots, c\}$ such that if $(v, w) \in E$ then $r(v) \neq r(v)$. Smallest such c: the chromatic number $\chi(G)$.

Let
$$D(n,c) = \mathbb{Z}_c \oplus \cdots \oplus \mathbb{Z}_c$$
 (n copies). $C^*(D(n,c)) \cong \ell_c^{\infty} \otimes \cdots \otimes \ell_c^{\infty} \cong \ell^{\infty}(\Delta_{n,c})$, where $\Delta_{n,c} = \{1,\ldots,c\}^n$.

Let $S_{\min}(n,c)$ be the operator subsystem of $C^*(D(n,c))$ spanned by

$$(\delta_{i_1},0,\ldots,0),(0,\delta_{i_2},0,\ldots,0),\ldots,(0,0,\ldots,\delta_{i_n}),$$

for
$$i_k = 1, ..., c$$
, $k = 1, ..., n$ (where $\mathbb{Z}_c = \{\delta_i : i = 1, ..., c\}$).

Then $S_{\min}(n,c) = \operatorname{span}\{e'_{v,i}: v \in V, 1 \leq i \leq c\}$, where $e'_{v,i}$ is the elementary tensor from $\ell^{\infty}_{c} \otimes \cdots \otimes \ell^{\infty}_{c}$ having all ones except for the v-th position, where it has the i-th element of the canonical basis of ℓ^{∞}_{c} .

The classical chromatic number via operator systems

Proposition

The chromatic number $\chi(G)$ of G is equal to the smallest $c \in \mathbb{N}$ for which there exists a state $s : \mathcal{S}_{\min}(n,c) \otimes_{\min} \mathcal{S}_{\min}(n,c) \to \mathbb{C}$ such that

$$\forall v, \forall i \neq j, s(e'_{v,i} \otimes e'_{v,j}) = 0,$$

 $\forall (v, w) \in E, \forall i, s(e'_{v,i} \otimes e'_{w,i}) = 0.$

The quantum chromatic number $\chi_q(G)$

Cameron, Montanaro, Newman, Severini, Winter, 2007

The quantum chromatic number $\chi_{\mathrm{q}}(G)$

Cameron, Montanaro, Newman, Severini, Winter, 2007 A quantum c-colouring of G are two POVM's $(E_{v,i})_{i=1}^c \subseteq M_p$, $(F_{v,i})_{i=1}^c \subseteq M_q$ and a vector $\xi \in \mathbb{C}^p \otimes \mathbb{C}^q$ such that

$$\forall v, \forall i \neq j, \langle (E_{v,i} \otimes F_{v,j}) \xi, \xi \rangle = 0,$$

$$\forall (v,w) \in E, \forall i, \langle (E_{v,i} \otimes F_{w,i})\xi, \xi \rangle = 0.$$

The quantum chromatic number $\chi_{\mathrm{q}}(G)$

Cameron, Montanaro, Newman, Severini, Winter, 2007 A quantum c-colouring of G are two POVM's $(E_{v,i})_{i=1}^c \subseteq M_p$, $(F_{v,i})_{i=1}^c \subseteq M_q$ and a vector $\xi \in \mathbb{C}^p \otimes \mathbb{C}^q$ such that

$$orall v, orall i
eq j, \langle (E_{v,i} \otimes F_{v,j})\xi, \xi \rangle = 0,$$

$$orall (v,w) \in E, orall i, \langle (E_{v,i} \otimes F_{w,i})\xi, \xi \rangle = 0.$$
 (A POVM: $\sum_{i=1}^c E_i = I, \ E_i \geq 0.$)

Cameron, Montanaro, Newman, Severini, Winter, 2007

A quantum c-colouring of G are two POVM's $(E_{v,i})_{i=1}^c \subseteq M_p$, $(F_{v,i})_{i=1}^c \subseteq M_q$ and a vector $\xi \in \mathbb{C}^p \otimes \mathbb{C}^q$ such that

$$\forall v, \forall i \neq j, \langle (E_{v,i} \otimes F_{v,j}) \xi, \xi \rangle = 0,$$

$$\forall (v,w) \in E, \forall i, \langle (E_{v,i} \otimes F_{w,i})\xi, \xi \rangle = 0.$$

(A POVM:
$$\sum_{i=1}^{c} E_i = I, E_i \ge 0.$$
)

The smallest such c is denoted by $\chi_q(G)$.

Cameron, Montanaro, Newman, Severini, Winter, 2007

A quantum c-colouring of G are two POVM's $(E_{v,i})_{i=1}^c \subseteq M_p$, $(F_{v,i})_{i=1}^c \subseteq M_q$ and a vector $\xi \in \mathbb{C}^p \otimes \mathbb{C}^q$ such that

$$\forall v, \forall i \neq j, \langle (E_{v,i} \otimes F_{v,j})\xi, \xi \rangle = 0,$$

$$\forall (v,w) \in E, \forall i, \langle (E_{v,i} \otimes F_{w,i})\xi, \xi \rangle = 0.$$

(A POVM:
$$\sum_{i=1}^{c} E_{i} = I, E_{i} \geq 0.$$
)

The smallest such c is denoted by $\chi_q(G)$.

 $\chi_{q}(G) \leq \chi(G)$ and the inequality may be strict:

Cameron, Montanaro, Newman, Severini, Winter, 2007 A quantum *c*-colouring of *G* are two POVM's $(E_{v,i})_{i=1}^c \subseteq M_p$, $(F_{v,i})_{i=1}^c \subseteq M_q$ and a vector $\xi \in \mathbb{C}^p \otimes \mathbb{C}^q$ such that

$$\forall v, \forall i \neq j, \langle (E_{v,i} \otimes F_{v,j})\xi, \xi \rangle = 0,$$

$$\forall (v,w) \in E, \forall i, \langle (E_{v,i} \otimes F_{w,i})\xi, \xi \rangle = 0.$$

(A POVM:
$$\sum_{i=1}^{c} E_i = I, E_i \ge 0.$$
)

The smallest such c is denoted by $\chi_q(G)$.

 $\chi_{\mathrm{q}}(\mathit{G}) \leq \chi(\mathit{G})$ and the inequality may be strict:

The Hadamard graph Ω_N is the graph with vertex set

$$V = \{-1, 1\}^N$$
 and edge set $E = \{(u, v) \in V \times V : \langle u, v \rangle = 0\}.$

Cameron, Montanaro, Newman, Severini, Winter, 2007 A quantum c-colouring of G are two POVM's $(E_{v,i})_{i=1}^c \subseteq M_p$, $(F_{v,i})_{i=1}^c \subseteq M_q$ and a vector $\xi \in \mathbb{C}^p \otimes \mathbb{C}^q$ such that

$$\forall v, \forall i \neq j, \langle (E_{v,i} \otimes F_{v,j})\xi, \xi \rangle = 0,$$

$$\forall (v,w) \in E, \forall i, \langle (E_{v,i} \otimes F_{w,i})\xi, \xi \rangle = 0.$$

(A POVM:
$$\sum_{i=1}^{c} E_i = I, E_i \ge 0.$$
)

The smallest such c is denoted by $\chi_q(G)$.

 $\chi_{\mathrm{q}}(\mathit{G}) \leq \chi(\mathit{G})$ and the inequality may be strict:

The Hadamard graph Ω_N is the graph with vertex set

$$V = \{-1,1\}^N$$
 and edge set $E = \{(u,v) \in V \times V : \langle u,v \rangle = 0\}.$

We have $\chi(G) \sim 2^N$, while $\chi_q(G) = N$.

Further quantum versions

We can play the same game but allowing

- two infinite dimensional Hilbert spaces and tensors $E_{v,i} \otimes F_{w,j}$: $\chi_{qs}(G)$;
- a single infinite dimensional Hilbert space and mutually commuting POVM's: $E_{v,i}F_{w,j}=F_{w,j}E_{v,i}$: $\chi_{qc}(G)$.
- approximate colourings: $\chi_{\text{qmin}}(G)$.

Further quantum versions

We can play the same game but allowing

- two infinite dimensional Hilbert spaces and tensors $E_{v,i} \otimes F_{w,j}$: $\chi_{qs}(G)$;
- a single infinite dimensional Hilbert space and mutually commuting POVM's: $E_{v,i}F_{w,j} = F_{w,j}E_{v,i}$: $\chi_{qc}(G)$.
- approximate colourings: $\chi_{\text{qmin}}(G)$.

$$\chi_{\mathrm{qc}}(G) \leq \chi_{\mathrm{qmin}}(G) \leq \chi_{\mathrm{qs}}(G) \leq \chi_{\mathrm{q}}(G) \leq \chi(G).$$

Further quantum versions

We can play the same game but allowing

- two infinite dimensional Hilbert spaces and tensors $E_{v,i} \otimes F_{w,j}$: $\chi_{qs}(G)$;
- a single infinite dimensional Hilbert space and mutually commuting POVM's: $E_{v,i}F_{w,j} = F_{w,j}E_{v,i}$: $\chi_{qc}(G)$.
- approximate colourings: $\chi_{\text{qmin}}(G)$.

$$\chi_{\mathrm{qc}}(G) \leq \chi_{\mathrm{qmin}}(G) \leq \chi_{\mathrm{qs}}(G) \leq \chi_{\mathrm{q}}(G) \leq \chi(G).$$

These quantum chromatic numbers can be expressed in terms of operator system tensor products...

Theorem

• $\chi_{\mathrm{qc}}(G)$ is the smallest $c \in \mathbb{N}$ for which there exists a state $s : \mathcal{S}(n,c) \otimes_{\mathrm{c}} \mathcal{S}(n,c) \to \mathbb{C}$ such that

$$\forall v, \forall i \neq j, s(e_{v,i} \otimes e_{v,j}) = 0,$$

$$\forall (v,w) \in E, \forall i, s(e_{v,i} \otimes e_{w,i}) = 0.$$

• $\chi_{\mathrm{qmin}}(G)$ is obtained in a similar way, but taking $s: \mathcal{S}(n,c) \otimes_{\min} \mathcal{S}(n,c) \to \mathbb{C}$.

Theorem

• $\chi_{\mathrm{qc}}(G)$ is the smallest $c \in \mathbb{N}$ for which there exists a state $s: \mathcal{S}(n,c) \otimes_{\mathrm{c}} \mathcal{S}(n,c) \to \mathbb{C}$ such that

$$\forall v, \forall i \neq j, s(e_{v,i} \otimes e_{v,j}) = 0,$$

$$\forall (v,w) \in E, \forall i, s(e_{v,i} \otimes e_{w,i}) = 0.$$

• $\chi_{\mathrm{qmin}}(G)$ is obtained in a similar way, but taking $s: \mathcal{S}(n,c) \otimes_{\min} \mathcal{S}(n,c) \to \mathbb{C}$.

We see that quantum colourings are in fact correlation boxes with certain constraints on the probability distributions.

Theorem

• $\chi_{\mathrm{qc}}(G)$ is the smallest $c \in \mathbb{N}$ for which there exists a state $s : \mathcal{S}(n,c) \otimes_{\mathrm{c}} \mathcal{S}(n,c) \to \mathbb{C}$ such that

$$\forall v, \forall i \neq j, s(e_{v,i} \otimes e_{v,j}) = 0,$$

$$\forall (v,w) \in E, \forall i, s(e_{v,i} \otimes e_{w,i}) = 0.$$

• $\chi_{\mathrm{qmin}}(G)$ is obtained in a similar way, but taking $s: \mathcal{S}(n,c) \otimes_{\min} \mathcal{S}(n,c) \to \mathbb{C}$.

We see that quantum colourings are in fact correlation boxes with certain constraints on the probability distributions.

$$\chi_{\text{qmax}}(G) = 2 \text{ if } |V| \geq 2.$$

Theorem

• $\chi_{\mathrm{qc}}(G)$ is the smallest $c \in \mathbb{N}$ for which there exists a state $s : \mathcal{S}(n,c) \otimes_{\mathrm{c}} \mathcal{S}(n,c) \to \mathbb{C}$ such that

$$\forall v, \forall i \neq j, s(e_{v,i} \otimes e_{v,j}) = 0,$$

$$\forall (v,w) \in E, \forall i, s(e_{v,i} \otimes e_{w,i}) = 0.$$

• $\chi_{\mathrm{qmin}}(G)$ is obtained in a similar way, but taking $s: \mathcal{S}(n,c) \otimes_{\min} \mathcal{S}(n,c) \to \mathbb{C}$.

We see that quantum colourings are in fact correlation boxes with certain constraints on the probability distributions.

$$\chi_{\text{gmax}}(G) = 2 \text{ if } |V| \geq 2.$$

The other chromatic numbers seem to be more promising. For example, to disrove Connes Embedding Problem, it suffices to exhibit a graph G with $\chi_{\rm qc}(G) < \chi_{\rm qmin}(G)$.

THANK YOU VERY MUCH!