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The C*-algebra of a discrete group

Let G be a discrete group. The group C*-algebra C ∗(G ) of G is
the (unique up to a *-isomorphism) unital C*-algebra with the
properties:

G is a subgroup of the unitary group of C ∗(G );

For every unitary representation π : G → B(H) there exists a
unique unital *-representation π̃ : C ∗(G )→ B(H) such that
π̃(g) = π(g) for every g ∈ G .

To see that C ∗(G ) exists, consider first the group algebra C[G ] of
G : it consists of all complex linear combinations p =

∑
finite λgg .

Define a norm on C[G ] by letting

‖p‖ = sup
π
‖
∑

λgπ(g)‖,

and complete to obtain C ∗(G ).
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Operator systems

An operator system is a subspace S ⊆ B(H) such that I ∈ S and
T ∈ S ⇒ T ∗ ∈ S.

“Matricial cones”:

B(H)+ = {T ∈ B(H) : T ≥ 0} ((T ξ, ξ) ≥ 0, ∀ ξ ∈ H).

Mn(B(H)) = B(Hn), hence, we have a cone Mn(B(H))+.

Mn(S)+ = Mn(S) ∩Mn(B(H))+, n ∈ N.

The family (Mn(S)+)n∈N of cones satisfies the condition

A ∈ Mn,k ,X ∈ Mn(S)+ ⇒ A∗XA ∈ Mk(S)+.

Effros - Choi: Conversely, if (Cn)n∈N is a family of matricial cones
(Cn ⊆ Mn(S)) satisfying the above condition then S can be
“faithfully represented” as an operator system on some Hilbert
space.

Alternatively: operator systems are selfadjoint unital subspaces of
C*-algebras.
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Completely positive maps

Let S and T be operator systems, and φ : S → T be a linear map.

Set φ(n) : Mn(S)→ Mn(T ) by φ(n)((xi ,j)i ,j) = (φ(xi ,j))i ,j .

The map φ is called completely positive if
φ(n)(Mn(S)+) ⊆ Mn(T )+, n ∈ N.

φ is called a complete order isomorphism if it is bijective and both
φ and φ−1 are completely positive.

*-homomorphisms between C*-algebras are completely positive.

Stinespring’s Theorem

If A is a C*-algebra and φ : A → B(H) is a completely positive
map then there exists a *-homomorsphism π : A → B(K ) and an
operator V : H → K such that

φ(a) = V ∗π(a)V , a ∈ A.
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Operator systems from discrete groups

Let G be a (discrete) group, generated by a subset u. Let

S(u) = span{e, u, u∗ : u ∈ u} ⊆ C ∗(G ).

A convenient fact:

Proposition

The C*-envelope C ∗e (S(u)) coincides with C ∗(G ).

The C*-envelope of an operator system S is a C*-algebra C ∗e (S)
together with an embedding ι : S → C ∗e (S) such that if
φ : S → B(H) is a complete order embedding then there exists a
*-epimorphism π : C ∗(φ(S))→ C ∗e (S) with π(φ(x)) = ι(x),
x ∈ S.

The C*-envelope of an operator system S is, heuristically, the
smallest C*-algebra generated by S.
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A particular cases of interest: Fn

Fn: the free group on n generators u1, . . . , un

The operator system of Fn will be denoted by Sn. It does not
depend on the choice of a particular set of n generators.

We have Sn ⊆ C ∗(Fn).

The operator system Sn is characterised by the following universal
property: If T1, . . . ,Tn are contractions on a Hilbert space H then
there exists a (unique) unital completely positive map
φ : Sn → B(H) such that φ(ui ) = Ti , i = 1, . . . , n.

Idea of proof: dilate the contarctions to unitaries acting on a
common Hilbert space, and use the universal property of C ∗(Fn).
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A particular cases of interest: Z2 ∗ · · · ∗ Z2

Recall the free product G ∗ H of groups G and H: the units of G
and H are “glued” together in the unit of G ∗ H while no
additional relations are imposed between the elements of G and H.

Elements in G ∗ H are of the form g1h1g2h2 . . . , with gi ∈ G and
hi ∈ H.

Thus, G = Z2 ∗ · · · ∗ Z2 (n copies) has elements of the form
hi1hi2 . . . hik , where hi is the generator of the ith copy of Z2 in G ,
and i1 6= i2 6= · · · 6= ik .

NC (n) = span{1, h1, . . . , hn}: the operator system of G ; it will be
called the operator system of the non-commutatuve n-cube.
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A particular cases of interest: Z2 ∗ · · · ∗ Z2

Note that NC (n) ⊆ C ∗(G ) = C ∗(Z2) ∗ · · · ∗ C ∗(Z2). After Fourier
transform, we may consider NC (n) as the operator subsystem of
`∞2 ∗ · · · ∗ `∞2 spanned by the copies of `∞2 .

NC (n) is characterised by the following universal property: If
T1, . . . ,Tn are self-adjoint contractions on a Hilbert space H then
there exists a (unique) unital completely positive map
φ : NC (n)→ B(H) such that φ(ui ) = Ti , i = 1, . . . , n.

Note that there also exists an operator system of the commutative
n-cube: the above universal property is fulfilled for pairwise
commuting selfadjoint contractions.
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A particular cases of interest: Zc ∗ · · · ∗ Zc

A worthwhile generalisation of NC (n) is the operator system
S(n, c) of the group Zc ∗ · · · ∗ Zc (n copies).

As before,
S(n, c) ⊆ `∞c ∗ · · · ∗ `∞c

and
C ∗e (S(n, c)) = `∞c ∗ · · · ∗ `∞c .

Let {ev ,i : i = 1, . . . , c} be the canonical basis of the v -th copy of
`∞c in the free product, v = 1, . . . , n.

Then S(n, c) = span{ev ,i : v = 1, . . . , n, i = 1, . . . , c}.
Note the relations

∑c
i=1 ev ,i = 1, for all v = 1, . . . , n.
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Tensor products

An operator system tensor product is an operator system structure
α on the algebraic tensor product S ⊗ T of every pair of operator
systems S and T , such that

A⊗ B ∈ Mnm(S ⊗α T )+ whenever A ∈ Mn(S)+, B ∈ Mm(T )+;

f ∈ CP(S,Mk), g ∈ CP(T ,Ml) ⇒ f ⊗ g ∈ CP(S ⊗α T ,Mkl).

α is functorial if

φ ∈ CP(S, clS1), ψ ∈ CP(T , T1) ⇒
φ⊗ ψ ∈ CP(S ⊗α T ,S1 ⊗α T1).
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Three tensor products

The minimal tensor product: if S ⊆ B(H) and T ⊆ B(K ),
represent S ⊗ T ⊆ B(H ⊗ K ); the resulting operator system is
denoted S ⊗min T .

The minimal tensor product has the largest possible cones
satisfying the axioms of the definition.

The maximal tensor product S ⊗max T :

take A ∈ Mk(S)+, B ∈ Mm(T )+, X ∈ Mn,km; then X (A⊗B)X ∗ is
a typical element of Mn(S ⊗max T )+.

The maximal tensor product has the largest possible cones
satisfying the axioms of the definition.

The commuting tensor product S ⊗c T :
u ∈ (S ⊗c T )+ if (φ · ψ)(u) ≥ 0 whenever φ : S → B(H),
ψ : T → B(H) have commuting ranges.

Here φ · ψ(x ⊗ y) = φ(x)ψ(y).

S ⊗max T → S ⊗c T → S ⊗min T .
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The Kirchberg Conjecture (KC)

This is a reformulation of the Connes Embedding Problem; it
states that

C ∗(F∞)⊗min C
∗(F∞) = C ∗(F∞)⊗max C

∗(F∞).

Theorem

The following are equivalent:
(i) (KC) holds true;
(ii) Sn ⊗min Sm = Sn ⊗c Sm for every n,m ≥ 2;
(iii) S2 ⊗min S2 = S2 ⊗c S2.

Theorem

Sn ⊗c Sm 6= Sn ⊗max Sm. In fact, the identity is not 2-positive as a
map from S1 ⊗min S1 into S1 ⊗max S1.

Note that S1 = span{1, z , z̄}, where z is the identity function on
T.



The Kirchberg Conjecture (KC)

This is a reformulation of the Connes Embedding Problem; it
states that

C ∗(F∞)⊗min C
∗(F∞) = C ∗(F∞)⊗max C

∗(F∞).

Theorem

The following are equivalent:
(i) (KC) holds true;
(ii) Sn ⊗min Sm = Sn ⊗c Sm for every n,m ≥ 2;
(iii) S2 ⊗min S2 = S2 ⊗c S2.

Theorem

Sn ⊗c Sm 6= Sn ⊗max Sm. In fact, the identity is not 2-positive as a
map from S1 ⊗min S1 into S1 ⊗max S1.

Note that S1 = span{1, z , z̄}, where z is the identity function on
T.



The Kirchberg Conjecture (KC)

This is a reformulation of the Connes Embedding Problem; it
states that

C ∗(F∞)⊗min C
∗(F∞) = C ∗(F∞)⊗max C

∗(F∞).

Theorem

The following are equivalent:
(i) (KC) holds true;
(ii) Sn ⊗min Sm = Sn ⊗c Sm for every n,m ≥ 2;
(iii) S2 ⊗min S2 = S2 ⊗c S2.

Theorem

Sn ⊗c Sm 6= Sn ⊗max Sm. In fact, the identity is not 2-positive as a
map from S1 ⊗min S1 into S1 ⊗max S1.

Note that S1 = span{1, z , z̄}, where z is the identity function on
T.



Further equivalences

Theorem

The following are equivalent:
(i) (KC) holds true;
(ii) NC (n)⊗min NC (m) = NC (n)⊗c NC (m) for every n,m ≥ 3;
(iii) NC (3)⊗min NC (3) = NC (3)⊗c NC (3).

Theorem (Tsirelson)

(ii) NC (n)⊗c NC (m) 6= NC (n)⊗max NC (m) for every n,m ≥ 2.
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Local experiments

Suppose that Alice and Bob perform an experiment in which Alice
is given an input value x and produces an output value a, while
Bob is given an input value y and produces an output value b.
Assume that the possible values of x , y , a, b are 0 and 1.

Let p1a|x be the probability that Alice returns the value a provided

she is given the input x and p2b|y be the probability that Bob
returns the value b provided he is given the input y .

p1a|x ≥ 0, p2b|y ≥ 0, for all a, b, x , y ∈ {0, 1},

p10|x + p11|x = 1 for x = 0, 1, and

p20|y + p21|y = 1 for y = 0, 1.

Let V = {(u, v ,w , t) : u + v = w + t} ⊆ `∞4 .
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Quantum correlation boxes

Let pa,b|x ,y be the probability that the pair (a, b) is produced as an
output by Alice and Bob, provided that Alice is given an input x
and Bob is given an input y .

A bipartite correlation box (or simply a box) is a table of
probabilities of the form (pa,b|x ,y )a,b,x ,y , viewed as an element of
`∞16.

pa,b|x ,y ≥ 0, a, b, x , y ∈ {0, 1},∑1
a,b=0 pa,b|x ,y = 1, x , y ∈ {0, 1}.

pa,0|x ,0 + pa,1|x ,0 = pa,0|x ,1 + pa,1|x ,1 = p1a|x , for all

a, x ∈ {0, 1},
p0,b|0,y + p1,b|0,y = p0,b|1,y + p1,b|1,y = p2b|y , for all

b, y ∈ {0, 1}.
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Local boxes

A box (pa,b|x ,y )a,b,x ,y is local if there exist (r(λ))λ with∑
λ r(λ) = 1 and, for each λ, elements

pk(λ) = (pk0|0(λ), pk1|0(λ), pk0|1(λ), pk1|1(λ)) ∈ V+,

pk0|0(λ) + pk1|0(λ) = 1, pk0|0(λ) + pk1|0(λ) = 1 k = 1, 2, such that

pa,b|x ,y =
∑
λ

r(λ)p1a|x(λ)p2b|y (λ), a, b, x , y ∈ {0, 1}.



Quantum correlation boxes

Tsirelson in 1980 introduced quantum correlation boxes. These are
the probability distributions (pa,b|x ,y ) given by

pa,b|x ,y = Tr(ρ(Aa
x ⊗ Ab

y )),

where Aa
x and Ab

x are positive operators acting on corresponding
Hilbert spaces Hx and Hy such that A0

x + A1
x = I and A0

y + A1
y = I

for all x , y ∈ {0, 1}, and ρ is a positive trace-class operator of unit
trace.

Let P be the set of all correlation boxes, L be the closure of the
set of all local correlation boxes, and Q be the closure of the set of
all quantum correlation boxes. Clearly, L ⊆ Q ⊆ P and each of
these sets is convex.
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Conection with non-commutative cubes

A state s of NC (2) is determined by its values s(ev ,i ), i = 1, 2,
v = 1, 2.

Note that

s(ev ,i ) ≥ 0, for all i , v .∑2
i=1 s(ev ,i ) = 1, v = 1, 2.

Thus, (s(ev ,i ⊗ ew ,j))v ,i ,w ,j is a box.
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Connection with tensor products

Theorem

We have the following identities:

P = {(s(ev ,i ⊗ ew ,j)) : s is a state on NC (2)⊗max NC (2)}

Q = {(s(ev ,i ⊗ ew ,j)) : s is a state on NC (2)⊗min NC (2)}

L = {(s(ev ,i ⊗ ew ,j)) : s is a state on C (2)⊗min C (2)}.

It follows that these three sets are pairwise distinct.

Quantum corelation boxes are studied for larger than 2 number of
exepriments and a larger than 2 number of players: in this case one
needs to involve the operator systems S(n, c), c ≥ 2. There is
hence a direct link with Kirchberg’s Conjecture.
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Chromatic numbers of graphs

Recall that a c-colouring of a graph G = (V ,E ) is a map
r : V → {1, . . . , c} such that if (v ,w) ∈ E then r(v) 6= r(v).
Smallest such c : the chromatic number χ(G ).

Let D(n, c) = Zc ⊕ · · · ⊕ Zc (n copies).
C ∗(D(n, c)) ∼= `∞c ⊗ · · · ⊗ `∞c ∼= `∞(∆n,c), where
∆n,c = {1, . . . , c}n.

Let Smin(n, c) be the operator subsystem of C ∗(D(n, c)) spanned
by

(δi1 , 0, . . . , 0), (0, δi2 , 0, . . . , 0), . . . , (0, 0, . . . , δin),

for ik = 1, . . . , c , k = 1, . . . , n (where Zc = {δi : i = 1, . . . , c}).

Then Smin(n, c) = span{e ′v ,i : v ∈ V , 1 ≤ i ≤ c}, where e ′v ,i is the
elementary tensor from `∞c ⊗ · · · ⊗ `∞c having all ones except for
the v -th position, where it has the i-th element of the canonical
basis of `∞c .
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The classical chromatic number via operator systems

Proposition

The chromatic number χ(G ) of G is equal to the smallest c ∈ N
for which there exists a state s : Smin(n, c)⊗min Smin(n, c)→ C
such that

∀v , ∀i 6= j , s(e ′v ,i ⊗ e ′v ,j) = 0,

∀(v ,w) ∈ E , ∀i , s(e ′v ,i ⊗ e ′w ,i ) = 0.



The quantum chromatic number χq(G )
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A quantum c-colouring of G are two POVM’s (Ev ,i )
c
i=1 ⊆ Mp,

(Fv ,i )
c
i=1 ⊆ Mq and a vector ξ ∈ Cp ⊗ Cq such that

∀v ,∀i 6= j , 〈(Ev ,i ⊗ Fv ,j)ξ, ξ〉 = 0,

∀(v ,w) ∈ E ,∀i , 〈(Ev ,i ⊗ Fw ,i )ξ, ξ〉 = 0.

(A POVM:
∑c

i=1 Ei = I , Ei ≥ 0.)

The smallest such c is denoted by χq(G ).

χq(G ) ≤ χ(G ) and the inequality may be strict:

The Hadamard graph ΩN is the graph with vertex set
V = {−1, 1}N and edge set E = {(u, v) ∈ V × V : 〈u, v〉 = 0}.
We have χ(G ) ∼ 2N , while χq(G ) = N.
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Further quantum versions

We can play the same game but allowing

two infinite dimensional Hilbert spaces and tensors Ev ,i ⊗ Fw ,j :
χqs(G );

a single infinite dimensional Hilbert space and mutually
commuting POVM’s: Ev ,iFw ,j = Fw ,jEv ,i : χqc(G ).

approximate colourings: χqmin(G ).

χqc(G ) ≤ χqmin(G ) ≤ χqs(G ) ≤ χq(G ) ≤ χ(G ).

These quantum chromatic numbers can be expressed in terms of
operator system tensor products...
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Expression via tensor products

Theorem

χqc(G ) is the smallest c ∈ N for which there exists a state
s : S(n, c)⊗c S(n, c)→ C such that

∀v ,∀i 6= j , s(ev ,i ⊗ ev ,j) = 0,

∀(v ,w) ∈ E , ∀i , s(ev ,i ⊗ ew ,i ) = 0.

χqmin(G ) is obtained in a similar way, but taking
s : S(n, c)⊗min S(n, c)→ C.

We see that quantum colourings are in fact correlation boxes with
certain constraints on the probability distributions.

χqmax(G ) = 2 if |V | ≥ 2.

The other chromatic numbers seem to be more promising. For
example, to disrove Connes Embedding Problem, it suffices to
exhibit a graph G with χqc(G ) < χqmin(G ).
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