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The C*-algebra of a discrete group

Let G be a discrete group. The group C*-algebra C*(G) of G is
the (unique up to a *-isomorphism) unital C*-algebra with the
properties:

e G is a subgroup of the unitary group of C*(G);

e For every unitary representation 7 : G — B(H) there exists a
unique unital *-representation 7 : C*(G) — B(H) such that
7(g) = m(g) for every g € G.

To see that C*(G) exists, consider first the group algebra C[G] of
G: it consists of all complex linear combinations p =3 ¢ ... A\.g.
Define a norm on C[G] by letting

Pl = sup || > el

and complete to obtain C*(G).
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Operator systems

An operator system is a subspace S C B(H) such that / € S and
TeS=T"eS.

“Matricial cones”:
B(H™ ={T e€B(H): T>0} ((T§€¢) >0, VEeH).
Mn(B(H)) = B(H"), hence, we have a cone M,(B(H))™".
Mn(S)T = Mp(S) N Mp(B(H))*, neN.
The family (M,(S)™)en of cones satisfies the condition
0 A€ Myy, X € My(S)T = A*XA € M(S)*.

Effros - Choi: Conversely, if (Cn)nen is a family of matricial cones
(Cn C M,(S)) satisfying the above condition then S can be
“faithfully represented” as an operator system on some Hilbert
space.

Alternatively: operator systems are selfadjoint unital subspaces of
C*-algebras.
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Completely positive maps

Let S and T be operator systems, and ¢ : S — T be a linear map.
Set (") - My(S) = Ma(T) by 6(((xi))is) = ((xij))iy-

The map ¢ is called completely positive if

D (Mn(S)T) € Mp(T)*, neN.

¢ is called a complete order isomorphism if it is bijective and both
¢ and ¢! are completely positive.

*_homomorphisms between C*-algebras are completely positive.

Stinespring's Theorem

If Ais a C*-algebra and ¢ : A — B(H) is a completely positive
map then there exists a *-homomorsphism 7 : A — B(K) and an
operator V : H — K such that

é(a) = V*r(a)V, ac A
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Operator systems from discrete groups

Let G be a (discrete) group, generated by a subset u. Let
S(u) = span{e,u,u* : u e u} C C*(G).

A convenient fact:

Proposition
The C*-envelope C}(S(u)) coincides with C*(G).

The C*-envelope of an operator system S is a C*-algebra C(S)
together with an embedding ¢ : S — CZ(S) such that if

¢S — B(H) is a complete order embedding then there exists a
*-epimorphism 7 : C*(¢(S)) — CZ(S) with w(¢(x)) = ¢(x),
xeS.

The C*-envelope of an operator system S is, heuristically, the
smallest C*-algebra generated by S.
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FF,: the free group on n generators uq, ..., u,

The operator system of F,, will be denoted by S,,. It does not
depend on the choice of a particular set of n generators.

We have S, C C*(F).

The operator system S, is characterised by the following universal
property: If T1,..., T, are contractions on a Hilbert space H then
there exists a (unique) unital completely positive map

¢ Sp — B(H) such that ¢(uij) =T;, i=1,...,n.

Idea of proof: dilate the contarctions to unitaries acting on a
common Hilbert space, and use the universal property of C*(F,).
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A particular cases of interest: Zy * - - * Zo

Recall the free product G x H of groups G and H: the units of G
and H are “glued” together in the unit of G *x H while no
additional relations are imposed between the elements of G and H.
Elements in G % H are of the form gihigohy ..., with gi € G and
h; € H.

Thus, G = Zy * - - - x Zy (n copies) has elements of the form

hi hi, ... hj, where h; is the generator of the ith copy of Z5 in G,
and il#ig#-“#ik.

NC(n) = span{1, hy,..., hy}: the operator system of G; it will be
called the operator system of the non-commutatuve n-cube.
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A particular cases of interest: Zy * - - * Zo

Note that NC(n) C C*(G) = C*(Zy) * - - - x C*(Z,). After Fourier
transform, we may consider NC(n) as the operator subsystem of
5 x -+ - x /5° spanned by the copies of £5°.

NC(n) is characterised by the following universal property: If
Ti,..., T, are self-adjoint contractions on a Hilbert space H then
there exists a (unique) unital completely positive map

¢ : NC(n) — B(H) such that ¢(uj) =T;, i=1,...,n.

Note that there also exists an operator system of the commutative
n-cube: the above universal property is fulfilled for pairwise
commuting selfadjoint contractions.
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A particular cases of interest: Zg * - - - x Z.

A worthwhile generalisation of NC(n) is the operator system
S(n, c) of the group Zc * - - - % Z. (n copies).

As before,
S(n,c) T % %2
and
C(S(nyc)) =02 %+ % £2°.
Let {e,;:i=1,...,c} be the canonical basis of the v-th copy of
£2° in the free product, v=1,...,n.

Then S(n,c) =span{e,j:v=1,...,ni=1,...,c}.

Note the relations > 7_;e,; =1, forall v=1,...,n.
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Tensor products

An operator system tensor product is an operator system structure
« on the algebraic tensor product S ® T of every pair of operator
systems S and 7, such that

AR B € Mpn(S ®4 T)" whenever A € M,(S)*, B € My(T)*;
fe CP(S,My), g€ CP(T,M)) = f@g € CP(S 4T, My).

« is functorial if

b€ CP(S,clSy), v e CP(T,T1) =
PR € CP(E®aT,S1 ®a Th).
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Three tensor products

The minimal tensor product: if S C B(H) and T C B(K),
represent S ® T C B(H ® K); the resulting operator system is
denoted S @min 7T .

The minimal tensor product has the largest possible cones
satisfying the axioms of the definition.

The maximal tensor product S Qmax 7T :

take A € M (S)*, B € Mn(T)", X € My km; then X(A® B)X* is
a typical element of M,(S ®@max T) 7.

The maximal tensor product has the largest possible cones
satisfying the axioms of the definition.

The commuting tensor product S ®. 7T

ue(S®.T)"if (¢-)(u) >0 whenever ¢ : S — B(H),

Y T — B(H) have commuting ranges.

Here ¢ - h(x ® y) = ¢(x)¥(y).
S®maxT—>S®CT—>S®minT-
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The Kirchberg Conjecture (KC)

This is a reformulation of the Connes Embedding Problem; it
states that

C*'(Fso) ®min C"(Fxo) = C*(Foo) @max C*(Foo)-

Theorem

The following are equivalent:

(i) (KC) holds true;

(i) Sh @min Sm = Sp ®c S, for every n,m > 2;
(iii) S2 ®min S2 = S2 Qc So.

Theorem

Sn ®c Sm # Sp @max Sm- In fact, the identity is not 2-positive as a
map from 81 ®min S1 into S1 Pmax S1.

| A

v

Note that S; = span{l, z, Z}, where z is the identity function on
T.
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Further equivalences

The following are equivalent:

(i) (KC) holds true;

(i) N C(n) @min NC(m) = NC(n) ®. NC(m) for every n,m > 3;
(iii) N'C(3) @min NC(3) = NC(3) ®@. NC(3).

Theorem (Tsirelson)

(it) NC(n) @ NC(m) # NC(n) @max NC(m) for every n,m > 2.
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Local experiments

Suppose that Alice and Bob perform an experiment in which Alice
is given an input value x and produces an output value a, while
Bob is given an input value y and produces an output value b.
Assume that the possible values of x, y,a, b are 0 and 1.

Let pilx be the probability that Alice returns the value a provided
she is given the input x and p129|y be the probability that Bob

returns the value b provided he is given the input y.
° p;‘x >0, pi‘y >0, for all a,b,x,y € {0,1},
° p(1)|x + phx =1forx=0,1, and
° pg|y —|—pf‘y =1fory=0,1.

Let V={(u,v,w,t):u+v=w+t} C I
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Quantum correlation boxes

Let p, p|x,, be the probability that the pair (a, b) is produced as an
output by Alice and Bob, provided that Alice is given an input x
and Bob is given an input y.

A bipartite correlation box (or simply a box) is a table of
probabilities of the form (p, p|x,,)abx,y, Viewed as an element of

o0
16°
® Pablxy =0, a3 b,x,y €{0,1},
1
® D ab—0Pablxy =1 x,y €{0,1}.
® P,0[x,0 T Pa,lx,0 = Pao|x,1 t+ Pailx,1 = pj|x, for all
a,x €{0,1},
® Po,bj0,y T PLb0y = PobjLy + P1bjLy = Py, for all

b,y € {0,1}.



Local boxes

A box (Pa,bjx,y)abx,y is local if there exist (r(A))x with
Y2 r(A) =1 and, for each A, elements

PN = (Pé]o(/\),Pfo()\),P(l)(|1()\),Pﬁl()\)) e VT,
Pglo(N) + Plio(N) = 1, pgio(X) + Piio(A) =1 k = 1,2, such that

Pa,bix,y = Z r(A)pi‘hx()‘)pay()‘)’ a, b,x,y € {07 ]-}
A



Quantum correlation boxes

Tsirelson in 1980 introduced quantum correlation boxes. These are
the probability distributions (p, p|x,,) given by

pa,b|x,y = Tr(p(Ai ® A}é))v

where A2 and AP are positive operators acting on corresponding
Hilbert spaces Hy and H, such that A2 + Al =/ and A?, + A}l, =1
for all x,y € {0,1}, and p is a positive trace-class operator of unit
trace.



Quantum correlation boxes

Tsirelson in 1980 introduced quantum correlation boxes. These are
the probability distributions (p, p|x,,) given by

pa,b|x,y = Tr(p(Ai ® A}é))v

where A2 and AP are positive operators acting on corresponding
Hilbert spaces Hy and H, such that A2 + Al =/ and A?, + A}l, =1
for all x,y € {0,1}, and p is a positive trace-class operator of unit
trace.

Let P be the set of all correlation boxes, £ be the closure of the
set of all local correlation boxes, and Q be the closure of the set of
all quantum correlation boxes. Clearly, £L C Q@ C P and each of
these sets is convex.
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Conection with non-commutative cubes

A state s of NC(2) is determined by its values s(e, ;), i = 1,2,
v=12.

Note that
e s(e, i) >0, forall i, v.
° Z?:l 5(ev,i) =1, v=12

Thus, (s(ev,i ® ewj))v,iw, is a box.
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Quantum corelation boxes are studied for larger than 2 number of
exepriments and a larger than 2 number of players: in this case one
needs to involve the operator systems S(n, c), ¢ > 2. There is
hence a direct link with Kirchberg's Coniecture.



Chromatic numbers of graphs

Recall that a c-colouring of a graph G = (V, E) is a map
r:V —{1,...,c} such that if (v,w) € E then r(v) # r(v).
Smallest such c: the chromatic number x(G).
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Recall that a c-colouring of a graph G = (V, E) is a map
r:V —{1,...,c} such that if (v,w) € E then r(v) # r(v).
Smallest such c: the chromatic number x(G).
Let D(n,c) =Zc @ --- @ Zc (n copies).
C*(D(n,c)) =l @ -+ @I = L°(Ap,c), where
Apce=A{1,...,c}"
Let Smin(n, ¢) be the operator subsystem of C*(D(n, c)) spanned
by

(64,0,...,0),(0,6,0,...,0),...,(0,0,...,0;),
forix=1,...,c, k=1,...,n(where Zc ={6; : i =1,...,c}).
Then Smin(n, c) =span{e, ;: v € V,1 <i < c}, where e ; is the
elementary tensor from /2° ® --- ® £2° having all ones except for
the v-th position, where it has the i-th element of the canonical
basis of £2°.



The classical chromatic number via operator systems

Proposition
The chromatic number x(G) of G is equal to the smallest ¢ € N
for which there exists a state s : Spin(n, ¢) @min Smin(n,c) = C
such that

VV,VI. 75_/,5(6‘//’,' @ e\//,j) = 07

Y(v,w) € E,Vi,s(e, ;@ e, ;) =0.




The quantum chromatic number x(G)

Cameron, Montanaro, Newman, Severini, Winter, 2007



The quantum chromatic number x(G)

Cameron, Montanaro, Newman, Severini, Winter, 2007

A quantum c-colouring of G are two POVM's (E, ;){_; C M,
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V(v,w) € E,Vi, {(Ey; ® Fy)€ €) = 0.
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Cameron, Montanaro, Newman, Severini, Winter, 2007

A quantum c-colouring of G are two POVM's (E, ;){_; C M,
(Fv,i)5_; € Mg and a vector { € CP ® C9 such that

Vv, Vi 7&./; <(Ev,i & Fv,j)§7§> =0,

V(v,w) € E, Vi, {(Evi ® Fu )¢, &) = 0.
(APOVM: 3¢ E =1, E; > 0))
The smallest such c is denoted by x(G).
Xq(G) < x(G) and the inequality may be strict:

The Hadamard graph Qp is the graph with vertex set
V ={-1,1}" and edge set E = {(u,v) € V x V : (u,v) = 0}.
We have x(G) ~ 2V, while x4(G) = N.



Further quantum versions

We can play the same game but allowing

@ two infinite dimensional Hilbert spaces and tensors E, ; ® F,, j:
Xas(G):

@ a single infinite dimensional Hilbert space and mutually
commuting POVM's: E, ;F, j = FujE, it Xqc(G).

@ approximate colourings: Xqmin(G).
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@ two infinite dimensional Hilbert spaces and tensors E, ; ® F,, j:
Xas(G):
@ a single infinite dimensional Hilbert space and mutually
commuting POVM's: E, ;F, j = FujE, it Xqc(G).
@ approximate colourings: Xqmin(G).
Xqe(G) < Xqmin(G) < Xas(G) < xq(G) < x(G).

These quantum chromatic numbers can be expressed in terms of
operator system tensor products...
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Expression via tensor products

® Xqc(G) is the smallest ¢ € N for which there exists a state
s:8(n,c) ®.S(n, c) — C such that

Vv, Vi # j,s(evi ® evj) =0,

V(v,w) € E,Vi,s(e,; ® ew,) = 0.

® Xqmin(G) is obtained in a similar way, but taking
s :8(n, ¢) Qmin S(n, c) = C.

We see that quantum colourings are in fact correlation boxes with
certain constraints on the probability distributions.

Xqmax(G) = 2 if |V| > 2.

The other chromatic numbers seem to be more promising. For
example, to disrove Connes Embedding Problem, it suffices to
exhibit a graph G with x4c(G) < Xqmin(G).



THANK YOU VERY MUCH!



