
CMt SIMPLICIAL COMPLEXES

THE 3RD SEMINAR ON COMBINATORIAL COMMUTATIVE ALGEBRA

5-6 FEBRUARY 2014, SCHOOL OF MATHEMATICS, IPM, TEHRAN

RAHIM ZAARE NAHANDI

UNIVERSITY OF TEHRAN

Abstract. Cohen-Macaulay-ness is a distinguished property in many areas of

mathematics including algebraic geometry, commutative algebra and algebraic
combinatorics. In algebraic combinatorics, Cohen-Macaulay and Buchsbaum

simplicial complexes have been extensively studied. The CMt property unifies

and naturally generalizes both Cohen-Macaulay and Buchsbaum properties.

In this talk, after recalling necessary preliminaries, some extensions of basic

properties of Cohen-Macaulay and Buchsbaum simplicial complexes on CMt

simplicial complexes will be discussed. In particular, a characterization of

bipartite CMt graphs will be outlined as an extension of a result of Herzog

and Hibi in the Cohen-Macaulay case. This will cover some joint work with
H. Haghighi and S. Yassemi.

1. Preliminaries and notation

Let ∆ be a simplicial complex on a finite set V = {x1, · · · , xn of n elements.
Hence, ∆ is a collection of subsets of V such that (a) if F ∈ ∆ and G ⊂ F , then
G ∈ ∆, and (b) {x} ∈ ∆ for all x ∈ V . Elements of ∆ are called the faces of ∆.
Any maximal face (with respect to inclusion) is called a facet of ∆. For a face F ,
dimension of F is

dimF = #F − 1

and dimension of ∆ is
dim∆ = maxF∈∆dimF.

A simplicial complex is called pure if all its facets have the same dimension. For
an integer r ≥ 0, the r − skeleton of ∆ is the simplicial complex

{F ∈ ∆ : dimF ≤ r}.
For any face F ∈ ∆, the link of F in ∆ is defined as:

link ∆(F ) = {G ∈ ∆|G ∪ F ∈ ∆, G ∩ F = ∅}.
Let ei be the ith unit coordinate vector inRn. For a face F ∈ ∆, let

|F | = convex hull of {ei : xi ∈ F}

and define the geometric realization of ∆ to be

|∆| = ∪F∈∆|F |.
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2 CMT SIMPLICIAL COMPLEXES

Let R be a commutative ring with unit. For ∆ the augmented chain complex over
R

C• : 0 −→ Cn(∆)
∂n−→ Cn−1(∆)

∂n−1−→ · · · ∂2−→ C1(∆)
∂1−→ C0(∆)

ε−→ C−1(∆) = R −→ 0

is associated, where Cq(∆) is the free R-module of rank equal to the number of
faces of ∆ of dimension q and where ∂q and ε are defined as

∂q({v0, · · · , vq}) =

n∑
i=0

(−1)i{v0, · · · , v̂i, · · · , vq}.

Here v̂i means to ‘delete’ vi. The qth reduced simplicial homology group of ∆ with

coefficients in A, H̃q(∆), is the qth homology group of this complex. If R = k is a

field, the vector space H̃q(∆; k) = Hq(C• ⊗ k) is called the qth reduced simplicial
homology of ∆ with coefficients in k.

Given a simplicial complex ∆ on the vertex set {x1, · · · , xn} and a field k, the
StanleyReisner ideal or the face ideal of ∆ is the monomial ideal generated by the
square-free monomials corresponding to the non-faces of ∆:

I∆ = (xi1 · · ·xir : {i1, · · · , ir} * ∆).

Then, the StanleyReisner ring, or, face ring of ∆ denoted by k[∆], is

k[∆] = k[x1, · · · , xn]/I∆.

A simplicial complex ∆ is called Cohen-Macaulay (Buchsbaum) over k if its face
ring is a CohenMacaulay (Buchsbaum, respectively) ring .

In his 1974 thesis, Gerald Reisner gave a complete characterization of Cohen-
Macaulay simplicial complexes. This was soon followed up by more precise ho-
mological results about face rings due to Melvin Hochster. Then Richard Stanley
found a way to prove the Upper Bound Conjecture for simplicial spheres, which
was open at the time, using the face ring construction and Reisner’s criterion of
Cohen-Macaulay-ness. Stanley’s idea of translating difficult conjectures in alge-
braic combinatorics into statements from commutative algebra and proving them
by means of homological techniques was the origin of the rapidly developing field
of combinatorial commutative algebra.

2. CMt simplicial complexes

In the hierarchy of families of simplicial complexes with respect to Cohen-
Macaulay property, Buchsbaum complexes appear right after Cohen-Macaulay ones.
Natural families of simplicial complexes in this hierarchy, as we will see, are CM t

simplicial complexes, namely, simplicial complexes which are pure and Cohen-
Macaulay in codimension t. The concept of CM t simplicial complexes was in-
troduced in [27] which is the pure version of simplicial complexes Cohen-Macaulay
in codimension t studied by Miller, Novik and Swartz [30].

Definition 2.1. Let k be a field, ∆ a simplicial complex of dimension (d− 1) over
k. Let t be an integer 0 ≤ t ≤ d− 1. Then ∆ is called CMt over k if ∆ is pure and
link ∆(F ) is Cohen-Macaulay over k for any F ∈ ∆ with #F ≥ t.
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We will adopt the convention that for t ≤ 0, CMt means CM0. Note that from
the results by Reisner [17] and Schenzel [19] it follows that CM0 is the same as
Cohen-Macaulay-ness and CM1 is identical with the Buchsbaum property. It is
also clear that for any i ≤ j, CMi implies CMj .

Example 2.2. Let ∆ be the union of two (d−1)-simplices that intersect in a (t−2)-
dimensional face where 1 ≤ t ≤ d − 1. Then ∆ is a CMt complex which is not a
CMt−1 complex. In fact, if Γ is a finite union of (d−1)-simplices where any two of
them intersect in a face of dimension at most t− 2, then Γ is a CMt complex, and
if at least two of the simplices have a (t− 2)-dimensional face in common, then Γ
is not CMt−1. These include simplicial complexes corresponding to the transversal
monomial ideals which happen to have linear resolutions [24].

Note that the condition t < d− 1 is necessary because the union of two (d− 1)-
simplices which intersect in a (d− 2)-dimensional face, is Cohen-Macaulay.

It is known that the links of a Cohen-Macaulay simplicial complex are also
Cohen-Macaulay, see [11]. A similar property holds for CMt complexes.

Lemma 2.3. ([27, Lemma 2.3]) Let t ≥ 1 and let ∆ be a nonempty complex. Then
the following are equivalent:

(i) ∆ is a CMt complex.
(ii) ∆ is pure and link ∆(v) is CMt−1 for every vertex v ∈ ∆.

We recall Reisner’s characterization of Cohen-Macaulay simplicial complexes [17,
Theorem 1].

Theorem 2.4. Let ∆ be a simplicial complex of dimension (d − 1). Then the
following are equivalent:

(i) ∆ is Cohen-Macaulay over k.

(ii) H̃i(link ∆(F ); k) = 0 for any F ∈ ∆ and all i < dim (link ∆(F )).

In analogy with the above result, the following theorem provides equivalent con-
ditions for CMt complexes.

Theorem 2.5. Let ∆ be a simplicial complex of dimension (d − 1). Then the
following are equivalent:

(i) ∆ is CMt over k;

(ii) ∆ is pure and H̃i(link ∆(F ); k) = 0 for all F ∈ ∆ with #F ≥ t and i <
d−#F − 1.

We state a result due to Munkres [14, Corollary 3.4] which shows that Cohen-
Macaulayness is a topological property.

Theorem 2.6. Let ∆ be a pure simplicial complex of dimension (d− 1). Then the
following are equivalent:

(i) ∆ is Cohen-Macaulay over k.

(ii) H̃i(|∆|; k) = 0 = Hi(|∆|, |∆| \ p; k) for all p ∈ |∆| and all i < d− 1, where
|∆| is the geometric realization of ∆. Here, Hi(|∆|, |∆| \ p; k) is the ith
reduced relative homology group!

The following theorem may lead one to believe that the property CMt is also a
topological invariant.
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Theorem 2.7. Let ∆ be a pure simplicial complex of dimension (d− 1). Then the
following are equivalent:

(i) ∆ is CMt over k;
(ii) Hi(|∆|, |∆| \ p; k) = 0 for all p ∈ |∆| \ |∆t−2| and all i < d− 1, where ∆t−2

is the (t − 2)-skeleton of ∆ and |∆t−2| is induced from a fixed geometric
realization of ∆.

Let ∆ and ∆′ be two simplicial complexes whose vertex sets are disjoint. The
simplicial join ∆ ∗∆′ is defined to be the simplicial complex whose faces are of the
form F ∪ F ′ where F ∈ ∆ and F ′ ∈ ∆′.

The algebraic and combinatorial properties of the simplicial join ∆ ∗∆′ through
the properties of ∆ and ∆′ have been studied by a number of authors (see [4], [6],
[16], and [1]). For instance, in [6], Fröberg showed that the simplicial join ∆ ∗∆′ is
Cohen-Macaulay (resp. Gorenstein) if and only if both of them are Cohen-Macaulay
(resp. Gorenstein). On the other hand, if the join of two complexes is Buchsbaum,
it should indeed be Cohen-Macaulay [31, Theorem 2.6]. Therefore, it is natural to
ask about ∆ and ∆′ when ∆ ∗∆′ is CMt.

If ∆ is a CM r complex of dimension d−1 and ∆′ is a CM r′ complex of dimension
d′ − 1, then their join ∆ ∗∆′ is a CM t complex where t = max{d + r′, d′ + r} [27,
Proposition 2.10]. However, if one of the complexes is Cohen-Macaulay, this result
could be strengthened. Below we combine this with relevant known results. The
proof is mainly based on the following characterization of CM t simplicial complexes
by Miller, Novik and Swartz which is interestin in its own:

Proposition 2.8. [12, Corollay 7.4] Let ∆ be a simplicial complex of dimension
d − 1 on n vertices and let R = k[x1, · · · , xn]. Then ∆ is CMt if and only if ∆ is
pure and

dimExtiR(k[∆], R) ≤ t

for all i > n− d, where dim refers to the Krull dimension.

Theorem 2.9. Let ∆ and ∆′ be two complexes of dimensions d − 1 and d′ − 1,
respectively. Then

(i) The join complex ∆ ∗∆′ is Cohen-Macaulay if and only if both ∆ and ∆′

are so.
(ii) If ∆ is Cohen-Macaulay and ∆′ is CM r′ for some r′ ≥ 1, then ∆ ∗∆′ is

CM d+r′ (independent of d′). This is sharp, i.e., if ∆′ is not CM r′−1, then
∆ ∗∆′ is not CM d+r′−1. In particular, a cone on ∆′ is CM r′+1.

(iii) If ∆ is CM r and ∆′ is CM r′ for some r, r′ ≥ 1, then ∆ ∗∆′ is CM t where
t = max{d + r′, d′ + r}. Conversely, if ∆ ∗∆′ is CM t, then ∆ is CM t−d′

and ∆′ is CM t−d.

3. CM t flag complexes and Bipartite CM t graphs

Let G = (V,E) be a simple graph with vertex set V and edge set E. The inclu-
sive neighborhood of v ∈ V is the set N [v] consisting of v and vertices adjacent to v
in G. The independence complex of G = (V,E) is the complex Ind(G) with vertex
set V and with faces consisting of independent sets of vertices of G, i.e., sets of
vertices of G where no two of them are adjacent. These complexes are called flag
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complexes, and their Stanley-Reisner ideal are generated by quadratic square-free
monomials. By dimension of a graph G we mean the dimension of Ind(G). A graph
G is said to be unmixed if Ind(G) is pure. A graph G is called CM t if Ind(G) is CM t.

Cook and Nagel showed that the only non-Cohen-Macaulay unmixed Buchsbaum
bipartite graphs are complete bipartite graphs [25, Theorem 4.10] and [26, Theorem
1.3]. We give a generalization of this fact to unmixed bipartite graphs which are
CM t.

A basic tool for checking CM t property of complexes is the following lemma.

Lemma 3.1. Let t ≥ 1 and let G be a graph. Then the following are equivalent:

(i) G is a CMt graph.
(ii) G is unmixed and G \N [v] is a CMt−1 graph for every vertex v ∈ G.

Let G t G′ denote the disjoint union of graphs G and G′. By the fact that
Ind(GtG′) = Ind(G)∗Ind(G′), the counter-part of Theorem 2.9 for graphs will be
the following.

Theorem 3.2. Let G and G′ be two graphs on disjoint sets of vertices and of
dimensions d− 1 and d′ − 1, respectively. Then

(i) The graph G tG′ is Cohen-Macaulay if and only if both G and G′ are so.
(ii) If G is Cohen-Macaulay and G′ is CM r′ for some r′ ≥ 1, then G t G′ is

CM d+r′ . If G′ is not CM r′−1, then G tG′ is not CM d+r′−1.
(iii) If G is CM r and G′ is CM r′ for some r, r′ ≥ 1, then GtG′ is CM t where

t = max{d + r′, d′ + r}. Conversely, if G tG′ is CM t, then G is CM t−d′

and G′ is CM t−d.

A graph G = (V,E) is called bipartite if V is a disjoint union of a partition V1

and V2 such that E ⊂ V1×V2. If #(V1) = m and #(V2) = n and E = V1×V2, then
G is the complete bipartite graph Km,n. We will be interested in unmixed complete
bipartite graphs Kn,n.

Cohen-Macaulay bipartite graphs are characterized by Herzog and Hibi in the
following result.

Theorem 3.3. [29, Theorem 3.4] Let G be a bipartite graph without an isolated
vertex. Then G is unmixed if and only if there is a partition V1 = {x1, · · · , xn} and
V2 = {y1, · · · , yn} of vertices of G such that

(1) xiyi is an edge in G for 1 ≤ i ≤ n and
(2) If xiyj is an edge in G, then i ≤ j.
(2) If xiyj and xjyk are edges in G, for some distinct i, j and k, then xiyk is

an edge in G.

The order in the above result is called a Macaualy order on the given Cohen-
Macaulay bipartite graph. In fact, by a result of Villarreal, validity of the conditions
(1) and (2) is equivalent to unmixed-ness of G [35, Theorem 1.1].

Recall that a complex is Buchsbaum if and only if it is pure and the link of each
vertex is Cohen-Macaulay [33]. Thus, a graph is Buchsbaum if and only if G is
unmixed and for every vertex v ∈ G, G \ N [v] is Cohen-Macaulay. For bipartite
graphs there is a sharper result by Cook and Nagel.
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Theorem 3.4. (see [25, Theorem 4.10] or [26, Theorem1.3]) Let G be a bipartite
graph. Then G is Buchsbaum if and only if G is a complete bipartite graph Kn,n

for some n ≥ 2, or G is Cohen-Macaulay.

We now generalize the results of Cook and Nagel in light of the result of Herzog
and Hibi.

Theorem 3.5. Let G be a Cohen-Macaulay bipartite graph with a Macaulay order
on the vertex set V (G) = V ∪W where V = {x1, · · · , xd} and W = {y1, · · · , yd}.
Let n1, · · · , nd be any positive integers with ni ≥ 2 for at list one i. Let G′ =
G(n1, · · · , nd) be the graph obtained by replacing each edge xiyi with the complete
bipartite graph Kni,ni

for all i = 1, . . . , d. Let ni0 = min{ni > 1 : i = 1, · · · , d}, n =∑d
i=1 ni. Then G′ is exclusively a CM n−ni0

+1 graph. Furthermore, any bipartite
CM t graph is obtained by such a replacement of complete bipartite graphs in a
unique bipartite Cohen-Macaulay graph.

We now provide some examples:

Example 3.6. (Bipartite CM 2 graphs which are not Buchsbaum):
There are just two non-isomorphic bipartite Cohen-Macaulay graphs of dimension
one. By the replacing process, they produce two types of bipartite CM 2 graphs
which are not Buchsbaum. They are of arbitrary dimensions. More precisely, one
such graph is the disjoint union of an edge x1y1 with Kn2,n2

= {x21, · · · , x2n2
} ×

{y21, · · · , y2n2
}, n2 ≥ 2, and the other one consists of the first graph together with

the edges x1y2i for all i = 1, · · · , n2. The second graph with n2 = 3 could be depicted
in Figure 1.
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Example 3.7. (Bipartite CM 3 graphs which are not CM 2):
These arise only in the following cases:

(a) There are just two bipartite CM 3 graphs obtained by replacing two edges of
a perfect matching by K2,2’s. In this case, dimG = 3 (see Figure 2 and Figure 3).

(b) There are 4 non-isomorphic bipartite Cohen-Macaulay graphs of dimension 2.
By replacing one perfect matching edge with Kn,n of arbitrary size in each Cohen-
Macaulay graph, they produce 7 types of bipartite CM 3 graphs which are not CM 2.
Note that depending on the choice of the edge to be replaced in each case, we may
get non-isomorphic bipartite graphs. In this case dimG = n + 1.
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Example 3.8. (Bipartite CM 4 graphs which are not CM 3):
These arise in the following cases:

(a) There are two bipartite CM 4 graphs obtained by replacing two edges of a per-
fect matching by K3,3’s. And, similarly, there are two others obtained by replacing
one edge with K2,2 and another edge with K3,3. In both cases, dimG = 5.

(b) While there are 4 non-isomorphic bipartite Cohen-Macaulay graphs of dimen-
sion 2, by replacing two perfect matching edges with K2,2’s in each Cohen-Macaulay
graph, they produce 7 bipartite CM 4 graphs which are not CM 3. They all have di-
mension 4.

(c) There are 10 non-isomorphic bipartite Cohen-Macaulay graphs of dimension
3. Replacing one perfect matching edge with Kn,n, n ≥ 2, in each Cohen-Macaulay
graph, they produce 25 bipartite CM 4 graphs which are not CM 3. They all have
dimension n + 2. Out of all 36 bipartite CM 4 graphs, 21 graphs are connected.

Final word. The CM t property for simplicial complexes and graphs has opened
a variety of interesting questions which are already considered for Cohen-Macaualy
and Buchsbaum ones. For example, Pournaki, Seyed Fakhari and Yassemi has con-
sidered the h-vector of a CM t simplicial complex [15] extending a result of Terai
[23]. We have been considering CMt squar-efree lexsegment ideals generalizing re-
sults of Bonanzinga, Serrenti [7] and Bonanzinga, Serrenti and Terai [8]. Therefore,
it is legitimate to invite interested people to work on this topic.
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