Summer School on Commutative Algebra and Algebraic Geometry, September 7-10, 2014 School of Mathematics, IPM, Tehran

Toroidalization of Locally Toroidal Morphisms of 3-Folds

Razieh Ahmadian

IPM

Iran

The idea of toroidalization is fundamental to study the structure of birational morphisms in algebraic geometry. Given a dominant morphism of algebraic varieties $\varphi: X \to Y$, over an algebraically closed field \mathfrak{k} of characteristic zero, the toroidalization problem is that of obtaining sequences of blow-ups with nonsingular centers $\lambda: \widetilde{X} \to X$ and $\pi: \widetilde{Y} \to Y$ so that we can achieve a commutative diagram

$$\begin{array}{ccc} \widetilde{X} & \stackrel{\widetilde{\varphi}}{-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-} & \widetilde{Y} \\ \downarrow^{\lambda} & & \downarrow^{\pi} \\ X & \stackrel{\varphi}{-\!\!\!\!\!\!-\!\!\!\!\!\!-} & Y \end{array}$$

such that $\tilde{\varphi}$ is a toroidal morphism (locally given by monomials in appropriate \acute{e} tale local parameters on \widetilde{X} , with respect to fixed SNC divisors $D_{\widetilde{X}}$ and $D_{\widetilde{Y}}$ on \widetilde{X} and \widetilde{Y} respectively).

The existence of toroidalization has been proved completely when Y is a curve or when X and Y are of dimension ≤ 3 by Professor S. D. Cutkosky. Also, it has been proved for strongly prepared morphisms from a nonsingular n-fold X to a nonsingular surface S by Professor Cutkosky and Kashcheyeva, and for locally toroidal morphisms from a nonsingular n-fold to a nonsingular surface S by Hanamanthu. In this talk we will present an introduction to the problem of toroidalization and we will discuss our recent proof of toroidalization of locally toroidal morphisms of 3-folds.