On Cellular Resolution of Monomial Ideals
Rahim Zaare-Nahandi

University of Tehran
Iran

Let \(I \subset R = k[y_1,\ldots,y_n] \) be a monomial ideal in the polynomial ring over a field \(k \) and let \(G(I) \) be the unique minimal monomial generating set of \(I \). Let \(X \) be a regular cell complex with \(G(I) \) as its vertices. Let \(\epsilon_X \) be an incidence function on \(X \). Any face of \(X \) will be labeled by \(m_F \), the least common multiple of the monomials in \(G(I) \) which correspond to the vertices of \(F \). If \(m_F = y_1^{a_1}\ldots y_n^{a_n} \), then the degree \(a_F \) is defined to be the exponent vector \(e(m_F) = (a_1,\ldots,a_n) \). Let \(RF \) be the free \(R \)-module with one generator in degree \(a_F \). The cellular complex \(F_X \) is the \(\mathbb{Z}^n \)-graded \(R \)-module \(\bigoplus_{\emptyset \neq F \in X} RF \) with differentials

\[
\partial(F) = \sum_{\emptyset \neq F' \in X} \epsilon(F,F') \frac{m_F}{m_{F'}} F'
\]

If the complex \(F_X \) is exact, then \(F_X \) is called a cellular resolution of \(I \). Alternatively, we say that \(I \) has a cellular resolution supported on the labeled cell complex \(X \). If \(X \) is a polytope or a simplicial complex, then \(F_X \) is called polytopal, and simplicial, respectively.

The idea to describe a resolution of a monomial ideal by means of combinatorial chain complexes was initiated by Bayer, Peeva and Sturmfels [1], and was extended by Bayer and Sturmfels [2], and further extension was made by Jöllmebeck and Welker [6]. Further contributions were given by Sinetakoupols [8], Mermin [7], Dochtermann and Engström [3],[4] and Goodarzi [5].

We consider monomial ideals that are facet ideals of a linear matroid of a set of vectors on which the only linear dependence is proportionality, i.e., some vectors could be scaler multiples of others. We prove that any such matroidal ideal has a linear resolution supported on a polytopal cell complex.

References

