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Let I ⊂ R = k[y1, ..., yn] be a monomial ideal in the polynomial ring over a field k and
let G(I) be the unique minimal monomial generating set of I. Let X be a regular cell
complex with G(I) as its vertices. Let εX be an incidence function on X. Any face of
X will be labeled by mF , the least common multiple of the monomials in G(I) which
correspond to the vertices of F . If mF = ya11 ...y

an
n , then the degree aF is defined to be the

exponent vector e(mF ) = (a1, ..., an). Let RF be the free R-module with one generator
in degree aF . The cellular complex FX is the Zn-graded R-module

⊕
∅6=F∈X RF with

differentials

∂(F ) =
∑

∅6=F ′∈X

ε(F, F ′)
mF

mF ′
F ′

If the complex FX is exact, then FX is called a cellular resolution of I. Alternatively,
we say that I has a cellular resolution supported on the labeled cell complex X. If X is a
polytope or a simplicial complex, then FX is called polytopal, and simplicial, respectively.

The idea to describe a resolution of a monomial ideal by means of combinatorial chain
complexes was initiated by Bayer, Peeva and Sturmfels [1], and was extended by Bayer
and Sturmfels [2], and further extension was made by Jöllembeck and Welker [6]. Further
contributions were given by Sinefakoupols [8], Mermin [7], Dochtermann and Engström
[3],[4] and Goodarzi [5].

We consider monomial ideals that are facet ideals of a linear matroid of a set of vec-
tors on which the only linear dependence is proportionality, i.e., some vectors could be
scaler multiples of others. We prove that any such matroidal ideal has a linear resolution
supported on a polytopal cell complex.
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