The Problem of Principalization of Locally Monomial Ideal Sheaves

Razieh Ahmadian

IPM

This talk is based on my thesis under supervision of Prof. Cutkosky and Prof. Zaare, and a joint work in progress with Dr. Raheleh Jafari.

The 12th Seminar on Commutative Algebra and Related Topics

School of Mathematics, IPM, November 11-12, 2015

- The Principalization Problem
 - Statement of the Problem
 - Past Results and Recent Researches
- 2 The Geometry of Locally Monomial Ideal Sheaves
 - Locally Monomial Ideal Sheaves
 - SNCness
 - Nonprincipal Locus
- 3 Principalization
 - Construction of the Algorithm
 - Finiteness of the Principalization Sequences
- Our New Approach to Principalization
 - Some Techniques of Monomial Ideals
 - Example

- The Principalization Problem
 - Statement of the Problem
 - Past Results and Recent Researches
- The Geometry of Locally Monomial Ideal Sheaves
 - Locally Monomial Ideal Sheaves
 - SNCness
 - Nonprincipal Locus
- 3 Principalization
 - Construction of the Algorithm
 - Finiteness of the Principalization Sequences
- Our New Approach to Principalization
 - Some Techniques of Monomial Ideals
 - Example

- The Principalization Problem
 - Statement of the Problem
 - Past Results and Recent Researches
- The Geometry of Locally Monomial Ideal Sheaves
 - Locally Monomial Ideal Sheaves
 - SNCness
 - Nonprincipal Locus
- Principalization
 - Construction of the Algorithm
 - Finiteness of the Principalization Sequences
- Our New Approach to Principalization
 - Some Techniques of Monomial Ideals
 - Example

- The Principalization Problem
 - Statement of the Problem
 - Past Results and Recent Researches
- The Geometry of Locally Monomial Ideal Sheaves
 - Locally Monomial Ideal Sheaves
 - SNCness
 - Nonprincipal Locus
- Principalization
 - Construction of the Algorithm
 - Finiteness of the Principalization Sequences
- 4 Our New Approach to Principalization
 - Some Techniques of Monomial Ideals
 - Example

Suppose that X is a nonsingular variety over $\mathfrak{k} = \overline{\mathfrak{k}}$, and let \mathcal{I} be a nonzero ideal sheaf on X.

- X is nonsingular, and
- $IO_{\widetilde{v}}$ is locally principal.
- ► The existence of principalization of an ideal sheaf on a

Suppose that X is a nonsingular variety over $\mathfrak{k} = \overline{\mathfrak{k}}$, and let \mathcal{I} be a nonzero ideal sheaf on X.

Statement of the Problem

The problem of **principalization** of \mathcal{I} is to obtain a proper birational morphism $\lambda: X \to X$, by means of a finite sequence of blowups with nonsingular centers, such that

- X is nonsingular, and
- IO_v is locally principal.
- ► The existence of principalization of an ideal sheaf on a

Suppose that X is a nonsingular variety over $\mathfrak{k} = \mathfrak{k}$, and let \mathcal{I} be a nonzero ideal sheaf on X.

Statement of the Problem

The problem of **principalization** of \mathcal{I} is to obtain a proper birational morphism $\lambda: X \to X$, by means of a finite sequence of blowups with nonsingular centers, such that

- X is nonsingular, and
- IO_v is locally principal.
- ► The existence of principalization of an ideal sheaf on a nonsingular variety over an algebraically closed field of characteristic zero was first proven in
 - [H] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. Annals of Math 79 (1964), 109 - 326,
 - where it is called the trivialization of a coherent sheaf of ideals.

Past Results and Recent Researches

One of the most interesting cases of the problem is the case of locally monomial ideal sheaf, i.e., when \mathcal{I}_p is a monomial ideal for all $p \in X$. This case has many applications, in spite of its relative simplicity.

A simple algorithm for principalizing monomial ideals was provided by Goward in
 [G] Goward, R., A simple algorithm for principalization of monomial ideals, Transactions of the AMS 357 (2005), 4805–4812

This algorithm allows redundant blowups of subvarieties which are not in the locus where \mathcal{I} is not principal.

In this talk we discuss the problem when \mathcal{I} is a locally monomial ideal sheaf on X. And we provide a specific principalization algorithm for 3-folds which has an application to the problem of toroidalization of locally toroidal morphisms.

Past Results and Recent Researches

One of the most interesting cases of the problem is the case of locally monomial ideal sheaf, i.e., when \mathcal{I}_p is a monomial ideal for all $p \in X$. This case has many applications, in spite of its relative simplicity.

- ➤ A simple algorithm for principalizing monomial ideals was provided by Goward in
 - [**G**] Goward, R., A simple algorithm for principalization of monomial ideals, Transactions of the AMS 357 (2005), 4805–4812.

This algorithm allows redundant blowups of subvarieties which are not in the locus where \mathcal{I} is not principal.

▶ In this talk we discuss the problem when \mathcal{I} is a locally monomial ideal sheaf on X. And we provide a specific principalization algorithm for 3-folds which has an application to the problem of toroidalization of locally toroidal morphisms.

Past Results and Recent Researches

One of the most interesting cases of the problem is the case of locally monomial ideal sheaf, i.e., when \mathcal{I}_p is a monomial ideal for all $p \in X$. This case has many applications, in spite of its relative simplicity.

- ➤ A simple algorithm for principalizing monomial ideals was provided by Goward in
 - [**G**] Goward, R., A simple algorithm for principalization of monomial ideals, Transactions of the AMS 357 (2005), 4805–4812.

This algorithm allows redundant blowups of subvarieties which are not in the locus where $\mathcal I$ is not principal.

In this talk we discuss the problem when \mathcal{I} is a locally monomial ideal sheaf on X. And we provide a specific principalization algorithm for 3-folds which has an application to the problem of toroidalization of locally toroidal morphisms.

Locally Monomial Ideal Sheaves

Definition

An ideal sheaf \mathcal{I} on a nonsingular 3-fold X is **locally monomial** if for all $p \in X$ there exist regular parameters $x, y, z \in \mathcal{O}_{X,p}$ such that \mathcal{I}_p is a monomial ideal in x, y, z.

Example

Suppose that there exist regular parameters $x, y, z \in \mathcal{O}_{X,p}$ such that the stalk of \mathcal{I} at $p \in X$ is

$$\mathcal{I}_p = (xy^2, x^3y, z^2)$$

= $(x^3, y^2, z^2) \cap (x, z^2) \cap (y, z^2).$

We observe that $V(\mathcal{I}_p) = V(\sqrt{\mathcal{I}_p})$ is the union of two coordinate curves (with local equations x = z = 0 and y = z = 0 at p).

Locally Monomial Ideal Sheaves

Definition

An ideal sheaf \mathcal{I} on a nonsingular 3-fold X is **locally monomial** if for all $p \in X$ there exist regular parameters $x, y, z \in \mathcal{O}_{X,p}$ such that \mathcal{I}_p is a monomial ideal in x, y, z.

Example

Suppose that there exist regular parameters $x, y, z \in \mathcal{O}_{X,p}$ such that the stalk of \mathcal{I} at $p \in X$ is

$$\mathcal{I}_{p} = (xy^{2}, x^{3}y, z^{2})$$

$$= (x^{3}, y^{2}, z^{2}) \cap (x, z^{2}) \cap (y, z^{2}).$$

We observe that $V(\mathcal{I}_p) = V(\sqrt{\mathcal{I}_p})$ is the union of two coordinate curves (with local equations x = z = 0 and y = z = 0 at p).

Locally Monomial Ideal Sheaves

Definition

An ideal sheaf \mathcal{I} on a nonsingular 3-fold X is **locally monomial** if for all $p \in X$ there exist regular parameters $x, y, z \in \mathcal{O}_{X,p}$ such that \mathcal{I}_p is a monomial ideal in x, y, z.

Example

Suppose that there exist regular parameters $x,y,z\in\mathcal{O}_{X,p}$ such that the stalk of \mathcal{I} at $p\in X$ is

$$\mathcal{I}_{p} = (xy^{2}, x^{3}y, z^{2})$$

$$= (x^{3}, y^{2}, z^{2}) \cap (x, z^{2}) \cap (y, z^{2}).$$

We observe that $V(\mathcal{I}_p) = V(\sqrt{\mathcal{I}_p})$ is the union of two coordinate curves (with local equations x = z = 0 and y = z = 0 at p).

The Geometry of Locally Monomial Ideal Sheaves

Definition

- **1** Suppose that *X* is a nonsingular 3-fold. Let $p \in X$ and let x, y, z be regular parameters in $\mathcal{O}_{X,p}$. A coordinate **subvariety** is a subvariety of $Spec \mathcal{O}_{X,p}$ defined by setting some subset of the parameters x, y, z equal to zero.

The Geometry of Locally Monomial Ideal Sheaves

Definition

- Suppose that X is a nonsingular 3-fold. Let $p \in X$ and let x, y, z be regular parameters in $\mathcal{O}_{X,p}$. A **coordinate** subvariety is a subvariety of $\operatorname{Spec}\mathcal{O}_{X,p}$ defined by setting some subset of the parameters x, y, z equal to zero.
- ② A reduced subscheme $T \subset X$ is called **simple normal crossing (SNC)** if for every closed point $p \in T$, there are regular parameters x, y, z in $\mathcal{O}_{X,p}$ such that $T \cap \operatorname{Spec}\mathcal{O}_{X,p}$ is a finite union of coordinate subvarieties of $\operatorname{Spec}\mathcal{O}_{X,p}$.

A Basic Fact

Let \mathcal{I} be a locally monomial ideal sheaf on a nonsingular 3-fold X. Then $\operatorname{Supp}(\mathcal{O}_X/\mathcal{I})$ is SNC.

The Geometry of Locally Monomial Ideal Sheaves

Definition

- Suppose that X is a nonsingular 3-fold. Let $p \in X$ and let x, y, z be regular parameters in $\mathcal{O}_{X,p}$. A **coordinate** subvariety is a subvariety of $\operatorname{Spec}\mathcal{O}_{X,p}$ defined by setting some subset of the parameters x, y, z equal to zero.
- ② A reduced subscheme $T \subset X$ is called **simple normal crossing (SNC)** if for every closed point $p \in T$, there are regular parameters x, y, z in $\mathcal{O}_{X,p}$ such that $T \cap \operatorname{Spec}\mathcal{O}_{X,p}$ is a finite union of coordinate subvarieties of $\operatorname{Spec}\mathcal{O}_{X,p}$.

A Basic Fact

Let \mathcal{I} be a locally monomial ideal sheaf on a nonsingular 3-fold X. Then $\operatorname{Supp}(\mathcal{O}_X/\mathcal{I})$ is SNC.

Suppose that X is a nonsingular variety, and \mathcal{I} is an ideal sheaf on X. We define the **nonprincipal locus** of \mathcal{I} to be

$$W_{\mathcal{I}}(X) = \{ p \in X \mid \mathcal{I}_p \text{ is not principal} \}.$$

Proposition

Suppose that X is a nonsingular 3-fold, and $\mathcal I$ is a locally monomial ideal sheaf on X. Then $W_{\mathcal I}(X)$ is SNC.

- Since X is nonsingular there exists a factorization $\mathcal{I}=\mathcal{J}\mathcal{N}$ where \mathcal{J} is an invertible ideal sheaf on X, and \mathcal{N} is the defining ideal sheaf of $W_{\mathcal{I}}(X)$.
- As \mathcal{I} is a locally monomial ideal sheaf, so are \mathcal{J} and \mathcal{N} .

Suppose that X is a nonsingular variety, and \mathcal{I} is an ideal sheaf on X. We define the **nonprincipal locus** of \mathcal{I} to be

$$W_{\mathcal{I}}(X) = \{ p \in X \mid \mathcal{I}_p \text{ is not principal} \}.$$

Proposition

Suppose that X is a nonsingular 3-fold, and \mathcal{I} is a locally monomial ideal sheaf on X. Then $W_{\mathcal{I}}(X)$ is SNC.

- Since X is nonsingular there exists a factorization $\mathcal{I}=\mathcal{J}\mathcal{N}$ where \mathcal{J} is an invertible ideal sheaf on X, and \mathcal{N} is the defining ideal sheaf of $W_{\mathcal{I}}(X)$.
- As \mathcal{I} is a locally monomial ideal sheaf, so are \mathcal{J} and \mathcal{N} .

Suppose that X is a nonsingular variety, and \mathcal{I} is an ideal sheaf on X. We define the **nonprincipal locus** of \mathcal{I} to be

$$W_{\mathcal{I}}(X) = \{ p \in X \mid \mathcal{I}_p \text{ is not principal} \}.$$

Proposition

Suppose that X is a nonsingular 3-fold, and \mathcal{I} is a locally monomial ideal sheaf on X. Then $W_{\mathcal{I}}(X)$ is SNC.

- Since X is nonsingular there exists a factorization $\mathcal{I} = \mathcal{J}\mathcal{N}$ where \mathcal{J} is an invertible ideal sheaf on X, and \mathcal{N} is the defining ideal sheaf of $W_{\mathcal{I}}(X)$.
- As \mathcal{I} is a locally monomial ideal sheaf, so are \mathcal{J} and \mathcal{N} .

Suppose that X is a nonsingular variety, and \mathcal{I} is an ideal sheaf on X. We define the **nonprincipal locus** of \mathcal{I} to be

$$W_{\mathcal{I}}(X) = \{ p \in X \mid \mathcal{I}_p \text{ is not principal} \}.$$

Proposition

Suppose that X is a nonsingular 3-fold, and \mathcal{I} is a locally monomial ideal sheaf on X. Then $W_{\mathcal{I}}(X)$ is SNC.

- Since X is nonsingular there exists a factorization $\mathcal{I}=\mathcal{J}\mathcal{N}$ where \mathcal{J} is an invertible ideal sheaf on X, and \mathcal{N} is the defining ideal sheaf of $W_{\mathcal{I}}(X)$.
- As \mathcal{I} is a locally monomial ideal sheaf, so are \mathcal{J} and \mathcal{N} .

Suppose that X is a nonsingular variety, and \mathcal{I} is an ideal sheaf on X. We define the **nonprincipal locus** of \mathcal{I} to be

$$W_{\mathcal{I}}(X) = \{ p \in X \mid \mathcal{I}_p \text{ is not principal} \}.$$

Proposition

Suppose that X is a nonsingular 3-fold, and \mathcal{I} is a locally monomial ideal sheaf on X. Then $W_T(X)$ is SNC.

- Since X is nonsingular there exists a factorization $\mathcal{I} = \mathcal{J}\mathcal{N}$ where \mathcal{J} is an invertible ideal sheaf on X, and \mathcal{N} is the defining ideal sheaf of $W_{\mathcal{I}}(X)$.
- As \mathcal{I} is a locally monomial ideal sheaf, so are \mathcal{I} and \mathcal{N} .

The Invariant Order

Definition

• Let (R, \mathfrak{m}) be a regular local ring. Suppose that $J \subset R$ is an ideal. The **order** of J in R is

$$\nu_R(J)=\max\{k\mid J\subset\mathfrak{m}^k\}.$$

• Suppose that p is a point on a nonsingular variety X and $\mathcal{J} \subset \mathcal{O}_X$ is an ideal sheaf. We denote

$$u_{p}(\mathcal{J}) = \nu_{\mathcal{O}_{X,p}}(\mathcal{J}\mathcal{O}_{X,p}) = \nu_{\mathcal{O}_{X,p}}(\mathcal{J}_{p}).$$

If $V \subset X$ is a subvariety, we denote

$$\nu_{\mathcal{D}}(V) = \nu_{\mathcal{D}}(\mathcal{I}_V).$$

The Invariant Order

Definition

• Let (R, \mathfrak{m}) be a regular local ring. Suppose that $J \subset R$ is an ideal. The **order** of J in R is

$$\nu_R(J)=\max\{k\mid J\subset\mathfrak{m}^k\}.$$

• Suppose that p is a point on a nonsingular variety X and $\mathcal{J} \subset \mathcal{O}_X$ is an ideal sheaf. We denote

$$u_{\mathcal{P}}(\mathcal{J}) = \nu_{\mathcal{O}_{X,\mathcal{P}}}(\mathcal{J}\mathcal{O}_{X,\mathcal{P}}) = \nu_{\mathcal{O}_{X,\mathcal{P}}}(\mathcal{J}_{\mathcal{P}}).$$

If $V \subset X$ is a subvariety, we denote

$$\nu_{\mathcal{D}}(V) = \nu_{\mathcal{D}}(\mathcal{I}_V).$$

The Invariant Order

Definition

• Let (R, \mathfrak{m}) be a regular local ring. Suppose that $J \subset R$ is an ideal. The **order** of J in R is

$$\nu_R(J)=\max\{k\mid J\subset\mathfrak{m}^k\}.$$

• Suppose that p is a point on a nonsingular variety X and $\mathcal{J} \subset \mathcal{O}_X$ is an ideal sheaf. We denote

$$\nu_{\mathcal{P}}(\mathcal{J}) = \nu_{\mathcal{O}_{X,\mathcal{P}}}(\mathcal{J}\mathcal{O}_{X,\mathcal{P}}) = \nu_{\mathcal{O}_{X,\mathcal{P}}}(\mathcal{J}_{\mathcal{P}}).$$

If $V \subset X$ is a subvariety, we denote

$$\nu_{\mathcal{D}}(V) = \nu_{\mathcal{D}}(\mathcal{I}_{V}).$$

Definition (Principalization Sequence)

Let \mathcal{I} be a locally monomial ideal sheaf on a nonsingular 3-fold X. Then we have $\mathcal{I} = \mathcal{J}\mathcal{N}$ where \mathcal{J} is an invertible ideal sheaf, and $W_{\mathcal{I}}(X) = \operatorname{Supp}(\mathcal{O}_X/\mathcal{N})$. A principalization sequence of \mathcal{I} is a sequence of blowups

$$\cdots \to X_n \xrightarrow{\lambda_n} X_{n-1} \cdots \to X_i \xrightarrow{\lambda_i} X_{i-1} \to \cdots X_1 \xrightarrow{\lambda_1} X$$

such that each $\lambda_i: X_i \to X_{i-1}$ has a nonsingular center T_{i-1} satisfying the following conditions:

Definition (Principalization Sequence)

Let \mathcal{I} be a locally monomial ideal sheaf on a nonsingular 3-fold X. Then we have $\mathcal{I} = \mathcal{J}\mathcal{N}$ where \mathcal{J} is an invertible ideal sheaf, and $W_{\mathcal{I}}(X) = \operatorname{Supp}(\mathcal{O}_X/\mathcal{N})$. A principalization sequence of \mathcal{I} is a sequence of blowups

$$\cdots \to X_n \xrightarrow{\lambda_n} X_{n-1} \cdots \to X_i \xrightarrow{\lambda_i} X_{i-1} \to \cdots X_1 \xrightarrow{\lambda_1} X$$

such that each $\lambda_i: X_i \to X_{i-1}$ has a nonsingular center T_{i-1} satisfying the following conditions:

- For all $i \ge 0$, \mathcal{I}_i is locally monomial, $W_{\mathcal{I}_i}(X_i)$ is SNC and $T_i \subseteq W_{T_i}(X_i)$ where $\mathcal{I}_i = \mathcal{I}\mathcal{O}_{X_i}$.

Definition (Principalization Sequence)

Let \mathcal{I} be a locally monomial ideal sheaf on a nonsingular 3-fold X. Then we have $\mathcal{I} = \mathcal{J}\mathcal{N}$ where \mathcal{J} is an invertible ideal sheaf, and $W_{\mathcal{I}}(X) = \operatorname{Supp}(\mathcal{O}_X/\mathcal{N})$. A principalization sequence of \mathcal{I} is a sequence of blowups

$$\cdots \to X_n \xrightarrow{\lambda_n} X_{n-1} \cdots \to X_i \xrightarrow{\lambda_i} X_{i-1} \to \cdots X_1 \xrightarrow{\lambda_1} X$$

such that each $\lambda_i: X_i \to X_{i-1}$ has a nonsingular center T_{i-1} satisfying the following conditions:

- For all $i \ge 0$, \mathcal{I}_i is locally monomial, $W_{\mathcal{I}_i}(X_i)$ is SNC and $T_i \subseteq W_{T_i}(X_i)$ where $\mathcal{I}_i = \mathcal{I}\mathcal{O}_{X_i}$.
- 2 Let $\mathcal{N}_i = \mathcal{N}\mathcal{O}_{X_i}$ be the transform of $\mathcal{N} = \mathcal{N}_0$ on X_i , so that $\operatorname{Supp}(\mathcal{O}_{X_i}/\mathcal{N}_i) = W_{\mathcal{T}_i}(X_i)$. Let

Definition (Permissible Center)

$$r_i = \max\{\nu_p(\mathcal{N}_i) \mid p \in X_i\}$$

where $\nu_p(\mathcal{N}_i)$ is the order of $(\mathcal{N}_i)_p$ in $\mathcal{O}_{X_i,p}$.

We require that for all i, the center T_i is an irreducible component of maximal dimension of

$$\operatorname{Max} W_{\mathcal{I}_i}(X_i) = \{ p \in X_i \mid \nu_p(\mathcal{N}_i) = r_i \}.$$

Theorem (Finiteness of the Principalization Sequences)

Suppose that X is a nonsingular 3-fold and \mathcal{I} is a locally monomial ideal sheaf on X. Then any principalization sequence of \mathcal{I} terminates after a finite number $n \geq 0$ of blow ups with $W_{\mathcal{I}_n}(X_n) = \emptyset$. Furthermore, \mathcal{IO}_{X_n} is a locally principal and locally monomial ideal sheaf on X_n .

Definition (Permissible Center)

$$r_i = \max\{\nu_p(\mathcal{N}_i) \mid p \in X_i\}$$

where $\nu_p(\mathcal{N}_i)$ is the order of $(\mathcal{N}_i)_p$ in $\mathcal{O}_{X_i,p}$. We require that for all i, the center T_i is an irreducible component of maximal dimension of

$$\operatorname{Max} W_{\mathcal{I}_i}(X_i) = \{ p \in X_i \mid \nu_p(\mathcal{N}_i) = r_i \}.$$

Theorem (Finiteness of the Principalization Sequences) Suppose that X is a nonsingular 3-fold and \mathcal{I} is a locally monomial ideal sheaf on X. Then any principalization sequence of \mathcal{I} terminates after a finite number $n \geq 0$ of blow ups with $W_{\mathcal{I}_n}(X_n) = \emptyset$. Furthermore, $\mathcal{I}\mathcal{O}_{X_n}$ is a locally principal and locally monomial ideal sheaf on X_n .

Definition (Permissible Center)

$$r_i = \max\{\nu_p(\mathcal{N}_i) \mid p \in X_i\}$$

where $\nu_p(\mathcal{N}_i)$ is the order of $(\mathcal{N}_i)_p$ in $\mathcal{O}_{X_i,p}$. We require that for all i, the center T_i is an irreducible component of maximal dimension of

$$\operatorname{Max} W_{\mathcal{I}_i}(X_i) = \{ p \in X_i \mid \nu_p(\mathcal{N}_i) = r_i \}.$$

Theorem (Finiteness of the Principalization Sequences)

Suppose that X is a nonsingular 3-fold and \mathcal{I} is a locally monomial ideal sheaf on X. Then any principalization sequence of \mathcal{I} terminates after a finite number $n \geqslant 0$ of blow ups with $W_{\mathcal{I}_n}(X_n) = \emptyset$. Furthermore, $\mathcal{I}\mathcal{O}_{X_n}$ is a locally principal and locally monomial ideal sheaf on X_n .

- The main part of the theorem is the finiteness of a principalization sequence, and to prove this, we have used proof by contradiction.
- We take a hypersurface of maximal contact? reducing to dimension 2, and then we use the Abhyankar's proof of principalization of ideal sheaves in nonsingular varieties of dimension 2 to derive a contradiction.

Example

$$\mathcal{I}_p = (xy^2, x^3y, z^2)$$

= $(x^3, y^2, z^2) \cap (x, z^2) \cap (y, z^2)$

- The main part of the theorem is the finiteness of a principalization sequence, and to prove this, we have used proof by contradiction.
- We take a hypersurface of maximal contact? reducing to dimension 2, and then we use the Abhyankar's proof of principalization of ideal sheaves in nonsingular varieties of dimension 2 to derive a contradiction.

Example

$$\mathcal{I}_p = (xy^2, x^3y, z^2)$$

= $(x^3, y^2, z^2) \cap (x, z^2) \cap (y, z^2).$

- The main part of the theorem is the finiteness of a principalization sequence, and to prove this, we have used proof by contradiction.
- We take a hypersurface of maximal contact? reducing to dimension 2, and then we use the Abhyankar's proof of principalization of ideal sheaves in nonsingular varieties of dimension 2 to derive a contradiction.

Example

$$\mathcal{I}_{p} = (xy^{2}, x^{3}y, z^{2})$$

= $(x^{3}, y^{2}, z^{2}) \cap (x, z^{2}) \cap (y, z^{2}).$

- The main part of the theorem is the finiteness of a principalization sequence, and to prove this, we have used proof by contradiction.
- We take a hypersurface of maximal contact? reducing to dimension 2, and then we use the Abhyankar's proof of principalization of ideal sheaves in nonsingular varieties of dimension 2 to derive a contradiction.

Example

$$\mathcal{I}_{p} = (xy^{2}, x^{3}y, z^{2})$$

= $(x^{3}, y^{2}, z^{2}) \cap (x, z^{2}) \cap (y, z^{2}).$

Some Techniques of Monomial Ideals

We have some ideas of defining new invariants using the primary decomposition of the monomial stalk \mathcal{I}_{ρ} of the locally monomial ideal sheaf \mathcal{I} at $\rho \in X$.

Definition

 Let (R, m) be a regular local ring and J ⊂ R be a monomial ideal in R. Suppose that

 $J = \bigcap_{j=1}^{\kappa} Q_j$ is the unique presentation of J as an irredundant intersection of irreducible monomial ideals, where each Q_j is generated by pure powers of the variables. Let

Ass(J) = { $P_j := \sqrt{Q_j} \mid Q_j$ appears in the presentation $\bigcap_{j=1}^k Q_j$ }. We define

$$hbar{h}_{R}(J) := \max\{height(P_i) \mid P_i \in \mathbf{Ass}(J)\}.$$

Some Techniques of Monomial Ideals

We have some ideas of defining new invariants using the primary decomposition of the monomial stalk \mathcal{I}_{ρ} of the locally monomial ideal sheaf \mathcal{I} at $\rho \in X$.

Definition

 Let (R, m) be a regular local ring and J ⊂ R be a monomial ideal in R. Suppose that

 $J = \bigcap_{j=1}^{k} Q_j$ is the unique presentation of J as an irredundant intersection of irreducible monomial ideals, where each Q_j is generated by pure powers of the variables. Let

Ass(J) = { $P_j := \sqrt{Q_j} \mid Q_j$ appears in the presentation $\bigcap_{j=1}^k Q_j$ }. We define

 $hbar{h}_{R}(J) := \max\{height(P_{j}) \mid P_{j} \in \mathbf{Ass}(J)\}.$

Some Techniques of Monomial Ideals

We have some ideas of defining new invariants using the primary decomposition of the monomial stalk \mathcal{I}_p of the locally monomial ideal sheaf \mathcal{I} at $p \in X$.

Definition

 Let (R, m) be a regular local ring and J ⊂ R be a monomial ideal in R. Suppose that

 $J = \bigcap_{j=1}^{k} Q_j$ is the unique presentation of J as an irredundant intersection of irreducible monomial ideals, where each Q_j is generated by pure powers of the variables. Let

Ass(J) = { $P_j := \sqrt{Q_j} \mid Q_j$ appears in the presentation $\bigcap_{j=1}^k Q_j$ }. We define

$$hbar{h}_{R}(J) := \max\{height(P_i) \mid P_i \in \mathbf{Ass}(J)\}.$$

• Suppose that p is a point on a nonsingular variety X and $\mathcal{I} \subset \mathcal{O}_X$ is a locally monomial ideal sheaf. We denote

$$hbar{h}_{p}(\mathcal{I}) := h_{\mathcal{O}_{X,p}}(\mathcal{I}\mathcal{O}_{X,p}) = h_{\mathcal{O}_{X,p}}(\mathcal{I}_{p}).$$

A Basic Fact

Suppose that ${\mathcal I}$ is a locally monomial ideal sheaf on a nonsingular variety X. We note that

 \mathcal{I} is locally principal $\Leftrightarrow \hbar_p(\mathcal{I}) = 1$ for all $p \in X$.

▶ This motivates us to consider this invariant for constructing a principalization algorithm. We have some proved evidence that \hbar is a good choice, although it needs a complement.

• Suppose that p is a point on a nonsingular variety X and $\mathcal{I} \subset \mathcal{O}_X$ is a locally monomial ideal sheaf. We denote

$$hbar{h}_{p}(\mathcal{I}) := h_{\mathcal{O}_{X,p}}(\mathcal{I}\mathcal{O}_{X,p}) = h_{\mathcal{O}_{X,p}}(\mathcal{I}_{p}).$$

A Basic Fact

Suppose that \mathcal{I} is a locally monomial ideal sheaf on a nonsingular variety X. We note that

$$\mathcal{I}$$
 is locally principal $\Leftrightarrow h_p(\mathcal{I}) = 1$ for all $p \in X$.

▶ This motivates us to consider this invariant for constructing a principalization algorithm. We have some proved evidence that \hbar is a good choice, although it needs a complement.

• Suppose that p is a point on a nonsingular variety X and $\mathcal{I} \subset \mathcal{O}_X$ is a locally monomial ideal sheaf. We denote

$$hbar{h}_{p}(\mathcal{I}) := h_{\mathcal{O}_{X,p}}(\mathcal{I}\mathcal{O}_{X,p}) = h_{\mathcal{O}_{X,p}}(\mathcal{I}_{p}).$$

A Basic Fact

Suppose that \mathcal{I} is a locally monomial ideal sheaf on a nonsingular variety X. We note that

$$\mathcal{I}$$
 is locally principal $\Leftrightarrow h_p(\mathcal{I}) = 1$ for all $p \in X$.

This motivates us to consider this invariant for constructing a principalization algorithm. We have some proved evidence that ħ is a good choice, although it needs a complement.

Let's consider the following stalk of a locally monomial ideal sheaf \mathcal{I} at a point p in a nonsingular 3-fold X. Suppose that there exist regular parameters $x, y, z \in \mathcal{O}_{X,p}$ such that

$$\begin{split} \mathcal{I}_p &= (x^2 y^4, x^2 y^3 z, x^2 z^2, y^4 z) \\ &= (x^2, y^4) \cap (x^2, z) \cap (y^3, z^2) \cap (y^4, z). \end{split}$$

Clearly, $\hbar_p(\mathcal{I})=2$. Suppose that $\pi_1:X_1\to X$ is the blow up of X at the nonsingular curve C with local equations x=y=0 at p. Then at each point $\tilde{p}\in\pi_1^{-1}(p)$, we have regular parameters $\tilde{x},\tilde{y},\tilde{z}$ such that \tilde{p} can be expressed (uniquely) in one of the forms:

Let's consider the following stalk of a locally monomial ideal sheaf \mathcal{I} at a point p in a nonsingular 3-fold X. Suppose that there exist regular parameters $x, y, z \in \mathcal{O}_{X,p}$ such that

$$\mathcal{I}_{p} = (x^{2}y^{4}, x^{2}y^{3}z, x^{2}z^{2}, y^{4}z)$$
$$= (x^{2}, y^{4}) \cap (x^{2}, z) \cap (y^{3}, z^{2}) \cap (y^{4}, z).$$

Clearly, $\hbar_p(\mathcal{I}) = 2$. Suppose that $\pi_1 : X_1 \to X$ is the blow up of X at the nonsingular curve C with local equations x = y = 0 at p. Then at each point $\tilde{p} \in \pi_1^{-1}(p)$, we have regular parameters $\tilde{x}, \tilde{y}, \tilde{z}$ such that \tilde{p} can be expressed (uniquely) in one of the forms:

Let's consider the following stalk of a locally monomial ideal sheaf \mathcal{I} at a point p in a nonsingular 3-fold X. Suppose that there exist regular parameters $x, y, z \in \mathcal{O}_{X,p}$ such that

$$\mathcal{I}_{p} = (x^{2}y^{4}, x^{2}y^{3}z, x^{2}z^{2}, y^{4}z)$$
$$= (x^{2}, y^{4}) \cap (x^{2}, z) \cap (y^{3}, z^{2}) \cap (y^{4}, z).$$

Clearly, $h_p(\mathcal{I}) = 2$. Suppose that $\pi_1 : X_1 \to X$ is the blow up of X at the nonsingular curve C with local equations x = y = 0 at p. Then at each point $\tilde{p} \in \pi_1^{-1}(p)$, we have regular parameters $\tilde{x}, \tilde{y}, \tilde{z}$ such that \tilde{p} can be expressed (uniquely) in one of the forms:

cb1.
$$x = \tilde{x}, y = \tilde{x}(\tilde{y} + \alpha), z = \tilde{z}$$
, with $\alpha \in \mathfrak{k}$, or cb2. $x = \tilde{x}\tilde{y}, y = \tilde{y}, z = \tilde{z}$.

$$\mathcal{I}_{1,\tilde{p}} = (x^6y^4, x^5y^3z, x^2z^2, x^4y^4z)$$

= $(x^2)(x^4y^4, x^3y^3z, x^2y^4z, z^2),$

$$(x^3, y^4, z^2) \cap (x^4, y^3, z^2) \cap (x^4, z) \cap (x^2, z^2) \cap (y^3, z^2) \cap (y^4, z).$$

cb1.
$$X = \tilde{X}, y = \tilde{X}(\tilde{y} + \alpha), z = \tilde{z}$$
, with $\alpha \in \mathfrak{k}$, or cb2. $X = \tilde{X}\tilde{y}, y = \tilde{y}, z = \tilde{z}$.

If ($\mathfrak{cb1}$) holds at p with $\alpha = 0$ (for simplicity), then

$$\mathcal{I}_{1,\tilde{p}} = (x^6y^4, x^5y^3z, x^2z^2, x^4y^4z)$$

= $(x^2)(x^4y^4, x^3y^3z, x^2y^4z, z^2),$

and $N_1 = (x^4 y^4, x^3 y^3 z, x^2 y^4 z, z^2)$ has the primary decomposition

$$(x^3, y^4, z^2) \cap (x^4, y^3, z^2) \cap (x^4, z) \cap (x^2, z^2) \cap (y^3, z^2) \cap (y^4, z).$$

- Ahmadian, R., *Toroidalization of locally toroidal morphism of 3-folds*, to be appeared in BIMS.
- Ahmadian, R., A principalization algorithm for locally monomial ideal sheaves on 3-folds with an application to toroidalization, preprint.
- Cutkosky, S.D., Resolution of Singularities, AMS (2004).
- Cutkosky, S.D., *Introduction to Algebraic Geometry*, Preprint.
- Goward, R., A simple algorithm for principaization of monomial ideals, Transactions of the AMS 357 (2005), 4805–4812.
- Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math **79** (1964), 109 326.