Ensiyeh Amanzadeh

With Mohammad T. Dibaei

IPM

12th seminar on commutative algebra and related topics School of Mathemaics, IPM, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Semidualizing modules

Throughout R is a commutative Noetherian local ring.

Definition

An R-module C is called semidualizing, if

- C is finite (i.e. finitely generated)
- The natural homothety map $\chi^R_{\mathcal{C}}: R \longrightarrow \operatorname{Hom}_{\mathcal{R}}(\mathcal{C}, \mathcal{C})$ is an isomorphism
- For all i > 0, $\operatorname{Ext}^{i}_{R}(C, C) = 0$

Example

Examples of semidualizing modules include

• *R*

• The dualizing module of R if it exists (dualizing module is a semidualizing module with finite injective dimension).

Semidualizing modules

Throughout C assumed to be a semidualizing R-module.

Basic properties

- $\operatorname{Ann}_R(C) = 0$ and $\operatorname{Supp}_R(C) = \operatorname{Spec}(R)$.
- $\dim_R(C) = \dim(R)$ and $\operatorname{Ass}_R(C) = \operatorname{Ass}_R(R)$.
- If R is local, then $\operatorname{depth}_R(C) = \operatorname{depth}(R)$.

If R is Gorenstein and local, then R is the only semidualizing R-module. Conversely, if the dualizing R-module is just the only semidualizing R-module, then R is Gorenstein.

Totally C-reflexive modules

Definition

A finite R-module M is totally C-reflexive when it satisfies the following conditions.

- The natural homomorphism $\delta_M^C : M \longrightarrow \operatorname{Hom}_R(\operatorname{Hom}_R(M, C), C)$ is an isomorphism.
- For all i > 0, $\operatorname{Ext}^{i}_{R}(M, C) = 0 = \operatorname{Ext}^{i}_{R}(\operatorname{Hom}_{R}(M, C), C)$.
- Every finite projective *R*-module is totally *C*-reflexive.
- The G_C-dimension of a finite *R*-module *M*, denoted G_C-dim_R(*M*), is defined as

$$\mathsf{G}_{C} - \dim_{R}(M) = \inf \left\{ n \ge 0 \left| \begin{array}{c} \text{there is an exact sequence of } R - \text{modules} \\ 0 \to G_{n} \to \cdots \to G_{1} \to G_{0} \to M \to 0 \\ \text{such that each } G_{i} \text{ is totally } C - \text{reflexive} \end{array} \right\}$$

The set $\mathfrak{G}_0(R)$

The set of all isomorphism classes of semidualizing R-modules is denoted by $\mathfrak{G}_0(R)$, and the isomorphism class of a semidualizing R-module C is denoted [C].

- Write $[C] \trianglelefteq [B]$ when B is totally C-reflexive.
- Write $[C] \lhd [B]$ when $[C] \trianglelefteq [B]$ and $[C] \neq [B]$.
- For each $[C] \in \mathfrak{G}_0(R)$ set $\mathfrak{G}_C(R) = \{[B] \in \mathfrak{G}_0(R) \mid [C] \trianglelefteq [B]\}.$
- If $[C] \trianglelefteq [B]$, then
 - (1) $\operatorname{Hom}_{R}(B, C)$ is a semidualizing, and
 - (2) $[C] \trianglelefteq [\operatorname{Hom}_{R}(B, C)].$

A chain in $\mathfrak{G}_0(R)$ is a sequence $[C_n] \trianglelefteq \cdots \trianglelefteq [C_1] \trianglelefteq [C_0]$, and such a chain has length *n* if $[C_i] \neq [C_j]$ whenever $i \neq j$.

Theorem (Gerko)

If $[C_n] \trianglelefteq \cdots \trianglelefteq [C_1] \trianglelefteq [C_0]$ is a chain in $\mathfrak{G}_0(R)$, then one gets

 $C_n \cong C_0 \otimes_R \operatorname{Hom}_R(C_0, C_1) \otimes_R \cdots \otimes_R \operatorname{Hom}_R(C_{n-1}, C_n).$

Assume that $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a chain in $\mathfrak{G}_0(R)$.

- For each $i \in [n]$ set $B_i = \operatorname{Hom}_R(C_{i-1}, C_i)$.
- For each sequence of integers $\mathbf{i} = \{i_1, \cdots, i_j\}$ with $j \ge 1$ and $1 \le i_1 < \cdots < i_j \le n$, set $B_{\mathbf{i}} = B_{i_1} \otimes_R \cdots \otimes_R B_{i_j}$. ($B_{\{i_1\}} = B_{i_1}$ and set $B_{\emptyset} = C_0$.)

Proposition (Sather-Wagstaff)

Assume that $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a chain in $\mathfrak{G}_0(R)$ such that $\mathfrak{G}_{C_1}(R) \subseteq \mathfrak{G}_{C_2}(R) \subseteq \cdots \subseteq \mathfrak{G}_{C_n}(R)$.

(1) For each sequence $\mathbf{i} = \{i_1, \cdots, i_j\} \subseteq [n]$, the *R*-module $B_{\mathbf{i}}$ is a semidualizing.

(2) If
$$\mathbf{i} = \{i_1, \dots, i_j\} \subseteq [n]$$
 and $\mathbf{s} = \{s_1, \dots, s_t\} \subseteq [n]$ are two sequences with $\mathbf{s} \subseteq \mathbf{i}$, then $[B_{\mathbf{i}}] \trianglelefteq [B_{\mathbf{s}}]$ and $\operatorname{Hom}_{\mathcal{R}}(B_{\mathbf{s}}, B_{\mathbf{i}}) \cong B_{\mathbf{i} \setminus \mathbf{s}}$.

(3) If $\mathbf{i} = \{i_1, \dots, i_j\} \subseteq [n]$ and $\mathbf{s} = \{s_1, \dots, s_t\} \subseteq [n]$ are two sequences, then the following conditions are equivalent.

(i) The *R*-module
$$B_i \otimes_R B_s$$
 is semidualizing.

(*ii*)
$$\mathbf{i} \cap \mathbf{s} = \emptyset$$
.

For a semidualizing *R*-module *C*, set $(-)^{\dagger_C} = \operatorname{Hom}_R(-, C)$.

Definition

Let $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ be a chain in $\mathfrak{G}_0(R)$ of length n. For each sequence of integers $\mathbf{i} = \{i_1, \cdots, i_j\}$ such that $j \ge 0$ and $1 \le i_1 < \cdots < i_j \le n$, set $C_{\mathbf{i}} = C_0^{\dagger c_{i_1} \dagger c_{i_2} \cdots \dagger c_{i_j}}$. (When j = 0, set $C_{\mathbf{i}} = C_{\emptyset} = C_0$). We say that the above chain is *suitable* if $C_0 = R$ and $C_{\mathbf{i}}$ is totally C_t -reflexive, for all \mathbf{i} and t with $i_j \le t \le n$.

- If [C_n] ⊲ · · · ⊲ [C₁] ⊲ [R] is a suitable chain, then C_i is a semidualizing R-module for each i ⊆ [n].
- For each sequence of integers $\{x_1, \dots, x_m\}$ with $1 \leq x_1 < \dots < x_m \leq n$, the sequence $[C_{x_m}] \lhd \dots \lhd [C_{x_1}] \lhd [R]$ is a suitable chain in $\mathfrak{G}_0(R)$.

Chain in $\mathfrak{G}_0(R)$

Theorem (Sather-Wagstaff)

Let $\mathfrak{G}_0(R)$ admit a chain $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ such that $\mathfrak{G}_{C_1}(R) \subseteq \mathfrak{G}_{C_2}(R) \subseteq \cdots \subseteq \mathfrak{G}_{C_n}(R)$.

- $|\mathfrak{G}_0(R)| \ge |\{[C_i] \mid i \subseteq [n]\}| = 2^n$.
- If $C_0 = R$, then $\{[B_u] \mid u \subseteq [n]\} = \{[C_i] \mid i \subseteq [n]\}.$

Suitable chains

Lemma (Dibaei and me)

Assume that R admits a suitable chain $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0] = [R]$ in $\mathfrak{G}_0(R)$. Then for any $k \in [n]$, there exists a suitable chain

$$[C_n] \lhd \cdots \lhd [C_{k+1}] \lhd [C_k] \lhd [C_1^{\dagger_{C_k}}] \lhd \cdots \lhd [C_{k-2}^{\dagger_{C_k}}] \lhd [C_{k-1}^{\dagger_{C_k}}] \lhd [R]$$

in $\mathfrak{G}_0(R)$ of length *n*.

Proposition (Suitable chains in $\mathfrak{G}_0(\mathbf{R}_k)$)(Dibaei and me)

Let *R* be Cohen-Macaulay and $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ be a suitable chain in $\mathfrak{G}_0(R)$. For any $k \in [n]$, set $R_k = R \ltimes C_{k-1}^{\dagger_{C_k}}$ the trivial extension of *R* by $C_{k-1}^{\dagger_{C_k}}$. Set

$$C_{l}^{(k)} = \begin{cases} \operatorname{Hom}_{R}(R_{k}, C_{k-1-l}^{\dagger c_{k}}) & \text{if } 0 \leq l < k-1 \\ \\ \operatorname{Hom}_{R}(R_{k}, C_{l+1}) & \text{if } k-1 \leq l \leq n-1 . \end{cases}$$

For all *I*, 0 ≤ *I* ≤ *n* − 1, *C*^(k)_{*I*} is a semidualizing *R*_k-module.
For any *k* ∈ [*n*],

$$[C_{n-1}^{(k)}] \lhd \cdots \lhd [C_1^{(k)}] \lhd [R_k]$$

is a suitable chain in $\mathfrak{G}_0(R_k)$ of length n-1.

Main result

Theorem (Dibaei and me)

Let *R* be a Cohen–Macaulay ring with a dualizing module *D*. Assume that *R* admits a suitable chain $[C_n] \lhd \cdots \lhd [C_1] \lhd [R]$ in $\mathfrak{G}_0(R)$ and that $C_n \cong D$. Then there exist a Gorenstein local ring *Q* and ideals I_1, \cdots, I_n of *Q*, which satisfy the following conditions. In this situation, for each $\Lambda \subseteq [n]$, set $R_{\Lambda} = Q/(\Sigma_{I \in \Lambda} I_I)$, in particular $R_{\emptyset} = Q$.

- (1) There is a ring isomorphism $R \cong Q/(I_1 + \cdots + I_n)$.
- (2) For each $\Lambda \subseteq [n]$ with $\Lambda \neq \emptyset$, the ring R_{Λ} is non-Gorenstein Cohen–Macaulay with a dualizing module.
- (3) For each $\Lambda \subseteq [n]$ with $\Lambda \neq \emptyset$, we have $\bigcap_{I \in \Lambda} I_I = \prod_{I \in \Lambda} I_I$.
- (4) For subsets Λ , Γ of [n] with $\Gamma \subsetneq \Lambda$, we have $G \dim_{R_{\Gamma}} R_{\Lambda} = 0$, and $\operatorname{Hom}_{R_{\Gamma}}(R_{\Lambda}, R_{\Gamma})$ is a non-free semidualizing R_{Λ} -module.

Main result

Theorem (Dibaei and me)

(5) For subsets Λ , Γ of [n] with $\Lambda \neq \Gamma$, the module $\operatorname{Hom}_{R_{\Lambda \cap \Gamma}}(R_{\Lambda}, R_{\Gamma})$ is not cyclic and

$$\operatorname{Ext}_{R_{\Lambda\cap\Gamma}}^{\geq 1}(R_{\Lambda},R_{\Gamma})=0=\operatorname{Tor}_{\geq 1}^{R_{\Lambda\cap\Gamma}}(R_{\Lambda},R_{\Gamma}).$$

(6) For subsets Λ , Γ of [n] with $|\Lambda \setminus \Gamma| = 1$, we have

$$\widehat{\operatorname{Ext}}^{i}_{R_{\Lambda\cap\Gamma}}(R_{\Lambda},R_{\Gamma})=0=\widehat{\operatorname{Tor}}^{R_{\Lambda\cap\Gamma}}_{i}(R_{\Lambda},R_{\Gamma})$$

for all $i \in \mathbb{Z}$.

Construction

We construct the ring Q by induction on n. We claim that the ring Q, as an R-module, has the form $Q = \bigoplus_{i \subseteq [n]} B_i$ and the ring structure on it is as follows.

For two elements $(\alpha_i)_{i \subseteq [n]}$ and $(\theta_i)_{i \subseteq [n]}$ of Q

$$(\alpha_{\mathbf{i}})_{\mathbf{i}\subseteq[n]}(\theta_{\mathbf{i}})_{\mathbf{i}\subseteq[n]} = (\sigma_{\mathbf{i}})_{\mathbf{i}\subseteq[n]}, \text{ where } \sigma_{\mathbf{i}} = \sum_{\substack{\mathbf{v}\subseteq\mathbf{i}\\\mathbf{w}=\mathbf{i}\setminus\mathbf{v}}} \alpha_{\mathbf{v}}\cdot\theta_{\mathbf{w}}.$$

• n = 1: set $Q = R \ltimes C_1$ and $I_1 = 0 \oplus C_1$. (Proved by Foxby and Reiten)

Construction

• n > 2: Take an element $k \in [n]$. The ring $R_k = R \ltimes C_{k-1}^{\top c_k}$ has the suitable chain $[C_{n-1}^{(k)}] \lhd \cdots \lhd [C_1^{(k)}] \lhd [R_k]$ in $\mathfrak{G}_0(R_k)$ of length n-1. We set $B_i^{(k)} = \operatorname{Hom}_{R_k}(C_{i-1}^{(k)}, C_i^{(k)}), i = 1, \cdots, n-1$. For two sequences $\mathbf{p} = \{p_1, \cdots, p_r\}, \mathbf{q} = \{q_1, \cdots, q_s\}$ such that $r, s \ge 1$ and $1 \le p_1 < \cdots < p_r < k - 1 \le q_1 < \cdots < q_s \le n-1$, we set

$$B_{\mathbf{p},\mathbf{q}}^{(k)} = B_{p_1}^{(k)} \otimes_{R_k} \cdots \otimes_{R_k} B_{p_r}^{(k)} \otimes_{R_k} B_{q_1}^{(k)} \otimes_{R_k} \cdots \otimes_{R_k} B_{q_s}^{(k)},$$

By applying the induction hypothesis on R_k there is an extension ring, say Q_k , which is Gorenstein local and, as an R_k -module, has the form

$$Q_k = \bigoplus_{\substack{\mathbf{p} \subseteq \{1, \cdots, k-2\}\\ \mathbf{q} \subseteq \{k-1, \cdots, n-1\}}} B_{\mathbf{p}, \mathbf{q}}^{(k)}$$

Construction

For each \mathbf{p}, \mathbf{q} there is an *R*-module isomorphism

$$B_{\mathbf{p},\mathbf{q}}^{(k)} \cong \begin{cases} B_{\{k-p_r,\cdots,k-p_1,q_1+1,\cdots,q_s+1\}} \oplus B_{\{k-p_r,\cdots,k-p_1,k,q_1+1,\cdots,q_s+1\}}, \\ \text{or} \\ B_{\{1,k-p_r,\cdots,k-p_1,q_2+1,\cdots,q_s+1\}} \oplus B_{\{1,k-p_r,\cdots,k-p_1,k,q_2+1,\cdots,q_s+1\}}. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Therefore one gets an *R*-module isomorphism $Q_k \cong \bigoplus_{i \subseteq [n]} B_i$. Set $Q = Q_k$. We set $I_l = (\underbrace{0 \oplus \cdots \oplus 0}_{2^{n-1}}) \oplus (\bigoplus_{i \subseteq [n], l \in i} B_i), 1 \leq l \leq n$, which is an ideal of *Q* and $Q/(I_1 + \cdots + I_n) \cong R$.

Converse of the main result

Proposition (Dibaei and me)

Let *R* be a Cohen–Macaulay ring. Assume that there exist a Gorenstein local ring *Q* and ideals I_1, \dots, I_n of *Q* satisfying the following conditions.

- (1) There is a ring isomorphism $R \cong Q/(I_1 + \cdots + I_n)$.
- (2) The ring $R_k = Q/(I_1 + \cdots + I_k)$ is Cohen–Macaulay for all $k \in [n]$.
- (3) $\operatorname{fd}_{R_j}(R_k) < \infty$ for all $k \in [n]$ and all $1 \leq j \leq k$.
- (4) For each $k \in [n]$, $I_{R_k}^{R_k}(t) \neq t^e I_{R_{k-1}}^{R_{k-1}}(t)$ for any integer e. $(R_0 = Q)$

Then there exist integers g_0, g_1, \dots, g_{n-1} such that

 $[\operatorname{Ext}_Q^{g_0}(R,Q)] \lhd [\operatorname{Ext}_{R_1}^{g_1}(R,R_1)] \lhd \cdots \lhd [\operatorname{Ext}_{R_{n-1}}^{g_{n-1}}(R,R_{n-1})] \lhd [R]$

is a chain in $\mathfrak{G}_0(R)$ of length *n*.

Converse of the main result

Proposition (Dibaei and me)

Let *R* be a Cohen–Macaulay ring. Assume that there exist a Gorenstein local ring *Q* and ideals I_1, \dots, I_n of *Q* satisfying the following conditions.

(1) There is a ring isomorphism $R \cong Q/(I_1 + \cdots + I_n)$.

- (2) For each $\Lambda \subseteq [n]$, the ring $R_{\Lambda} = Q/(\sum_{I \in \Lambda} I_I)$ is C-M.
- (3) For subsets Λ , Γ of [n] with $\Lambda \cap \Gamma = \emptyset$

$$\text{Tor}_{\geq 1}^Q(R_{\scriptscriptstyle A},R_{\scriptscriptstyle \Gamma})=0$$

(ii) For all $i \in \mathbb{Z}$, $\widehat{\operatorname{Ext}}_Q^i(R_{\Lambda}, R_{\Gamma}) = 0 = \widehat{\operatorname{Tor}}_i^Q(R_{\Lambda}, R_{\Gamma}).$

(4) For two subsets Λ , Γ of [n] with $\Lambda \neq \Gamma$ and for any integer e, $I_{R_{\Lambda}}^{R_{\Lambda}}(t) \neq t^{e}I_{R_{\Gamma}}^{R_{\Gamma}}(t)$.

Then, for each $\Lambda \subseteq [n]$, there is an integer g_{Λ} such that $\operatorname{Ext}_{R_{\Lambda}}^{g_{\Lambda}}(R, R_{\Lambda})$ is a semidualizing *R*-module. As conclusion, *R* admits 2^{n} non-isomorphic semidualizing modules.

Thank You

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Christensen)

Let S be a Cohen–Macaulay local ring equipped with a module-finite local ring homomorphism $\tau : R \to S$ such that R is Cohen–Macaulay. Assume that C is a semidualizing R–module. Then G_C -dim_R(S) < ∞ if and only if there exists an integer $g \ge 0$ such that $\operatorname{Ext}_R^g(S, C) = 0$ for all $i, i \neq g$, and $\operatorname{Ext}_R^g(S, C)$ is a semidualizing S–module; when these conditions hold, one has $g = G_C$ -dim_R(S).

12

Tate resolution

Definition

Let M be a finite R-module. A *Tate resolution* of M is a diagram $\mathbf{T} \xrightarrow{\vartheta} \mathbf{P} \xrightarrow{\pi} M$, where π is an R-projective resolution of M, \mathbf{T} is an exact complex of projectives such that $\operatorname{Hom}_R(T, R)$ is exact, ϑ is a morphism, and ϑ_i is isomorphism for all $i \gg 0$.

Definition

Let M be a finite R-module of finite G-dimension, and let $\mathbf{T} \xrightarrow{\vartheta} \mathbf{P} \xrightarrow{\pi} M$ be a Tate resolution of M. For each integer i and each R-module N, the *i*th *Tate homology* and *Tate cohomology* modules are

$$\widehat{\operatorname{Tor}}_i^R(M,N) = \operatorname{H}_i(\mathbf{T} \otimes_R N) \qquad \widehat{\operatorname{Ext}}_R^i(M,N) = \operatorname{H}_{-i}(\operatorname{Hom}_R(\mathbf{T},N)).$$

(日) (同) (三) (三) (三) (○) (○)