A note on the rings with flat injective hulls

Fahimeh Khosh-Ahang Ghasr

November 12, 2015
Table of contents

1 Preliminaries.

2 Flat cover and injective envelope.

3 Rings with flat injective envelopes.
Let R be a ring and \mathcal{F} be the class of all flat R-modules. Then for an R-module M, an R-homomorphism $\varphi : F \rightarrow M$, where $F \in \mathcal{F}$ is called a flat cover of M if
Let R be a ring and \mathcal{F} be the class of all flat R-modules. Then for an R-module M, an R-homomorphism $\varphi : F \to M$, where $F \in \mathcal{F}$ is called a flat cover of M if

1. for each $F' \in \mathcal{F}$ and $\psi : F' \to M$, there is a homomorphism $\tau : F' \to F$ such that $\varphi \circ \tau = \psi$, and...
Let R be a ring and \mathcal{F} be the class of all flat R-modules. Then for an R-module M, an R-homomorphism $\varphi : F \to M$, where $F \in \mathcal{F}$ is called a flat cover of M if

1. for each $F' \in \mathcal{F}$ and $\psi : F' \to M$, there is a homomorphism $\tau : F' \to F$ such that $\varphi \circ \tau = \psi$, and

2. if $\tau : F \to F$ is a homomorphism such that $\varphi \circ \tau = \varphi$, then τ is an automorphism.
Let R be a ring and \mathcal{F} be the class of all flat R-modules. Then for an R-module M, an R-homomorphism $\varphi : F \to M$, where $F \in \mathcal{F}$ is called a flat cover of M if

1. for each $F' \in \mathcal{F}$ and $\psi : F' \to M$, there is a homomorphism $\tau : F' \to F$ such that $\varphi \circ \tau = \psi$, and
2. if $\tau : F \to F$ is a homomorphism such that $\varphi \circ \tau = \varphi$, then τ is an automorphism.

We briefly say that F is the flat cover of M and denote it by $\mathcal{F}(M)$.
Definition [Eckmann, B.; Schopf, A. (1953)].

Let R be a ring and \mathcal{E} be the class of all injective R-modules. Then for an R-module M, an R-homomorphism $\varphi : M \to E$, where $E \in \mathcal{E}$ is called an injective envelope of M if

1. for each $E' \in \mathcal{E}$ and $\psi : M \to E'$, there is a homomorphism $\tau : E \to E'$ such that $\tau \circ \varphi = \psi$, and
2. if $\tau : E \to E$ is a homomorphism such that $\tau \circ \varphi = \varphi$, then τ is an automorphism.

We briefly say that E is the injective envelope of M and denote it by $E(M)$.
Definition [Eckmann, B.; Schopf, A. (1953)].

Let R be a ring and \mathcal{E} be the class of all injective R-modules. Then for an R-module M, an R-homomorphism $\varphi : M \to E$, where $E \in \mathcal{E}$ is called an injective envelope of M if

1. for each $E' \in \mathcal{E}$ and $\psi : M \to E'$, there is a homomorphism $\tau : E \to E'$ such that $\tau \circ \varphi = \psi$, and
Definition [Eckmann, B.; Schopf, A. (1953)].

Let R be a ring and \mathcal{E} be the class of all injective R-modules.
Then for an R-module M, an R-homomorphism $\varphi : M \to E$, where $E \in \mathcal{E}$ is called an injective envelope of M if

1. for each $E' \in \mathcal{E}$ and $\psi : M \to E'$, there is a homomorphism $\tau : E \to E'$ such that $\tau \circ \varphi = \psi$, and

2. if $\tau : E \to E$ is a homomorphism such that $\tau \circ \varphi = \varphi$, then τ is an automorphism.
Definition [Eckmann, B.; Schopf, A. (1953)].

Let R be a ring and \mathcal{E} be the class of all injective R-modules. Then for an R-module M, an R-homomorphism $\varphi : M \to E$, where $E \in \mathcal{E}$ is called an injective envelope of M if

1. for each $E' \in \mathcal{E}$ and $\psi : M \to E'$, there is a homomorphism $\tau : E \to E'$ such that $\tau \circ \varphi = \psi$, and
2. if $\tau : E \to E$ is a homomorphism such that $\tau \circ \varphi = \varphi$, then τ is an automorphism.

We briefly say that E is the injective envelope of M and denote it by $\mathcal{E}(M)$.
A module M is Gorenstein flat if there is an exact sequence

$$
\cdots \to F^{-2} \to F^{-1} \to F^0 \to F^1 \to F^2 \to \cdots
$$

of flat modules such that $M = \ker(F^0 \to F^1)$ and such that $E \otimes_R -$ leaves the sequence exact when E is injective.
Definition.

• A module M is **Gorenstein flat** if there is an exact sequence

$$
\cdots \to F^{-2} \to F^{-1} \to F^0 \to F^1 \to F^2 \to \cdots
$$

of flat modules such that $M = \ker(F^0 \to F^1)$ and such that $E \otimes_R -$ leaves the sequence exact when E is injective.

• The **Gorenstein flat dimension** of M is denoted by $\text{Gfd}(M)$ and defined as

$$\text{Gfd}(M) = \inf\{n | \text{there exists an exact sequence } 0 \to G_n \to \cdots \to G_0 \to M \to 0 \text{ s.th. } G_i\text{'s are Gorenstein flat}\}. $$
Definition.

Let R be a ring and let \mathcal{GF} be the class of all Gorenstein flat R-modules. Then for an R-module M, a morphism $\varphi : G \to M$, where $G \in \mathcal{GF}$ is called a Gorenstein flat cover of M if
Let R be a ring and let \mathcal{GF} be the class of all Gorenstein flat R-modules. Then for an R-module M, a morphism $\varphi : G \to M$, where $G \in \mathcal{GF}$ is called a Gorenstein flat cover of M if

1. for each $G' \in \mathcal{GF}$ and $\psi : G' \to M$, there is a homomorphism $\tau : G' \to G$ such that $\varphi \circ \tau = \psi$, and
Definition.

Let R be a ring and let \mathcal{GF} be the class of all Gorenstein flat R-modules. Then for an R-module M, a morphism $\varphi : G \to M$, where $G \in \mathcal{GF}$ is called a Gorenstein flat cover of M if

1. for each $G' \in \mathcal{GF}$ and $\psi : G' \to M$, there is a homomorphism $\tau : G' \to G$ such that $\varphi \circ \tau = \psi$, and

2. if $\tau : G \to G$ is a homomorphism such that $\varphi \circ \tau = \varphi$, then τ is an automorphism.
Let R be a ring and let \mathcal{GF} be the class of all Gorenstein flat R-modules. Then for an R-module M, a morphism $\varphi : G \to M$, where $G \in \mathcal{GF}$ is called a Gorenstein flat cover of M if

1. for each $G' \in \mathcal{GF}$ and $\psi : G' \to M$, there is a homomorphism $\tau : G' \to G$ such that $\varphi \circ \tau = \psi$, and
2. if $\tau : G \to G$ is a homomorphism such that $\varphi \circ \tau = \varphi$, then τ is an automorphism.

We briefly say that G is the Gorenstein flat cover of M and denote it by $\mathcal{GF}(M)$.
A module M is **Gorenstein injective** if there is an exact sequence

$$\cdots \rightarrow E^{-2} \rightarrow E^{-1} \rightarrow E^0 \rightarrow E^1 \rightarrow E^2 \rightarrow \cdots$$

of injective modules such that $M = \ker(E^0 \rightarrow E^1)$ and such that $\text{Hom}_R(E, -)$ leaves the sequence exact when E is injective.
Remark.

Note that the existence of a flat cover, an injective envelope and a Gorenstein flat cover for any module over any associative ring has been proved.
A module M is called **cotorsion** if $\text{Ext}_R^1(F, M) = 0$ for any flat module F.
A module M is called **cotorsion** if $\text{Ext}_R^1(F, M) = 0$ for any flat module F.

A module M is called **torsion free** if $\text{Tor}_1^R(F, M) = 0$ for any flat module F.
A module M is called **cotorsion** if $\text{Ext}_R^1(F, M) = 0$ for any flat module F.

A module M is called **torsion free** if $\text{Tor}_1^R(F, M) = 0$ for any flat module F.

A module M is called **strongly cotorsion** if $\text{Ext}_R^1(X, M) = 0$ for any module X of finite flat dimension.
Definitions.

- A module M is called **cotorsion** if $\text{Ext}^1_R(F, M) = 0$ for any flat module F.
- A module M is called **torsion free** if $\text{Tor}_1^R(F, M) = 0$ for any flat module F.
- A module M is called **strongly cotorsion** if $\text{Ext}_R^1(X, M) = 0$ for any module X of finite flat dimension.
- A module M is called **strongly torsion free** if $\text{Tor}_1^R(X, M) = 0$ for any module X of finite flat dimension.
Let R be a ring and n a positive integer.

- A module M is called n-cotorsion if $\text{Ext}^1_R(X, M) = 0$ for any R-module X with flat dimension at most n.

- A module N is called n-torsionfree if $\text{Tor}_1^R(N, X) = 0$ for any R-module X with flat dimension at most n.

- A module M is called n-Gorenstein cotorsion if $\text{Ext}^1_R(X, M) = 0$ for any R-module X with Gorenstein flat dimension at most n.

- A module M is called strongly Gorenstein cotorsion if it is n-Gorenstein cotorsion for all n.

- A module N is called n-Gorenstein torsionfree if $\text{Tor}_1^R(N, X) = 0$ for any R-module X with Gorenstein flat dimension at most n.

- A module N is called strongly Gorenstein torsionfree if it is n-Gorenstein torsionfree for all n.

Let R be a ring and n a positive integer.

- A module M is called n-cotorsion if $\text{Ext}^1_R(X, M) = 0$ for any R-module X with flat dimension at most n.
- A module N is called n-torsionfree if $\text{Tor}_1^R(N, X) = 0$ for any R-module X with flat dimension at most n.

Fahimeh Khosh-Ahang Ghasr

A note on the rings with flat injective hulls
Let R be a ring and n a positive integer.

- A module M is called n-cotorsion if $\text{Ext}_R^1(X, M) = 0$ for any R-module X with flat dimension at most n.
- A module N is called n-torsionfree if $\text{Tor}_1^R(N, X) = 0$ for any R-module X with flat dimension at most n.
- A module M is called n-Gorenstein cotorsion if $\text{Ext}_R^1(X, M) = 0$ for any R-module X with Gorenstein flat dimension at most n.
- A module N is called strongly Gorenstein torsionfree if it is n-Gorenstein torsionfree for all n.

Let R be a ring and n a positive integer.

- A module M is called n-cotorsion if $\text{Ext}^1_R(X, M) = 0$ for any R-module X with flat dimension at most n.
- A module N is called n-torsionfree if $\text{Tor}_1^R(N, X) = 0$ for any R-module X with flat dimension at most n.
- A module M is called n-Gorenstein cotorsion if $\text{Ext}^1_R(X, M) = 0$ for any R-module X with Gorenstein flat dimension at most n.
- A module M is called strongly Gorenstein cotorsion if it is n-Gorenstein cotorsion for all n.

Let \(R \) be a ring and \(n \) a positive integer.

- A module \(M \) is called \(n \)-
cotorsion if \(\text{Ext}^1_R(X, M) = 0 \) for any
 \(R \)-module \(X \) with flat dimension at most \(n \).
- A module \(N \) is called \(n \)-torsionfree if \(\text{Tor}_1^R(N, X) = 0 \) for any
 \(R \)-module \(X \) with flat dimension at most \(n \).
- A module \(M \) is called \(n \)-Gorenstein cotorsion if
 \(\text{Ext}^1_R(X, M) = 0 \) for any \(R \)-module \(X \) with Gorenstein flat
 dimension at most \(n \).
- A module \(M \) is called strongly Gorenstein cotorsion if it is
 \(n \)-Gorenstein cotorsion for all \(n \).
- A module \(N \) is called \(n \)-Gorenstein torsionfree if
 \(\text{Tor}_1^R(N, X) = 0 \) for any \(R \)-module \(X \) with Gorenstein flat
 dimension at most \(n \).
Let R be a ring and n a positive integer.

- A module M is called n-cotorsion if $\text{Ext}^1_R(X, M) = 0$ for any R-module X with flat dimension at most n.
- A module N is called n-torsionfree if $\text{Tor}_1^R(N, X) = 0$ for any R-module X with flat dimension at most n.
- A module M is called n-Gorenstein cotorsion if $\text{Ext}^1_R(X, M) = 0$ for any R-module X with Gorenstein flat dimension at most n.
- A module M is called strongly Gorenstein cotorsion if it is n-Gorenstein cotorsion for all n.
- A module N is called n-Gorenstein torsionfree if $\text{Tor}_1^R(N, X) = 0$ for any R-module X with Gorenstein flat dimension at most n.
- A module N is called strongly Gorenstein torsionfree if it is n-Gorenstein torsionfree for all n.
Remark.

\[
\{1\text{-cotorsion modules}\} \supseteq \{2\text{-cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly cotorsion modules}\}
\]
Remark.

- \{1\text{-cotorsion modules}\} \supseteq \{2\text{-cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly cotorsion modules}\}

- \{1\text{-torsionfree modules}\} \supseteq \{2\text{-torsionfree modules}\} \supseteq \cdots \supseteq \{\text{strongly torsionfree modules}\}
Remark.

- $\{1\text{-cotorsion modules}\} \supseteq \{2\text{-cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly cotorsion modules}\}$
- $\{1\text{-torsionfree modules}\} \supseteq \{2\text{-torsionfree modules}\} \supseteq \cdots \supseteq \{\text{strongly torsionfree modules}\}$
- $\{1\text{-Gorenstein cotorsion modules}\} \supseteq \{2\text{-Gorenstein cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly Gorenstein cotorsion modules}\}$.
Remark.

- \{1\text{-cotorsion modules}\} \supseteq \{2\text{-cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly cotorsion modules}\}
- \{1\text{-torsionfree modules}\} \supseteq \{2\text{-torsionfree modules}\} \supseteq \cdots \supseteq \{\text{strongly torsionfree modules}\}
- \{1\text{-Gorenstein cotorsion modules}\} \supseteq \{2\text{-Gorenstein cotorsion modules}\} \supseteq \cdots \supseteq \{\text{strongly Gorenstein cotorsion modules}\}.
- \{1\text{-Gorenstein torsionfree modules}\} \supseteq \{2\text{-Gorenstein torsionfree modules}\} \supseteq \cdots \supseteq \{\text{strongly Gorenstein torsionfree modules}\}.
Every flat module F can be uniquely written in the form

$$F = \prod T_p,$$

where T_p is a completion of a free R_p-module with respect to p-adic topology.
A prime ideal p of R is said to be a **coassociated prime** of M if there exists an Artinian homomorphic image L of M with $p = 0 :_R L$. The set of all coassociated prime ideals of M is denoted by $\text{Coass}(M)$.
Proposition.

Let F be a flat R-module and E be an injective R-module, where R is a commutative ring with non-zero identity.

The following conditions are equivalent.

1. $\mathcal{E}(F)$ is flat.
2. $\mathcal{F}(\mathcal{E}(F)) = \mathcal{E}(F)$.
3. $\mathcal{F}(\mathcal{E}(F))$ is injective.
Proposition.

Let F be a flat R-module and E be an injective R-module, where R is a commutative ring with non-zero identity.

- The following conditions are equivalent.
 1. $\mathcal{E}(F)$ is flat.
 2. $\mathcal{F}(\mathcal{E}(F)) = \mathcal{E}(F)$.
 3. $\mathcal{F}(\mathcal{E}(F))$ is injective.

- The following conditions are equivalent.
 1. $\mathcal{F}(E)$ is injective.
 2. $\mathcal{E}(\mathcal{F}(E)) = \mathcal{F}(E)$.
 3. $\mathcal{E}(\mathcal{F}(E))$ is flat.
Proposition.

A flat module over a Noetherian ring R is injective if and only if it is Gorenstein injective.
Proposition.

- A flat module over a Noetherian ring \(R \) is injective if and only if it is Gorenstein injective.
- An injective module over a commutative ring \(R \) is flat if and only if it is Gorenstein flat.
Proposition.

Assume that for all injective R-modules E and E' such that $\text{Ass}(E) \subseteq \text{Ass}(R)$, the R-module $\text{Hom}_R(E, E')$ is injective. Then
- $\mathcal{F}(\mathcal{E}(R))$ is injective; and
Proposition.

Assume that for all injective R-modules E and E' such that $\text{Ass}(E) \subseteq \text{Ass}(R)$, the R-module $\text{Hom}_R(E, E')$ is injective. Then

- $\mathcal{F}(\mathcal{E}(R))$ is injective; and
- R_p is a Gorenstein ring of Krull dimension 0 for all $p \in \text{Ass}(R)$.
Proposition.

For each injective R-module E we have

$$\text{id}_R(\mathcal{F}(E)) \leq \text{fd}_R(\mathcal{E}(R)).$$
Proposition.

- For each injective R-module E we have
 \[\text{id}_R(\mathcal{F}(E)) \leq \text{fd}_R(\mathcal{E}(R)). \]

- For each R-module N, we have
 \[\text{id}_R(\mathcal{F}(D_R(N))) \leq \text{fd}_R(\mathcal{E}(N)). \]
Proposition.

- For each injective R-module E we have
 \[\text{id}_R(\mathcal{F}(E)) \leq \text{fd}_R(\mathcal{E}(R)). \]

- For each R-module N, we have
 \[\text{id}_R(\mathcal{F}(D_R(N))) \leq \text{fd}_R(\mathcal{E}(N)). \]

- For each prime ideal \mathfrak{p} of R,
 \[\text{id}_R(\mathcal{E}(\widehat{R}_\mathfrak{p})) = \text{fd}_R(\mathcal{E}(R/\mathfrak{p})). \]
It is well-known that every Gorenstein ring has flat injective hull. [Bass, H., 1963].
It is well-known that every Gorenstein ring has flat injective hull. [Bass, H., 1963].

There exists an example of a ring with flat injective hull which is not Gorenstein. [Enochs, E. E.; Huang, Z., 2012]
Preliminaries. Flat cover and injective envelope. Rings with flat injective envelopes.

It is well-known that every Gorenstein ring has flat injective hull. [Bass, H., 1963].

There exists an example of a ring with flat injective hull which is not Gorenstein. [Enochs, E. E.; Huang, Z., 2012]

So, the rings with flat injective hulls are generalizations of Gorenstein rings.
The following are equivalent for a commutative Noetherian ring R.

1. $\mathcal{E}(R)$ is flat.
2. R_p is a Gorenstein ring of Krull dimension 0 for all $p \in \text{Ass}(R)$.
3. $\mathcal{E}(F)$ is flat for all flat R-modules F.
4. $\mathcal{F}(E)$ is injective for all injective R-modules E.
5. $E \otimes E'$ is an injective module for all injective R-modules E and E'.
6. $S^{-1}R$ is an injective R-module where S is the set of non-zero divisors of R.
The following are equivalent for a commutative Noetherian ring R.

1. $\mathcal{E}(R)$ is flat.
2. $\mathcal{E}(R)$ has finite flat dimension.
3. $\mathcal{F}(M)$ is injective for any strongly cotorsion module M.
4. $\mathcal{E}(M)$ is flat for any strongly torsion free module M.
5. $\mathcal{E}(M)$ is flat for any Gorenstein flat module M.
6. If $p \in \text{Coass}(E)$ for an injective R-module E, then $\widehat{R_p}$ is injective.
Theorem [Khashyarmanesh, K.; Salarian, Sh., 2003].

The following are equivalent for a commutative Noetherian ring R.

1. $\mathcal{E}(R)$ is flat.
2. $\mathcal{E}(R)$ has finite flat dimension.
3. $\mathcal{F}(M)$ is injective for any strongly cotorsion module M.
4. $\mathcal{E}(M)$ is flat for any strongly torsion free module M.
5. $\mathcal{E}(M)$ is flat for any Gorenstein flat module M.
6. If $p \in \text{Coass}(E)$ for an injective R-module E, then $\widehat{R_p}$ is injective.

If moreover the Krull dimension of R is finite, then the above conditions are equivalent to

7. $\mathcal{F}(M)$ is injective for any Gorenstein injective module M.

For a Commutative Noetherian ring R the following conditions are equivalent.

1. $\mathcal{E}(R)$ is flat.
2. $\mathcal{E}(R)$ is Gorenstein flat.
3. $\mathcal{E}(F)$ is Gorenstein flat for any flat R-module F.
4. $\mathcal{E}(G)$ is Gorenstein flat for any Gorenstein flat R-module G.
5. $\mathcal{GF}(M)$ is injective for any 1-Gorenstein cotorsion R-module M.
6. $\mathcal{GF}(M)$ is injective for any strongly Gorenstein cotorsion R-module M.
7. $\mathcal{GF}(E)$ is injective for any injective left R-module E.
\(E(N)\) is flat for any 1-Gorenstein torsionfree \(R\)-module \(N\).

\(F(M)\) is injective for any 1-cotorsion \(R\)-module \(M\).

\(E(N)\) is Gorenstein flat for any 1-Gorenstein torsionfree \(R\)-module \(N\).

\(E(N)\) is flat for any strongly Gorenstein torsionfree \(R\)-module \(N\).

\(E(N)\) is Gorenstein flat for any strongly Gorenstein torsionfree \(R\)-module \(N\).

\(E(N)\) is flat for any 1-torsionfree \(R\)-module \(N\).

\(E(N)\) is Gorenstein flat for any 1-torsionfree \(R\)-module \(N\).

\(E(N)\) is Gorenstein flat for any strongly torsionfree \(R\)-module \(N\).
Theorem.

For a commutative Noetherian ring R, the following conditions are equivalent.

1. $\mathcal{E}(R)$ is flat.
2. $\mathcal{F}(\mathcal{E}(R))$ is injective.
3. $\mathcal{F}(\mathcal{E}(R))$ is Gorenstein injective.
4. $\mathcal{E}(R/p)$ is flat for any associated prime ideal p of R.
5. T_p is injective for any coassociated prime ideal p of $\mathcal{F}(\mathcal{E}(R))$, where T_p is the completion of a free \hat{R}_p-module.
6. $\mathcal{E}(R/p)$ is Gorenstein flat for any associated prime ideal p of R.
7. T_p is Gorenstein injective for any coassociated prime ideal p of $\mathcal{F}(\mathcal{E}(R))$.
(8) $\mathcal{E}(R/p)$ has finite flat dimension for any associated prime ideal p of R.

(9) $\mathcal{F}(\mathcal{E}(F))$ is injective for all flat R-modules F.

(10) $\mathcal{E}(\mathcal{F}(E))$ is flat for all injective R-modules E.

(11) $\mathcal{F}(\mathcal{E}(F))$ is Gorenstein injective for all flat R-modules F.

(12) $\mathcal{E}(\mathcal{F}(E))$ is Gorenstein flat for all injective R-modules E.

(13) $\mathcal{F}(E)$ is Gorenstein injective for all injective R-modules E.

(14) $\mathcal{F}(M)$ is Gorenstein injective for all strongly cotorsion R-modules M.
(15) $\mathcal{E}(F)$ has finite flat dimension for all flat R-modules F.
(16) $\mathcal{E}(M)$ is flat for all R-modules M with $\text{Ass}(M) \subseteq \text{Ass}(R)$.
(17) $\mathcal{E}(M)$ is Gorenstein flat for all R-modules M with $\text{Ass}(M) \subseteq \text{Ass}(R)$.
(18) $\mathcal{E}(M)$ has finite flat dimension for all R-modules M with $\text{Ass}(M) \subseteq \text{Ass}(R)$.
(19) R_p is injective for all coassociated prime ideals p of $\mathcal{F}(\mathcal{E}(R))$.
(20) There is an injective R-module E such that for all $p \in \text{Coass}(E)$, \widehat{R}_p is injective.
(21) For all injective R-modules E and E' the R-module $E \otimes_R E'$ is injective and flat.
(22) For all injective R-modules E and E' such that $\text{Ass}(E) \subseteq \text{Ass}(R)$, the R-module $\text{Hom}_R(E, E')$ is injective and flat.
If moreover the Krull dimension of \(R \) is finite, the above conditions are equivalent to:

(23) \(\mathcal{F}(M) \) is Gorenstein injective for all Gorenstein injective \(R \)-modules \(M \).
Also, if every prime ideal in $\text{Ass}(R)$ is a minimal prime ideal of R, then the condition "$\mathcal{E}(R)$ is flat" is equivalent to the following conditions.

(24) $\mathcal{F}(\mathcal{E}(R))$ has finite injective dimension.
(25) T_p has finite injective dimension for any coassociated prime ideal p of $\mathcal{F}(\mathcal{E}(R))$.
(26) $\mathcal{F}(E)$ has finite injective dimension for all injective R-modules E.
(27) Every flat and cotorsion R-module F such that $\text{Coass}(F) \subseteq \text{Ass}(R)$ is injective.
(28) Every flat and cotorsion R-module F such that $\text{Coass}(F) \subseteq \text{Ass}(R)$ is Gorenstein injective.
(29) R_p is Gorenstein for all coassociated prime ideals p of $\mathcal{F}(\mathcal{E}(R))$.
Thanks for your patience.