Homological invariants of the Stanley-Reisner ring of a k-decomposable simplicial complex

Somayeh Moradi

Ilam University

The 12th Seminar on Commutative Algebra and Related Topics 11-12 November, IPM

k-decomposable simplicial complex

Definition[Woodroofe (2009)]. Let Δ be a simplicial complex on the vertex set V. A face σ is called a shedding face if every face τ containing σ satisfies the following exchange property: for every $v \in \sigma$ there is $w \in V \setminus \tau$ such that $(\tau \cup \{w\}) \setminus \{v\}$ is a face of Δ .

Definition[Woodroofe]. A simplicial complex Δ is recursively defined to be k-decomposable if either Δ is a simplex or else has a shedding face σ with $\dim(\sigma) \leq k$ such that both $\Delta \setminus \sigma$ and $\mathrm{lk}(\sigma)$ are k-decomposable.

The complexes $\{\}$ and $\{\emptyset\}$ are considered to be k-decomposable for all $k \geq -1$.

0-decomposable simplicial complexes are precisely vertex decomposable simplicial complexes.

k-decomposable simplicial complex

Definition[Woodroofe (2009)]. Let Δ be a simplicial complex on the vertex set V. A face σ is called a shedding face if every face τ containing σ satisfies the following exchange property: for every $v \in \sigma$ there is $w \in V \setminus \tau$ such that $(\tau \cup \{w\}) \setminus \{v\}$ is a face of Δ .

Definition[Woodroofe]. A simplicial complex Δ is recursively defined to be k-decomposable if either Δ is a simplex or else has a shedding face σ with $\dim(\sigma) \leq k$ such that both $\Delta \setminus \sigma$ and $\mathrm{lk}(\sigma)$ are k-decomposable.

The complexes $\{\}$ and $\{\emptyset\}$ are considered to be k-decomposable for all $k \geq -1$.

0-decomposable simplicial complexes are precisely vertex decomposable simplicial complexes.

Let K be a filed, $R = K[V(\Delta)]$ and I_{Δ} be the Stanley-Reisner ideal of Δ .

Theorem [Khosh-Ahang, Moradi], [Ha, Woodroofe] Let Δ be a vertex decomposable simplicial complex, x a shedding vertex of Δ and $\Delta_1 = \text{del}_{\Delta}(x)$ and $\Delta_2 = \text{lk}_{\Delta}(x)$. Then

$$\operatorname{pd}(R/I_{\Delta}) = \max\{\operatorname{pd}(R/I_{\Delta_1}) + 1, \operatorname{pd}(R/I_{\Delta_2})\},$$

$$\operatorname{reg}(R/I_{\Delta}) = \max\{\operatorname{reg}(R/I_{\Delta_1}), \operatorname{reg}(R/I_{\Delta_2}) + 1\}.$$

Theorem [Ha]. Let Δ be a simplicial complex and let σ be a face of dimension d-1 in Δ . Then

$$\operatorname{reg}(R/I_{\Delta}) \leq \max\{\operatorname{reg}(R/I_{\Delta\setminus\sigma}),\operatorname{reg}(R/I_{\operatorname{lk}(\sigma)}) + d\}.$$

k-decomposable ideal

For the monomial $u = x_1^{a_1} \cdots x_n^{a_n}$ in R, the support of u denoted by supp (u) is the set $\{x_i : a_i \neq 0\}$.

For the monomial u and the monomial ideal I, set

$$I_u = (M \in \mathcal{G}(I) : x_i^{a_i} \nmid M \ \forall x_i \in \text{supp}(u))$$

and

$$I^u = (M \in \mathcal{G}(I) : M \notin \mathcal{G}(I_u))$$

k-decomposable ideal

For a monomial ideal I with $\mathcal{G}(I) = \{M_1, \ldots, M_r\}$, the monomial $u = x_1^{a_1} \cdots x_n^{a_n}$ is called a shedding monomial for I if $I_u \neq 0$ and for each $M_i \in \mathcal{G}(I_u)$ and each $x_\ell \in \text{supp}(u)$ there exists $M_i \in \mathcal{G}(I^u)$ such that $M_i : M_i = x_\ell$.

Definition[Rahmati-Asghar, Yassemi]. A monomial ideal I with $\mathcal{G}(I) = \{M_1, \ldots, M_r\}$ is called k-decomposable if r = 1 or else has a shedding monomial u with $|\text{supp}(u)| \le k + 1$ such that the ideals I_u and I^u are k-decomposable.

k-decomposable ideal

For a monomial ideal I with $\mathcal{G}(I) = \{M_1, \ldots, M_r\}$, the monomial $u = x_1^{a_1} \cdots x_n^{a_n}$ is called a shedding monomial for I if $I_u \neq 0$ and for each $M_i \in \mathcal{G}(I_u)$ and each $x_\ell \in \text{supp}(u)$ there exists $M_i \in \mathcal{G}(I^u)$ such that $M_i : M_i = x_\ell$.

Definition[Rahmati-Asghar, Yassemi]. A monomial ideal I with $\mathcal{G}(I) = \{M_1, \ldots, M_r\}$ is called k-decomposable if r = 1 or else has a shedding monomial u with $|\text{supp}(u)| \le k + 1$ such that the ideals I_u and I^u are k-decomposable.

Theorem[Rahmati-Asghar, Yassemi]. A d-dimensional simplicial complex Δ is k-decomposable if and only if $I_{\Delta^{\vee}}$ is a squarefree k-decomposable ideal for any $k \leq d$.

Theorem. Let I be a k-decomposable ideal with the shedding monomial u. Then

$$\beta_{i,j}(I) = \beta_{i,j}(I^u) + \sum_{\ell=0}^m {m \choose \ell} \beta_{i-\ell,j-\ell}(I_u)$$

where m = |supp(u)|.

Outline of proof. If $f_1 < \cdots < f_t$ is an order of linear quotients on the minimal generators of I^u and $g_{t+1} < \cdots < g_r$ is an order of linear quotients on the minimal generators of I_u , then

$$f_1 < \cdots < f_t < g_{t+1} < \cdots < g_r$$

is an order of linear quotients on the minimal generators of I.

$$\operatorname{set}_{I}(f_{i}) = \operatorname{set}_{I^{u}}(f_{i}), \quad \forall \ 1 \leq i \leq t$$

and

$$\operatorname{set}_{I}(g_{i}) = \operatorname{supp}(u) \bigcup \operatorname{set}_{I_{u}}(g_{i}) \ \forall \ t+1 \leq i \leq r$$

Also for any $t+1 \le i \le r$, supp $(u) \cap \operatorname{set}_{I_u}(g_i) = \emptyset$. Thus

$$|\mathrm{set}_I(g_i)| = |\mathrm{set}_{I_u}(g_i)| + m$$

$$\beta_{i,j}(I) = \sum_{\deg(f_k) = j-i} {|\operatorname{set}_I(f_k)| \choose i} + \sum_{\deg(g_k) = j-i} {|\operatorname{set}_I(g_k)| \choose i}$$

Applying the equality

$$\binom{|\operatorname{set}_{J_u}(g_k)|+m}{i} = \sum_{\ell=0}^m \binom{m}{\ell} \binom{|\operatorname{set}_{J_u}(g_k)|}{i-\ell}$$

we have

$$\beta_{i,j}(I) = \beta_{i,j}(I^u) + \sum_{\ell=0}^m {m \choose \ell} \beta_{i-\ell,j-\ell}(I_u)$$

Corollary. Let I be a k-decomposable ideal with the shedding monomial u and $m = |\sup (u)|$. Then

- $\operatorname{pd}(I) = \max\{\operatorname{pd}(I^u), \operatorname{pd}(I_u) + m\}, \text{ and }$
- $\operatorname{reg}(I) = \max\{\operatorname{reg}(I^u), \operatorname{reg}(I_u)\}.$

Theorem. Let Δ be a k-decomposable simplicial complex on the vertex set X with the shedding face σ . Then

- $\operatorname{reg}(R/I_{\Delta}) = \max\{\operatorname{reg}(R/I_{\Delta\setminus\sigma}), \operatorname{reg}(R/I_{\operatorname{lk}(\sigma)}) + |\sigma|\},$
- $\operatorname{pd}(R/I_{\Delta}) = \max\{\operatorname{pd}(R/I_{\Delta\setminus\sigma}), \operatorname{pd}(R/I_{\operatorname{lk}(\sigma)})\},$

where $I_{\Delta\setminus\sigma}$ and $I_{lk(\sigma)}$ are Stanley-Reisner ideals of $\Delta\setminus\sigma$ and $lk(\sigma)$ on the vertex sets X and $X\setminus\sigma$, respectively.

Corollary. Let Δ be a shellable simplicial complex with the shelling order $F_1 < \cdots < F_k$ and $\dim(\Delta) = d$. For any $1 \le i \le k$, let $\Delta_i = \langle F_1, \dots, F_i \rangle$ and $\mathcal{R}(F_i) = \{x \in F_i : F_i \setminus \{x\} \in \Delta_{i-1}\}$. Then $\operatorname{reg}(R/I_{\Delta}) = \max\{|\mathcal{R}(F_1)|, \dots, |\mathcal{R}(F_k)|\}.$

Definition. Let \mathcal{H} be a clutter. A vertex v of \mathcal{H} is simplicial if for every two edges e_1 and e_2 of \mathcal{H} that contain v, there is a third edge e_3 such that $e_3 \subseteq (e_1 \cup e_2) \setminus \{v\}$.

Definition. A clutter \mathcal{H} is chordal if every minor of \mathcal{H} has a simplicial vertex.

Corollary. Let \mathcal{H} be a chordal clutter, $x \in V(\mathcal{H})$ be a simplicial vertex for \mathcal{H} and $e = \{x, x_1, \dots, x_d\}$ be an edge of \mathcal{H} containing x. Then

•
$$\operatorname{reg}(R/I(\mathcal{H})) =$$

$$\max\{\operatorname{reg}(R/I(\mathcal{H}')), \operatorname{reg}(R/I(\mathcal{H}/\{x_1, \dots, x_d\})) + d\}$$

where

$$E(\mathcal{H}') = \{e \in E(\mathcal{H}): \ \{x_1, \dots, x_d\} \nsubseteq e\} \cup \{\{x_1, \dots, x_d\}\}.$$

• $\operatorname{reg}(R/I(\mathcal{H})) \leq$

$$\max\{\sum_{i=1}^{d} \operatorname{reg}(R/I(\mathcal{H}\backslash x_{i})) + (d-1), \operatorname{reg}(R/I(\mathcal{H}/\{x_{1},\ldots,x_{d}\})) + d\}$$

For a graph G, let $J_m(G)$ be the ideal generated by all squarefree monomials u of degree m, such that supp (u) is an independent set of G.

Theorem. Let G be a chordal graph and x be a simplicial vertex of G. Set $I = J_m(G)$, $J = J_m(G \setminus x)$ and $K = J_{m-1}(G \setminus N_G[x])$. Then I = J + xK is a 0-decomposable ideal. Moreover, if $I \neq 0$, then

- (i) $\beta_{i,j}(I) = \beta_{i,j}(J) + \beta_{i-1,j-1}(J) + \beta_{i,j-1}(K)$
- (ii) If $J \neq 0$, then $pd(I) = max\{pd(J) + 1, pd(K)\}$
- (iii) I has a m-linear resolution

For a graph G, let $J_m(G)$ be the ideal generated by all squarefree monomials u of degree m, such that supp (u) is an independent set of G.

Theorem. Let G be a chordal graph and x be a simplicial vertex of G. Set $I = J_m(G)$, $J = J_m(G \setminus x)$ and $K = J_{m-1}(G \setminus N_G[x])$. Then I = J + xK is a 0-decomposable ideal. Moreover, if $I \neq 0$, then

(i)
$$\beta_{i,j}(I) = \beta_{i,j}(J) + \beta_{i-1,j-1}(J) + \beta_{i,j-1}(K)$$

- (ii) If $J \neq 0$, then $pd(I) = \max\{pd(J) + 1, pd(K)\}\$
- (iii) I has a m-linear resolution.

k-decomposability and expansion

Definition. [Khosh-Ahang, Moradi] Let $\Delta = \langle F_1, \ldots, F_m \rangle$ be a simplicial complex with the vertex set $V(\Delta) = \{x_1, \ldots, x_n\}$ and $s_1, \ldots, s_n \in \mathbb{N}$ be arbitrary integers. We define the (s_1, \ldots, s_n) -expansion of Δ to be a simplicial complex with the vertex set $\{x_{11}, \ldots, x_{1s_1}, x_{21}, \ldots, x_{2s_2}, \ldots, x_{n1}, \ldots, x_{ns_n}\}$ and the facets

$$\{\{x_{i_1r_1},\ldots,x_{i_{k_i}r_{k_i}}\}\ :\ \{x_{i_1},\ldots,x_{i_{k_i}}\}\in\mathcal{F}(\Delta),\ (r_1,\ldots,r_{k_i})\in[s_{i_1}]\times\cdots\times[s_{i_{k_i}}]$$

We denote this simplicial complex by $\Delta^{(s_1,...,s_n)}$

Theorem. [Moradi,Rahmati-Asghar] Let Δ be a simplicial complex on $\{x_1,\ldots,x_n\}$ and $\alpha\in\mathbb{N}^n$.

 Δ is k-decomposable $\iff \Delta^{\alpha}$ is k-decomposable

k-decomposability and expansion

Definition. [Khosh-Ahang, Moradi] Let $\Delta = \langle F_1, \ldots, F_m \rangle$ be a simplicial complex with the vertex set $V(\Delta) = \{x_1, \ldots, x_n\}$ and $s_1, \ldots, s_n \in \mathbb{N}$ be arbitrary integers. We define the (s_1, \ldots, s_n) -expansion of Δ to be a simplicial complex with the vertex set $\{x_{11}, \ldots, x_{1s_1}, x_{21}, \ldots, x_{2s_2}, \ldots, x_{n1}, \ldots, x_{ns_n}\}$ and the facets

$$\{\{x_{i_1r_1},\ldots,x_{i_{k_i}r_{k_i}}\}\ :\ \{x_{i_1},\ldots,x_{i_{k_i}}\}\in\mathcal{F}(\Delta),\ (r_1,\ldots,r_{k_i})\in[s_{i_1}]\times\cdots\times[s_{i_{k_i}}]$$

We denote this simplicial complex by $\Delta^{(s_1,...,s_n)}$

Theorem. [Moradi,Rahmati-Asghar] Let Δ be a simplicial complex on $\{x_1,\ldots,x_n\}$ and $\alpha\in\mathbb{N}^n$.

 Δ is k-decomposable $\iff \Delta^{\alpha}$ is k-decomposable

Outline of proof: \Rightarrow Let Δ be k-decomposable, X be the vertex set of Δ , $x_i \in X$ and

$$\Delta' = \Delta \cup \langle (F \setminus \{x_i\}) \cup \{x_i'\} : F \in \mathcal{F}(\Delta), x_i \in F \rangle$$

$$\begin{split} I_{\Delta'^{\vee}} &= x_i' I_{\Delta^{\vee}} + x_i I_{(\operatorname{lk}_{\Delta}(x_i))^{\vee}} \\ \operatorname{Also} \left(I_{\Delta'^{\vee}} \right)_{x_i'} &= x_i I_{(\operatorname{lk}_{\Delta}(x_i))^{\vee}} \text{ and } \left(I_{\Delta'^{\vee}} \right)^{x_i'} &= x_i' I_{\Delta^{\vee}}. \end{split}$$

 $lk_{\Delta}(x_i)$ is k-decomposable

 \Downarrow

 $x_i' I_{\Delta^{\vee}}$ and $x_i I_{(lk_{\Delta}(x_i))^{\vee}}$ are k-decomposable ideals

Also for any minimal generator $x_i x^{X \setminus F} \in (I_{\Delta'^{\vee}})_{x'}$,

$$(x_i'x^{X\setminus F}:x_ix^{X\setminus F})=(x_i')$$

 \Leftarrow Let $\Delta' = \Delta \cup \langle (F \setminus \{x_i\}) \cup \{x_i'\} : F \in \mathcal{F}(\Delta), x_i \in F \rangle$ be k-decomposable.

If $\mathcal{F}(\Delta) = \{F\}$, then clearly it is k-decomposable.

Suppose that Δ has more than one facet and σ be a shedding face of Δ' and let $\text{lk}_{\Delta'}\sigma$ and $\Delta' \setminus \sigma$ are k-decomposable. We have two cases:

Case 1. $x_i' \in \sigma$ or $x_i \in \sigma$. Then

$$\Delta = \Delta' \setminus \sigma$$
 and so Δ is k-decomposible

Case 2. $x_i \notin \sigma$ and $x_i' \notin \sigma$.

 $\mathrm{lk}_{\Delta'}\sigma \ \mathrm{and} \ \Delta' \backslash \sigma \ \ \mathrm{are, \ respectively, \ some \ expansions \ of \ } \mathrm{lk}_{\Delta}\sigma \ \mathrm{and} \ \Delta \backslash \sigma$

So by induction $lk_{\Delta}\sigma$ and $\Delta \backslash \sigma$ are k-decomposable.

Theorem. [Moradi,Rahmati-Asghar] Let Δ be a k-decomposable simplicial complex on [n] and $\alpha = (s_1, \ldots, s_n)$. Then

- $\operatorname{pd}(S^{\alpha}/I_{\Delta^{\alpha}}) = \operatorname{pd}(S/I_{\Delta}) + s_1 + \dots + s_n n$
- depth $(S^{\alpha}/I_{\Delta^{\alpha}})$ = depth (S/I_{Δ})

Theorem. [Moradi,Rahmati-Asghar] Let Δ be a simplicial complex on [n] and $\alpha = (s_1, \ldots, s_n)$. Then

$$\operatorname{reg}(I_{\Delta^{\alpha}}) \leq \operatorname{reg}(I_{\Delta}) + r$$

where $r = |\{i : s_i > 1\}|.$

Theorem. [Moradi,Rahmati-Asghar] Let Δ be a k-decomposable simplicial complex on [n] and $\alpha = (s_1, \ldots, s_n)$. Then

- $\operatorname{pd}(S^{\alpha}/I_{\Delta^{\alpha}}) = \operatorname{pd}(S/I_{\Delta}) + s_1 + \dots + s_n n$
- depth $(S^{\alpha}/I_{\Delta^{\alpha}})$ = depth (S/I_{Δ})

Theorem. [Moradi,Rahmati-Asghar] Let Δ be a simplicial complex on [n] and $\alpha = (s_1, \ldots, s_n)$. Then

$$\operatorname{reg}(I_{\Delta^{\alpha}}) \leq \operatorname{reg}(I_{\Delta}) + r$$

where $r = |\{i : s_i > 1\}|$.

Outline of proof. First by induction on s_i we show that

$$\operatorname{reg}(\operatorname{I}_{\Delta^{(1,...,1,\mathbf{s}_{\mathrm{i}},1,...,1)}}) \leq \operatorname{reg}(\operatorname{I}_{\Delta}) + 1$$

Theorem. [Moradi,Rahmati-Asghar] Let Δ be a k-decomposable simplicial complex on [n] and $\alpha = (s_1, \ldots, s_n)$. Then

- $\operatorname{pd}(S^{\alpha}/I_{\Delta^{\alpha}}) = \operatorname{pd}(S/I_{\Delta}) + s_1 + \dots + s_n n$
- depth $(S^{\alpha}/I_{\Delta^{\alpha}})$ = depth (S/I_{Δ})

Theorem. [Moradi,Rahmati-Asghar] Let Δ be a simplicial complex on [n] and $\alpha = (s_1, \ldots, s_n)$. Then

$$\operatorname{reg}(I_{\Delta^{\alpha}}) \leq \operatorname{reg}(I_{\Delta}) + r$$

where $r = |\{i : s_i > 1\}|$.

Outline of proof. First by induction on s_i we show that

$$\operatorname{reg}(I_{\Delta^{(1,\ldots,1,s_{i},1,\ldots,1)}}) \le \operatorname{reg}(I_{\Delta}) + 1$$

$$\operatorname{reg}(I_{\Delta^{(1,\ldots,1,s_{i},1,\ldots,1)}}) \leq \text{max}\{\operatorname{reg}(I_{lk_{\Delta}(x_{i})}) + 1,\operatorname{reg}(I_{\Delta^{(1,\ldots,1,s_{i}-1,1,\ldots,1)}})\}.$$

Then from the equality

$$\Delta^{(s_1,...,s_n)} = (\Delta^{(s_1,...,s_{n-1},1)})^{(1,...,1,s_n)}$$

we have

$$\operatorname{reg}(I_{\Lambda^{(s_1,\ldots,s_n)}}) \le \operatorname{reg}(I_{\Lambda^{(s_1,\ldots,s_{n-1},1)}}) + 1$$

and one can get the result by induction on n.

Thanks!