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|
OVERVIEW

The idea of representing a complex mathematical object by a simpler
one is as old as mathematics itself. It is particularly useful in
classification problems.

Covering theory is one of these ideas to present a technique for the
computation of the indecomposable modules over a
representation-finite algebra.
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|
OVERVIEW

Covering techniques in representation theory have become important
after the work of Bongartz-Gabriel, Gabriel and Riedtmann.

] @ K. BONGARTZ AND P. GABRIEL, Covering spaces in representation
theory, Invent. Math. 65 (1982) 331-378.

[ @ P. GABRIEL, The universal cover of a representation-finite algebra,
in: Lecture Notes in Math., vol. 903, Springer-Verlag, Berlin/New
York, 1981, 68-105.

s [ C. RIEDTMANN, Algebren, Darstellungskocher, Uberlagerungen und
zuruck, Comment. Math. Helv. 55 (1980) 199-224.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 2 /37



|
OVERVIEW

Covering techniques in representation theory have become important
after the work of Bongartz-Gabriel, Gabriel and Riedtmann.

Riedtmann introduce coverings of the Auslander-Reiten quiver I'y of a
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|
OVERVIEW

Covering techniques in representation theory have become important
after the work of Bongartz-Gabriel, Gabriel and Riedtmann.

Riedtmann introduce coverings of the Auslander-Reiten quiver I'y of a
representation-finite algebra A.

Bongartz and Gabriel developed this notion to provide concrete
algorithms which enable us to construct the Auslander-Reiten quivers
for plenty of algebras.
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|
OVERVIEW

One of the most important results in this theory is the following
theorem which is proved by Gabriel and then completed by Martinez
and De le Pena:

let C be a locally bounded k-category over a field k and let a group G
act freely on C. Then C is locally representation-finite if and only if

C/G is so.

] @ R. MARTINEZ, J. A. DE LE PENA, Automorphisms of
representation-finite algebras, Invent. Math. 72 (1983), 359-362.
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|
OVERVIEW

Asashiba brought this point of view to the derived equivalence
classification problem of algebras. He investigated that when does a
derived equivalence between categories C and C’ yield a derived
equivalence between orbit categories C/G and C'/H.

Asashiba generalized the covering technique for an arbitrary k-category
to apply covering techniques to usual additive categories such as the
homotopy category K(Prj-C) of projectives.

s 3 H ASASHIBA, A generalization of Gabriels Galois covering functors
and derived equivalences, J. Algebra 334 (2011), 109-149.
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|
OVERVIEW

Asashiba brought this point of view to the derived equivalence
classification problem of algebras. He investigated that when does a
derived equivalence between categories C and C’ yield a derived
equivalence between orbit categories C/G and C'/H.

Asashiba generalized the covering technique for an arbitrary k-category
to apply covering techniques to usual additive categories such as the
homotopy category K(Prj-C) of projectives.

s 3 H ASASHIBA, A generalization of Gabriels Galois covering functors
and derived equivalences, J. Algebra 334 (2011), 109-149.

Using this generalization, we plan to give a classification of algebras of
finite Cohen-Macaulay type.
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QUIVERS

A quiver Q is a quadruple Q = (Qp, 91, s, 1)
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QUIVERS

A quiver Q is a quadruple Q = (Qp, 91, s, 1)

Qp: the set of vertices
Q;: the set of arrows

s,t: Q1 — Qp tow maps
Ya € Ql,

m s(«) is the source of «

m t(«) is the target of «
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QUIVERS

A quiver Q is a quadruple Q = (Qp, 91, s, 1)

al
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m A path of length n > 1 in a quiver Q is p = a1 -+ -, Where a; € E
and t(o;) = s(aq1) for all i € {1,--- ,;n—1}.
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m A path of length n > 1 in a quiver Q is p = a1 -+ -, Where a; € E
and t(o;) = s(aq1) for all i € {1,--- ,;n—1}.
m A path of length 0 is a vertex.
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QUIVERS

A quiver Q is a quadruple Q = (Qp, 91, s, 1)

al

7N
(%] V2 3 as

~—
a2

A path of length n > 1 in a quiver Q is p = a1 - - - a, where a; € F
and t(o;) = s(aq1) for all i € {1,--- ,;n—1}.
A path of length 0 is a vertex.

® asajas is a path of length 3.

m v; and vy are paths of length 0.
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PATH ALGEBRA

Let Q be a quiver and k a field. The path k-algebra of the quiver O,
denoted by kQ, is the algebra obtained as follows:
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Let Q be a quiver and k a field. The path k-algebra of the quiver O,

denoted by kQ, is the algebra obtained as follows:

m The basis as a k-vector space is the set of all paths in Q.
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PATH ALGEBRA

Let Q be a quiver and k a field. The path k-algebra of the quiver O,
denoted by kQ, is the algebra obtained as follows:

m The basis as a k-vector space is the set of all paths in Q.
m The multiplication of paths is given by concatenation:

[ s i 4(p) = s(e)
p-o= { 0 otherwise
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PATH ALGEBRA

Let Q be a quiver and k a field. The path k-algebra of the quiver Q,
denoted by kQ, is the algebra obtained as follows:

m The basis as a k-vector space is the set of all paths in Q.
m The multiplication of paths is given by concatenation:

[ ()= s(e)
p-a= { 0  otherwise

v

The Jordan quiver e 3 @

m Basis as k-vector space is {v,a,a?, a3, - }.

m Multiplication: va™ = o” = a™wv.
m kO = klz].
v
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Preliminaries

rep,(Q)

Let Q be a quiver and k be a field.

DEFINITION

A representation M of @ is defined by the following data:
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Preliminaries

rep,(Q)

Let Q be a quiver and k be a field.

DEFINITION

A representation M of @Q is defined by the following data:

m To each vertex
v hr~—~—~—~—~> a k-vector space M,.

m To each arrow
a:v— w b~——r~—~~> ak-homomorphism M, : M, — M,,,.

m It is called finite dimensional if each vector space M, is finite
dimensional.

We denote by rep, (Q) the category of all finite dimensional
representations of Q.
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Preliminaries

ADMISSIBLE IDEAL

An ideal I of kQ is called admissible, if there exists n € Z such that
Ry cCIcC R2Q, where Rp is the ideal of kQ generated, as a k-vector
space, by the set of all paths of length > n.
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Preliminaries

Let Q be a quiver and I be an admissible ideal of kQ. A representation
M = (My, M) of Q is called bound by I, if we have M, = 0, for all
relations « € 1.
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Preliminaries

Let Q be a quiver and I be an admissible ideal of kQ. A representation
M = (My, M) of Q is called bound by I, if we have M, = 0, for all
relations « € 1.

We denote by rep, (Q, ') the category of all finite dimensional
representations of @ bound by I.

| A\

THEOREM

Let Q be a finite connected quiver and A = kQ/I, where I is an
admissible ideal of kQ. Then there exists a k-linear equivalence of
categories

F :mod-A — rep, (9, I).
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NOTATIONS

Classical Covering Theory

m k: a field
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NOTATIONS

Classical Covering Theory

m k: a field

m C: a small k-category
m C is called a k-category, if

m C(z,y) is a k-module
B -:C(y,2) x C(z,y) — C(z, 2) is k-bilinear

m GG: a group
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LocALLy BOUNDED CATEGORIES

DEFINITION

m C is a spectroid if
r#£y=—= x2y,VayecC (Cis basic);
B C(xz,z) is a local k-algebra V « € C (C is semiperfect);
dimy C(z,y) < 0o, V z,y € C.
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LocALLy BOUNDED CATEGORIES

DEFINITION

m C is a spectroid if
r#£y=—= x2y,VayecC (Cis basic);
B C(xz,z) is a local k-algebra V « € C (C is semiperfect);
dimy C(z,y) < 0o, V z,y € C.

m A spectroid C is called locally bounded, if

Vaeel,{yeC|C(x,y) #0 & C(y,x) # 0} is finite.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 9/ 37



G-CATEGORIES

DEFINITION

A k-category with a G-action, or simply G-category, is a pair (C, A)
such that
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G-CATEGORIES

DEFINITION

A k-category with a G-action, or simply G-category, is a pair (C, A)
such that

m C is a k-category;

m A:G — Aut(C) is a group homomorphism.

C:=(C,A).
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G-CATEGORIES

DEFINITION

A k-category with a G-action, or simply G-category, is a pair (C, A)
such that

m C is a k-category;

m A:G — Aut(C) is a group homomorphism.

For every k-category C and every group G, we set
A(C) := (C,1), where

1:G — Aut(C)
a +— idc
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G-ACTIONS

Let C = (C, A) be a G-category.
m The G-action A is called free, if ax # x, for every a # 1 and x € C,
i.e. the map surjective map

G — Gz :={azx | a € G}

a— ax

is injective
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G-ACTIONS

Let C = (C, A) be a G-category.
m The G-action A is called free, if ax # x, for every a # 1 and x € C,
i.e. the map surjective map

G — Gz :={azx | a € G}

a > ax
is injective
m The G-action A is called locally bounded, if for every x,y € C,
{a € G|C(ax,y) # 0}

is finite.
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GALOIS G-COVERING

C, B: Spectroids
C = (C,A) with A: free, locally bounded
F :C — B: a k-functor
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GALOIS G-COVERING

C, B: Spectroids
C = (C,A) with A: free, locally bounded
F :C — B: a k-functor

STRICTLY G-INVARIANT

The k-functor F is called strictly G-invariant, if F' = F A(a), for every
a € G, ie.

A(a)

NoA

C ©
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v

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 12 / 37




GALOIS G-COVERING

C, B: Spectroids
C = (C,A) with A: free, locally bounded
F :C — B: a k-functor

GALOIS G-PRECOVERING

A strictly G-invariant F' is called a Galois G-precovering, if
m F~Y(Fz) =Gz, ie. the map

G — F1(Fz)

at— axr

is bijection.
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GALOIS G-COVERING

C, B: Spectroids
C = (C,A) with A: free, locally bounded
F :C — B: a k-functor

GALOIS G-PRECOVERING

A strictly G-invariant F is called a Galois G-precovering, if
n F~Y(Fz) = G,

m [’ induces k-module isomorphisms

@ Clax,y) — B(Fz, Fy)
°ee (fa)aeG = Z F(fa)

e

@z, by) — B(Fz, Fy)
"¢ (fodec > F(fy)

beG

v
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GALOIS G-COVERING

C, B: Spectroids
C = (C,A) with A: free, locally bounded
F :C — B: a k-functor

GALOIS G-COVERING

The k-functor F' is a Galois G-covering, if F' is a Galois G-precovering
and, in addition F': Obj(C) — Obj(B) is serjective.
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Classical Covering Theory

C :=k[9]/(ai2ait10u), G = (a),

. A .
i—1 a X i—1 Q
>i i 42 ;>z
i+ 1 a; > a;i0 i+ 1
aik %‘k*
' it2 ' it 2
/i\
B :=k|9Q|/{afa, Bas 1 2
Q1/(0a, Bos) _ >
8
N1 i¢2Z N )« 1¢ 27
F(z)'{ 2 i€2Z ’F(O‘l)'{ﬁ i€ 2L
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ORBIT CATEGORY

Let C be a k-category with a free and locally bounded G-action. The
orbit category C/G of C by G is a k-category with the following data:

v
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ORBIT CATEGORY

Let C be a k-category with a free and locally bounded G-action. The
orbit category C/G of C by G is a k-category with the following data:

m Obj(C/G) == {Gz | x € Obj(C)};

v
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ORBIT CATEGORY

Let C be a k-category with a free and locally bounded G-action. The
orbit category C/G of C by G is a k-category with the following data:

m Obj(C/G) := {Gz | z € Obj(C) };
m Yu,v € Obj(C/G),

(C/G)(u,v) := {(fyx)ggg € HC(«T:Q) | ANy are G}
Yyev

TEU

v
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ORBIT CATEGORY

Let C be a k-category with a free and locally bounded G-action. The
orbit category C/G of C by G is a k-category with the following data:

m Obj(C/G) := {Gz | z € Obj(C) };
m Yu,v € Obj(C/G),

(€/G)(u,v) :=A{(fya)yev € HC(x,y) | afyz = fozay, Va € G}

TEU yev

TEU

mVf=(fye) i u—0v,9=(9z) v — winC/G,

g9f = (Z gzyfyz)

yev yev

TEU

v
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CANONICAL FUNCTOR

C: Spectroid
C = (C,A) with A: free, locally bounded

The canonical functor P : C — C/G is defined as follows:
T P, =Gz
N Fri=Caafweey
Y Py =Gy
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CANONICAL FUNCTOR

C: Spectroid
C = (C,A) with A: free, locally bounded

The canonical functor P : C — C/G is defined as follows:
T P, =Gz
N Fri=Caafweey
Y Py =Gy

PROPOSITION

The canonical functor P : C — C/G is a Galois G-covering.
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CANONICAL FUNCTOR

PROPOSITION

P :C — C/G is universal among strictly G-invariant functors from C
to a spectroid, i.e.
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to a spectroid, i.e.

m P is strictly G-invariant;
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CANONICAL FUNCTOR

PROPOSITION

P :C — C/G is universal among strictly G-invariant functors from C
to a spectroid, i.e.

m P is strictly G-invariant;

m for every strictly G-invariant functor £ : C — B,
AH:C/G— Bst. E=HP

G
PL A m
C/G
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CANONICAL FUNCTOR

PROPOSITION

P :C — C/G is universal among strictly G-invariant functors from C
to a spectroid, i.e.

m P is strictly G-invariant;

m for every strictly G-invariant functor £ : C — B,
NAH:C/G— Bst. E=HP

G
PL A m
C/G

Thus, E is a Galois G-covering iff H is an isomorphism.
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Mod-B

B:  small k-category

The category of right B-modules, Mod-B

m Objects: additive contravariant functors B — Mod-k
m Morphisms: natural transformations of functors

m Composition law: usual composition of natural transformations
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m Objects: additive contravariant functors B — Mod-k
m Morphisms: natural transformations of functors

m Composition law: usual composition of natural transformations
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Classical Covering Theory
mod-B

A B-module M is called finitely generated, if
Jx1,-- ,x, € Obj(B) together with an epimorphism

a:B(—,z)®--®B(—,zy) — M
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Classical Covering Theory
mod-B

A B-module M is called finitely generated, if
Jx1,-- ,x, € Obj(B) together with an epimorphism

a:B(—,z)®--®B(—,zy) — M

The full subcategory of Mod-B consisting of finitely generated
B-modules is denoted by mod-B.

The full subcategory of mod-B consisting of indecomposable B-modules
is denoted by ind-B.

v

The full subcategory of mod-B consisting of projective B-modules is
denoted by prj-B.
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(G-ACTION ON Mod-C

Let C = (C, A) be a G-category.
Mod-C = (Mod-C, A) turns out to be a G-category by defining:
A: G — Aut(Mod-C) as

A (M) = Mo A(a™t), Va € G, M € Mod-C
M = A(a)(M)
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PULLUP AND PUSHDOWN FUNCTORS

C: a spectoid G-category, P:C — C/G
We have the functor

P : Mod-C/G — Mod-C

Mw— MoP

is called the pullup of P.
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is called the pullup of P.
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C: a spectoid G-category, P:C — C/G

It is known that P+ has a left adjoint P, : Mod-C — Mod-C /G, which
is called the pushdown of P.

P, : Mod-C — Mod-C/G is given as follows:
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PULLUP AND PUSHDOWN FUNCTORS

C: a spectoid G-category, P:C — C/G

P, : Mod-C — Mod-C/G is given as follows:
m On Objects: M € Mod-C, u,v € Obj(C/G) , f:u—v

(PM), : =——= @yevM(y)
L(P.M)(f) L(M(fyz))a;g%
(PM)u o S @xEUM(x)
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C: a spectoid G-category, P:C — C/G

P, : Mod-C — Mod-C/G is given as follows:
m On Objects: M € Mod-C, u,v € Obj(C/G) , f:u—v

(PM), : =——= @yevM(y)
L(P.M)(f) L(M(fyz))a;g%
(PM)u o S @xEUM(x)

s On Morphisms: a: M — M’ in Mod-C

(M), — L (parny,

Drcutx

/
BreuM () > DgeuM’(2)

o
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PULLUP AND PUSHDOWN FUNCTORS

C: a spectoid G-category, P:C — C/G
P : Mod-C/G — Mod-C, P, : Mod-C — Mod-C/G

m P"PM = ®4cc®M, (M € Mod-C)
m PC(—,x) = (C/G)(—, Pz)
m P preserves finitely generated, i.e.

P : mod-C — mod-C/G
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MAIN THEOREM

C : a locally bounded spectroid
C: a G-category with a free and locally bounded action

G acts freely on mod-C
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Classical Covering Theory

MAIN THEOREM

C : a locally bounded spectroid

C: a G-category with a free and locally bounded action

G acts freely on mod-C
m M €ind-C = PM € ind-C/G
m C: locally representation finite = P, : ind-C — ind-C/G is a

Galois G-covering.
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MAIN THEOREM

C : a locally bounded spectroid
C: a G-category with a free and locally bounded action

G acts freely on mod-C

m M €ind-C = PM € ind-C/G

m C: locally representation finite = P, : ind-C — ind-C/G is a
Galois G-covering.

A locally representation finite category is a locally bounded category C
such that the number of M € ind-C satisfying M (x) # 0 is finite for
each z € C.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 21 / 37



MAIN THEOREM

C : a locally bounded spectroid
C: a G-category with a free and locally bounded action

G acts freely on mod-C

m M €ind-C = PM € ind-C/G

m C: locally representation finite = P, : ind-C — ind-C/G is a
Galois G-covering.

m P induces an isomorphism
(ind-C)/G ~ ind-(C/G)

So, C is locally representation finite if and only if C/G is so.

v
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Classical Covering Theory

C :=k[9]/(ai2ait10u), G = (a),

. A .
i—1 a X i—1 Q
>i i 42 ;>z
i+ 1 a; > a;i0 i+ 1
aik %‘k*
' it2 ' it 2
/i\
B :=k|9Q|/{afa, Bas 1 2
Q1/(0a, Bos) _ >
8
N1 i¢2Z N )« 1¢ 27
F(z)'{ 2 i€2Z ’F(O‘l)'{ﬁ i€ 2L
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A generalization of Gabriels Galois covering

Some assumptions of spectroids made it very inconvenient to apply the
covering technique to usual additive categories
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A generalization of Gabriels Galois covering

Some assumptions of spectroids made it very inconvenient to apply the
covering technique to usual additive categories
n KP(prj-R)
» It is not semiperfect.
» If we construct the full subcategory of indecomposable objects,

then we destroy additional structures like a structure of a
triangulated category and the basic property.
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A generalization of Gabriels Galois covering

Some assumptions of spectroids made it very inconvenient to apply the
covering technique to usual additive categories

= K"(prj-R)
m Mod-R

H. Asashiba generalized the covering technique to remove all these
assumptions.

s 3 H. ASASHIBA, A generalization of Gabriels Galois covering functors
and derived equivalences, J. Algebra 334 (2011), 109-149.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 23 / 37



(G-INVARIANTS

C: a skeletally small k-category equipped with an action of a group G

DEFINITION

A functor F : C — C' is called G-invariant, if 3 ¢ := (p4)acg of
natural isomorphisms ¢, : F' — F' A, such that for every «a, 8 € G,
the following diagram is commutative

F e L FA,

Aa
k \L@B

FAgy = FAgA,,.

The family ¢ := (¢4 )acc is called an invariance adjuster of F'.
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(G-COVERINGS

DEFINITION

Let F : C — C’ be a G-invariant functor.
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(G-COVERINGS

DEFINITION

Let F : C — C’ be a G-invariant functor.

m [ is called a G-precovering if for every x,y € C the following two
k-homomorphisms are isomorphisms

Fﬂg,ly) : @C(axvy) — C’(Fx,Fy), (fa)aeG = Z F(fa)‘soa,aﬂ

acl aeG
F® . @C z,By) — C'(Fx,Fy), (fg)pec — Z pa-1,8y-F'(fp)-
BeG HEE
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(G-COVERINGS

DEFINITION

Let F : C — C’ be a G-invariant functor.

m [ is called a G-precovering if for every x,y € C the following two
k-homomorphisms are isomorphisms

Fﬂg,ly) : @C(axvy) — C’(Fx,Fy), (fa)aeG = Z F(fa)‘soa,aﬂ

acl aeG
F® . @C z,By) — C'(Fx,Fy), (fg)pec — Z pa-1,8y-F'(fp)-
BeG HEE

m If, in addition, F' is dense, then F' is called a G-covering.
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ORBIT CATEGORY

The orbit category C/G of C by G is defined with the following data:
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ORBIT CATEGORY

The orbit category C/G of C by G is defined with the following data:
= Obj(C/G) = Obj(C),
m Morphisms:
V x,y € C/G, the morphism set C/G(z,y) is given by

{(fﬂ,a)(a’ﬁ) S H C(Oéx, /By) ‘ f is row finite and column finite and }

(a,B)EGXG IyBra=Y(f8,a),V7EG
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ORBIT CATEGORY

The orbit category C/G of C by G is defined with the following data:
= Obj(C/G) = Obj(C),
m Morphisms:
V x,y € C/G, the morphism set C/G(z,y) is given by

{(fﬂ,a)(a’ﬁ) S H C(Oéx, /By) ‘ f is row finite and column finite and }

(a,B)EGXG IyBra=Y(f8,a),V7EG

m Composition low:

For two composable morphisms x L) Y <5 2inC /G, we set

= (> 987 fra)@pecxc:

veG
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A generalization of Gabriels Galois covering

There is a canonical functor

P:C—C/G
T

f= (6a,ﬁaf)(a,6)
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Also, one can define an invariance adjuster ¢ of P.

m P=(P,p):C— C/G is a G-invariant functor.
m P:C — C/G is a G-covering functor.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 27 / 37



A generalization of Gabriels Galois covering

There is a canonical functor

P:C—C/G
T

f= (6a,ﬁaf)(o<,ﬂ)

Also, one can define an invariance adjuster ¢ of P.

m P=(P,p):C— C/G is a G-invariant functor.
m P:C — C/G is a G-covering functor.

m P:C — C/G is universal among G-invariant functors starting
from C.
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THE PUSHDOWN FUNCTOR P

C: a skeletally small k-category with a G-action
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THE PUSHDOWN FUNCTOR P

C: a skeletally small k-category with a G-action
» The canonical functor P : C — C/G induces a functor
P : Mod-(C/G) — Mod-C
M~ MoP

» The functor P possesses a left adjoint P, : Mod-C — Mod-C/G,
which is called the pushdown functor.
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THE PUSHDOWN FUNCTOR P

C: a skeletally small k-category with a G-action
» The canonical functor P : C — C/G induces a functor
P : Mod-(C/G) — Mod-C
M~ MoP

» The functor P possesses a left adjoint P, : Mod-C — Mod-C/G,
which is called the pushdown functor.

» [Asashiba’s result] The pushdown P, : mod-C — mod-(C/G) is a
G-precovering.
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O el
G-ACTION ON K(prj-C)

» The G-action on Mod-C can be canonically extended to the
G-action on K(prj-C), resp. KP(prj-C).
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O el
G-ACTION ON K(prj-C)

» The G-action on Mod-C can be canonically extended to the
G-action on K(prj-C), resp. KP(prj-C).

That is, for every complex X := (X? d*);cz and every a € G,
*X := (*X",*d")icz.
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G-ACTION ON K(prj-C)

» The G-action on Mod-C can be canonically extended to the
G-action on K(prj-C), resp. K" (prj-C).

» Also, the pullup and pushdown functors induce functors
m P K(prj-(C/G)) — K(prj-C),
= P, : K(prj-C) — K(prj-(C/G))
m (P, P) is an adjoint pair.
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O el
G-ACTION ON K(prj-C)

» The G-action on Mod-C can be canonically extended to the
G-action on K(prj-C), resp. KP(prj-C).

» Also, the pullup and pushdown functors induce functors
m P K(prj-(C/G)) — K(prj-C),
= P, : K(prj-C) — K(prj-(C/G))
m (P, P) is an adjoint pair.

» [Asashiba] The pushdown functor
P, : K®(prj-C) — KP(prj-(C/G)) is a G-precovering.
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Our results
TOTALLY ACYCLIC COMPLEXES

» A complex X in C(prj-C) is called totally acyclic of projectives if
for every projective object P € prj-C, the induced complexes
Hom¢ (X, P) and Home (P, X) of abelian groups are acyclic.
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Our results
TOTALLY ACYCLIC COMPLEXES

» A complex X in C(prj-C) is called totally acyclic of projectives if
for every projective object P € prj-C, the induced complexes
Home¢ (X, P) and Home (P, X) of abelian groups are acyclic.

» The full subcategory of K(prj-C) consisting of totally acyclic
complexes of projective is denoted by K,.(prj-C).

| A

PROPOSITION
The pushdown functor P, : mod-C — mod-(C/G) induces a functor

P. : Ktac(prj'c) — Ktac(prj—(C/G)).
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A generalization of Gabriels Galois covering Our results

Gp-C

An object G in mod-C is called Gorenstein projective if G is a syzygy of
a totally acyclic complex of finitely generated projective C-modules, i.e.

~

C—l 02
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A generalization of Gabriels Galois covering Our results

Gp-C
An object G in mod-C is called Gorenstein projective if G is a syzygy of
a totally acyclic complex of finitely generated projective C-modules, i.e.

~

C—l 02

We denote the full subcategory of mod-C consisting of all Gorenstein
projective objects in mod-C by Gp-C. J

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 31 / 37



Our results
THE STABLE CATEGORY Gp-C

Let X,Y € Gp-C.

P(X,Y): the subgroup of morphisms belong to Gp-C(X,Y") such that
factor through a projective P € prj-C.

NS

P

X Y
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Let X,Y € Gp-C.

P(X,Y): the subgroup of morphisms belong to Gp-C(X,Y") such that
factor through a projective P € prj-C.

N,

X Y

The stable category Gp-C is defined as follows:
= Obj(Gp-C) = Obj(Gp-C);
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Our results
THE STABLE CATEGORY Gp-C

Let X,Y € Gp-C.

P(X,Y): the subgroup of morphisms belong to Gp-C(X,Y") such that
factor through a projective P € prj-C.

N,

X Y

The stable category Gp-C is defined as follows:
= Obj(Gp-C) = Obj(Gp-C);

s Gp-C(X,Y) = Gp-C(X,Y)/P(X,Y).
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A generalization of Gabriels Galois covering Our results

One can easily show that there is a triangle equivalence
Gp-C =~ Kiae(prj-C),

sending a Gorenstein projective module to its complete resolution.
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A generalization of Gabriels Galois covering Our results

One can easily show that there is a triangle equivalence
Gp-C =~ Kiae(prj-C),

sending a Gorenstein projective module to its complete resolution.

v
THEOREM

Let C be a small G-category. Then the pushdown functor

P.: Gp-€ — Gp-(C/G)

is a G-precovering.
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Our results
LOCALLY SUPPORT FINITE

C: a k-category

M: a C-module

We denote by Supp-M the support of M, i.e., the full subcategory of C
consisting of all objects = of C such that M (x) # 0.
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Our results
LOCALLY SUPPORT FINITE

C: a k-category

M: a C-module

We denote by Supp-M the support of M, i.e., the full subcategory of C
consisting of all objects x of C such that M(z) # 0.

m Let C be a k-category and x be an object of C. C, denotes the full
subcategory of C formed by the points of all Supp-M, where
M € ind-C and M (z) # 0, i.e.

Co= U Supp-M.

Meind-C
M (x)#0

v
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Our results
LOCALLY SUPPORT FINITE

C: a k-category

M: a C-module

We denote by Supp-M the support of M, i.e., the full subcategory of C
consisting of all objects x of C such that M(z) # 0.

m Let C be a k-category and x be an object of C. C, denotes the full
subcategory of C formed by the points of all Supp-M, where
M € ind-C and M (z) # 0, i.e.

Co= U Supp-M.
M e€ind-C
M (x)#0
m A locally bounded k-category C is called locally support finite if
for every x € C, C, is finite.

v
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Our results
OUR MAIN THEOREM

THEOREM

Let C be a locally support finite with a free G-action. Assume that the
induced G-action on mod-C is also free.
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THEOREM

Let C be a locally support finite with a free G-action. Assume that the
induced G-action on mod-C is also free.

m P, : Gp-C — Gp-(C/G) is a G-covering.
m G €ind-(Gp-C) = P.G € ind-(Gp-C/G).
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Our results
OUR MAIN THEOREM

THEOREM

Let C be a locally support finite with a free G-action. Assume that the
induced G-action on mod-C is also free.

m P, : Gp-C — Gp-(C/G) is a G-covering.
m G €ind-(Gp-C) = P.G € ind-(Gp-C/G).
» P, :ind-(Gp-C) — ind-(Gp-C/G) is a G-covering. So,

ind-(Gp-C/G) ~ ind-(Gp-C)/G.
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Our results
OUR MAIN THEOREM

THEOREM

Let C be a locally support finite with a free G-action. Assume that the
induced G-action on mod-C is also free.

m P :Gp-C — Gp-(C/@G) is a G-covering,.
s G €ind-(Gp-C) = P.G € ind-(Gp-C/G).
m P, :ind-(Gp-C) — ind-(Gp-C/G) is a G-covering. So,

ind-(Gp-C/G) ~ ind-(Gp-C)/G.
A locally Cohen-Macaulay finite category is a locally support finite

category B such that the number of M € ind-(Gp-B) satisfying
M (z) # 0 is finite for each x € B.

v
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Our results
OUR MAIN THEOREM

THEOREM

Let C be a locally support finite with a free G-action. Assume that the
induced G-action on mod-C is also free.

m P, : Gp-C — Gp-(C/G) is a G-covering.
G € ind-(Gp-C) = PG €ind-(Gp-C/G).
P, :ind-(Gp-C) — ind-(Gp-C/G) is a G-covering. So,

ind-(Gp-C/G) ~ ind-(Gp-C)/G.

C is locally Cohen-Macaulay finite if and only if C/G is so.
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