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Overview

The idea of representing a complex mathematical object by a simpler
one is as old as mathematics itself. It is particularly useful in
classification problems.

Covering theory is one of these ideas to present a technique for the
computation of the indecomposable modules over a
representation-finite algebra.
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Overview

Covering techniques in representation theory have become important
after the work of Bongartz-Gabriel, Gabriel and Riedtmann.

K. Bongartz and P. Gabriel, Covering spaces in representation
theory, Invent. Math. 65 (1982) 331-378.

P. Gabriel, The universal cover of a representation-finite algebra,
in: Lecture Notes in Math., vol. 903, Springer-Verlag, Berlin/New
York, 1981, 68-105.

C. Riedtmann, Algebren, Darstellungskocher, Uberlagerungen und
zuruck, Comment. Math. Helv. 55 (1980) 199-224.
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Overview

Covering techniques in representation theory have become important
after the work of Bongartz-Gabriel, Gabriel and Riedtmann.

Riedtmann introduce coverings of the Auslander-Reiten quiver ΓΛ of a
representation-finite algebra Λ.

Bongartz and Gabriel developed this notion to provide concrete
algorithms which enable us to construct the Auslander-Reiten quivers
for plenty of algebras.
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Overview

One of the most important results in this theory is the following
theorem which is proved by Gabriel and then completed by Martinez
and De le Peña:

Main Theorem

let C be a locally bounded k-category over a field k and let a group G
act freely on C. Then C is locally representation-finite if and only if
C/G is so.

R. Martinez, J. A. De le Peña, Automorphisms of
representation-finite algebras, Invent. Math. 72 (1983), 359-362.
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Overview

Asashiba brought this point of view to the derived equivalence
classification problem of algebras. He investigated that when does a
derived equivalence between categories C and C′ yield a derived
equivalence between orbit categories C/G and C′/H.

Asashiba generalized the covering technique for an arbitrary k-category
to apply covering techniques to usual additive categories such as the
homotopy category K(Prj-C) of projectives.

H. Asashiba, A generalization of Gabriels Galois covering functors
and derived equivalences, J. Algebra 334 (2011), 109-149.
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Overview

Asashiba brought this point of view to the derived equivalence
classification problem of algebras. He investigated that when does a
derived equivalence between categories C and C′ yield a derived
equivalence between orbit categories C/G and C′/H.

Asashiba generalized the covering technique for an arbitrary k-category
to apply covering techniques to usual additive categories such as the
homotopy category K(Prj-C) of projectives.

H. Asashiba, A generalization of Gabriels Galois covering functors
and derived equivalences, J. Algebra 334 (2011), 109-149.

Our Aim

Using this generalization, we plan to give a classification of algebras of
finite Cohen-Macaulay type.
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Preliminaries

Quivers

A quiver Q is a quadruple Q = (Q0,Q1, s, t)
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s, t : Q1 → Q0 tow maps
∀α ∈ Q1,

s(α) is the source of α

t(α) is the target of α
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Preliminaries

Quivers

A quiver Q is a quadruple Q = (Q0,Q1, s, t)
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Preliminaries

Quivers

A quiver Q is a quadruple Q = (Q0,Q1, s, t)

v1

a1

  
v2

a2

cc
a3

yy

A path of length n ≥ 1 in a quiver Q is ρ = α1 · · ·αn where αi ∈ E
and t(αi) = s(αi+1) for all i ∈ {1, · · · , n− 1}.

A path of length 0 is a vertex.
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Preliminaries

Quivers

A quiver Q is a quadruple Q = (Q0,Q1, s, t)

v1

a1

  
v2

a2

cc
a3

yy

A path of length n ≥ 1 in a quiver Q is ρ = α1 · · ·αn where αi ∈ E
and t(αi) = s(αi+1) for all i ∈ {1, · · · , n− 1}.
A path of length 0 is a vertex.

Example

a2a1a3 is a path of length 3.

v1 and v2 are paths of length 0.
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Preliminaries

Path Algebra

Let Q be a quiver and k a field. The path k-algebra of the quiver Q,
denoted by kQ, is the algebra obtained as follows:

The basis as a k-vector space is the set of all paths in Q.

The multiplication of paths is given by concatenation:

ρ.α =

{
ρα if t(ρ) = s(α)
0 otherwise
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Preliminaries

Path Algebra

Let Q be a quiver and k a field. The path k-algebra of the quiver Q,
denoted by kQ, is the algebra obtained as follows:

The basis as a k-vector space is the set of all paths in Q.

The multiplication of paths is given by concatenation:

ρ.α =

{
ρα if t(ρ) = s(α)
0 otherwise

Example

The Jordan quiver •v α
vv

Basis as k-vector space is {v, α, α2, α3, · · · }.
Multiplication: vαn = αn = αnv.

kQ ∼= k[x].
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Preliminaries

repk(Q)

Let Q be a quiver and k be a field.

Definition

A representation M of Q is defined by the following data:

To each vertex
v � // a k-vector space Mv.

To each arrow
α : v −→ w � // a k-homomorphism Mα :Mv −→Mw.

It is called finite dimensional if each vector space Mv is finite
dimensional.
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Preliminaries

repk(Q)

Let Q be a quiver and k be a field.

Definition

A representation M of Q is defined by the following data:

To each vertex
v � // a k-vector space Mv.

To each arrow
α : v −→ w � // a k-homomorphism Mα :Mv −→Mw.

It is called finite dimensional if each vector space Mv is finite
dimensional.

We denote by repk(Q) the category of all finite dimensional
representations of Q.
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Preliminaries

Admissible ideal

An ideal I of kQ is called admissible, if there exists n ∈ Z such that
RnQ ⊂ I ⊂ R2

Q, where RnQ is the ideal of kQ generated, as a k-vector
space, by the set of all paths of length ≥ n.
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Preliminaries

Let Q be a quiver and I be an admissible ideal of kQ. A representation
M = (Mv,Mα) of Q is called bound by I, if we have Mα = 0, for all
relations α ∈ I.
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Preliminaries

Let Q be a quiver and I be an admissible ideal of kQ. A representation
M = (Mv,Mα) of Q is called bound by I, if we have Mα = 0, for all
relations α ∈ I.

We denote by repk(Q, I) the category of all finite dimensional
representations of Q bound by I.

Theorem

Let Q be a finite connected quiver and Λ = kQ/I, where I is an
admissible ideal of kQ. Then there exists a k-linear equivalence of
categories

F : mod-Λ
∼−→ repk(Q, I).
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Classical Covering Theory

Notations

Classical Covering Theory

k: a field

C: a small k-category

C is called a k-category, if

C(x, y) is a k-module
· : C(y, z)× C(x, y) −→ C(x, z) is k-bilinear

G: a group
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Classical Covering Theory

Locally Bounded Categories

Definition

C is a spectroid if

1 x 6= y =⇒ x � y, ∀ x, y ∈ C (C is basic);
2 C(x, x) is a local k-algebra ∀ x ∈ C (C is semiperfect);
3 dimk C(x, y) <∞, ∀ x, y ∈ C.

A spectroid C is called locally bounded, if

∀ x ∈ C, {y ∈ C | C(x, y) 6= 0 & C(y, x) 6= 0} is finite.
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Classical Covering Theory

G-Categories

Definition

A k-category with a G-action, or simply G-category, is a pair (C, A)
such that

C is a k-category;

A : G −→ Aut(C) is a group homomorphism.
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Classical Covering Theory

G-Categories

Definition

A k-category with a G-action, or simply G-category, is a pair (C, A)
such that

C is a k-category;

A : G −→ Aut(C) is a group homomorphism.

C := (C, A).
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Classical Covering Theory

G-Categories

Definition

A k-category with a G-action, or simply G-category, is a pair (C, A)
such that

C is a k-category;

A : G −→ Aut(C) is a group homomorphism.

C := (C, A).

ax := A(a)x, ∀ a ∈ G, x ∈ C.
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Classical Covering Theory

G-Categories

Definition

A k-category with a G-action, or simply G-category, is a pair (C, A)
such that

C is a k-category;

A : G −→ Aut(C) is a group homomorphism.

Trivial G-action

For every k-category C and every group G, we set
∆(C) := (C, 1), where

1 : G −→ Aut(C)
a 7→ idC
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Classical Covering Theory

G-Actions

Let C = (C, A) be a G-category.

The G-action A is called free, if ax 6= x, for every a 6= 1 and x ∈ C,
i.e. the map surjective map

G −→ Gx := {ax | a ∈ G}
a 7→ ax

is injective

The G-action A is called locally bounded, if for every x, y ∈ C,

{a ∈ G | C(ax, y) 6= 0}

is finite.
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Classical Covering Theory

Galois G-Covering

C, B: Spectroids
C = (C, A) with A: free, locally bounded
F : C −→ B: a k-functor
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Classical Covering Theory

Galois G-Covering

C, B: Spectroids
C = (C, A) with A: free, locally bounded
F : C −→ B: a k-functor

Strictly G-invariant

The k-functor F is called strictly G-invariant, if F = FA(a), for every
a ∈ G, i.e.

C
A(a) //

F ��
	

C

F��
B
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Classical Covering Theory

Galois G-Covering

C, B: Spectroids
C = (C, A) with A: free, locally bounded
F : C −→ B: a k-functor

Galois G-precovering

A strictly G-invariant F is called a Galois G-precovering, if

F−1(Fx) = Gx,

F induces k-module isomorphisms⊕
a∈G

C(ax, y) −→ B(Fx, Fy)

(fa)a∈G 7→
∑
a∈G

F (fa)

⊕
b∈G

C(x, by) −→ B(Fx, Fy)

(fb)b∈G 7→
∑
b∈G

F (fb)
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A strictly G-invariant F is called a Galois G-precovering, if
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Classical Covering Theory

Galois G-Covering

C, B: Spectroids
C = (C, A) with A: free, locally bounded
F : C −→ B: a k-functor

Galois G-covering

The k-functor F is a Galois G-covering, if F is a Galois G-precovering
and, in addition F : Obj(C) −→ Obj(B) is serjective.
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Classical Covering Theory

C := k[Q̃]/〈αi+2αi+1αi〉, G := 〈a〉,

i− 1
αi−1

##
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&&
i− 1

αi−1
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.

.
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xx
i
� // i + 2 i

αi

ww
i + 1

αi+1 $$

αi
� // αi+2 i + 1

αi+1 %%
.
.
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i + 2
.
.
.

i + 2

F

""
F

{{

B := k[Q]/〈αβα, βαβ〉 1

α

!!
2

β

aa

F (i) :=

{
1 i /∈ 2Z
2 i ∈ 2Z , F (αi) :=

{
α i /∈ 2Z
β i ∈ 2Z
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Classical Covering Theory

Orbit Category

Let C be a k-category with a free and locally bounded G-action. The
orbit category C/G of C by G is a k-category with the following data:

Obj(C/G) := {Gx | x ∈ Obj(C)};
∀u, v ∈ Obj(C/G),

(C/G)(u, v) := {(fyx)y∈v
x∈u
∈
∏
y∈v
x∈u

C(x, y) | afyx = fax,ay, ∀a ∈ G}

∀f = (fyx) : u −→ v, g = (gzy) : v −→ w in C/G,

gf :=

(∑
y∈v

gzyfyx

)
y∈v
x∈u
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Classical Covering Theory

Canonical Functor

C: Spectroid
C = (C, A) with A: free, locally bounded

The canonical functor P : C −→ C/G is defined as follows:

x

f

��

Px := Gx

Pf :=(δabaf)by∈Gy
ax∈Gx

��

� //

y Py := Gy
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Canonical Functor

C: Spectroid
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Classical Covering Theory

Canonical Functor

Proposition

P : C −→ C/G is universal among strictly G-invariant functors from C
to a spectroid, i.e.

P is strictly G-invariant;

for every strictly G-invariant functor E : C −→ B,
∃! H : C/G −→ B s.t. E = HP

C E //

P
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H
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P : C −→ C/G is universal among strictly G-invariant functors from C
to a spectroid, i.e.

P is strictly G-invariant;

for every strictly G-invariant functor E : C −→ B,
∃! H : C/G −→ B s.t. E = HP

C E //

P
��

B

C/G
H

??

Thus, E is a Galois G-covering iff H is an isomorphism.
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Classical Covering Theory

Mod-B

B: small k-category

The category of right B-modules, Mod-B

Objects: additive contravariant functors B −→ Mod-k
Morphisms: natural transformations of functors

Composition law: usual composition of natural transformations
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Classical Covering Theory

mod-B

A B-module M is called finitely generated, if
∃ x1, · · · , xn ∈ Obj(B) together with an epimorphism

α : B(−, x1)⊕ · · · ⊕ B(−, xn) −→M

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 18 / 37



Classical Covering Theory

mod-B

A B-module M is called finitely generated, if
∃ x1, · · · , xn ∈ Obj(B) together with an epimorphism

α : B(−, x1)⊕ · · · ⊕ B(−, xn) −→M

The full subcategory of Mod-B consisting of finitely generated
B-modules is denoted by mod-B.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 18 / 37



Classical Covering Theory

mod-B

A B-module M is called finitely generated, if
∃ x1, · · · , xn ∈ Obj(B) together with an epimorphism

α : B(−, x1)⊕ · · · ⊕ B(−, xn) −→M

The full subcategory of Mod-B consisting of finitely generated
B-modules is denoted by mod-B.

The full subcategory of mod-B consisting of indecomposable B-modules
is denoted by ind-B.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 18 / 37



Classical Covering Theory

mod-B

A B-module M is called finitely generated, if
∃ x1, · · · , xn ∈ Obj(B) together with an epimorphism

α : B(−, x1)⊕ · · · ⊕ B(−, xn) −→M

The full subcategory of Mod-B consisting of finitely generated
B-modules is denoted by mod-B.

The full subcategory of mod-B consisting of indecomposable B-modules
is denoted by ind-B.

The full subcategory of mod-B consisting of projective B-modules is
denoted by prj-B.
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Classical Covering Theory

G-action on Mod-C

Let C = (C, A) be a G-category.

Mod-C = (Mod-C, Ā) turns out to be a G-category by defining:

Ā : G −→ Aut(Mod-C) as

Ā(a)(M) = M ◦A(a−1), ∀a ∈ G,M ∈ Mod-C
aM := Ā(a)(M)
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Classical Covering Theory

Pullup and pushdown functors

C: a spectoid G-category, P : C −→ C/G
We have the functor

P � : Mod-C/G −→ Mod-C

M 7→M ◦ P

is called the pullup of P .
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It is known that P � has a left adjoint P� : Mod-C −→ Mod-C/G, which
is called the pushdown of P .

P� : Mod-C −→ Mod-C/G is given as follows:
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Classical Covering Theory

Main Theorem

C : a locally bounded spectroid

C: a G-category with a free and locally bounded action

G acts freely on mod-C

M ∈ ind-C =⇒ P�M ∈ ind-C/G

C: locally representation finite =⇒ P� : ind-C −→ ind-C/G is a
Galois G-covering.

P� induces an isomorphism

(ind-C)/G ' ind-(C/G)

So, C is locally representation finite if and only if C/G is so.
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Classical Covering Theory

C := k[Q̃]/〈αi+2αi+1αi〉, G := 〈a〉,
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A generalization of Gabriels Galois covering

Some assumptions of spectroids made it very inconvenient to apply the
covering technique to usual additive categories

Kb(prj-R)

Mod-R
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A generalization of Gabriels Galois covering

Some assumptions of spectroids made it very inconvenient to apply the
covering technique to usual additive categories

Kb(prj-R)

I It is not semiperfect.

I If we construct the full subcategory of indecomposable objects,
then we destroy additional structures like a structure of a
triangulated category and the basic property.

Mod-R
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A generalization of Gabriels Galois covering

Some assumptions of spectroids made it very inconvenient to apply the
covering technique to usual additive categories

Kb(prj-R)

Mod-R

H. Asashiba generalized the covering technique to remove all these
assumptions.

H. Asashiba, A generalization of Gabriels Galois covering functors
and derived equivalences, J. Algebra 334 (2011), 109-149.
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A generalization of Gabriels Galois covering

G-invariants

C: a skeletally small k-category equipped with an action of a group G

Definition

A functor F : C −→ C′ is called G-invariant, if ∃ ϕ := (ϕα)α∈G of
natural isomorphisms ϕα : F −→ FAα such that for every α, β ∈ G,
the following diagram is commutative

F
ϕα //

ϕβα ''

FAα

ϕβAα
��

FAβα = FAβAα.

The family ϕ := (ϕα)α∈G is called an invariance adjuster of F .
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A generalization of Gabriels Galois covering

G-coverings

Definition

Let F : C −→ C′ be a G-invariant functor.

F is called a G-precovering if for every x, y ∈ C the following two
k-homomorphisms are isomorphisms

F (1)
x,y :

⊕
α∈G
C(αx, y) −→ C′(Fx, Fy), (fα)α∈G 7→

∑
α∈G

F (fα).ϕα,x;

F (2)
x,y :

⊕
β∈G
C(x, βy) −→ C′(Fx, Fy), (fβ)β∈G 7→

∑
β∈G

ϕβ−1,βy.F (fβ).

If, in addition, F is dense, then F is called a G-covering.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 25 / 37
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A generalization of Gabriels Galois covering

Orbit category

The orbit category C/G of C by G is defined with the following data:

Obj(C/G) = Obj(C),
Morphisms:
∀ x, y ∈ C/G, the morphism set C/G(x, y) is given by

{(fβ,α)(α,β) ∈
∏

(α,β)∈G×G

C(αx, βy) | f is row finite and column finite and

fγβ,γα=γ(fβ,α),∀γ∈G
}.

Composition low:

For two composable morphisms x
f−→ y

g−→ z in C/G, we set

gf := (
∑
γ∈G

gβ,γfγ,α)(α,β)∈G×G.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 26 / 37



A generalization of Gabriels Galois covering

Orbit category

The orbit category C/G of C by G is defined with the following data:

Obj(C/G) = Obj(C),

Morphisms:
∀ x, y ∈ C/G, the morphism set C/G(x, y) is given by

{(fβ,α)(α,β) ∈
∏

(α,β)∈G×G

C(αx, βy) | f is row finite and column finite and

fγβ,γα=γ(fβ,α),∀γ∈G
}.

Composition low:

For two composable morphisms x
f−→ y

g−→ z in C/G, we set

gf := (
∑
γ∈G

gβ,γfγ,α)(α,β)∈G×G.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 26 / 37



A generalization of Gabriels Galois covering

Orbit category

The orbit category C/G of C by G is defined with the following data:

Obj(C/G) = Obj(C),
Morphisms:
∀ x, y ∈ C/G, the morphism set C/G(x, y) is given by

{(fβ,α)(α,β) ∈
∏

(α,β)∈G×G

C(αx, βy) | f is row finite and column finite and

fγβ,γα=γ(fβ,α),∀γ∈G
}.

Composition low:

For two composable morphisms x
f−→ y

g−→ z in C/G, we set

gf := (
∑
γ∈G

gβ,γfγ,α)(α,β)∈G×G.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 26 / 37



A generalization of Gabriels Galois covering

Orbit category

The orbit category C/G of C by G is defined with the following data:

Obj(C/G) = Obj(C),
Morphisms:
∀ x, y ∈ C/G, the morphism set C/G(x, y) is given by

{(fβ,α)(α,β) ∈
∏

(α,β)∈G×G

C(αx, βy) | f is row finite and column finite and

fγβ,γα=γ(fβ,α),∀γ∈G
}.

Composition low:

For two composable morphisms x
f−→ y

g−→ z in C/G, we set

gf := (
∑
γ∈G

gβ,γfγ,α)(α,β)∈G×G.

R. Vahed (IPM-Isfahan) Covering Theory Nov. 11, 2015 26 / 37



A generalization of Gabriels Galois covering

There is a canonical functor

P : C −→ C/G
x 7→ x

f 7→ (δα,βαf)(α,β)
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A generalization of Gabriels Galois covering

There is a canonical functor

P : C −→ C/G
x 7→ x

f 7→ (δα,βαf)(α,β)

Also, one can define an invariance adjuster ϕ of P .

P = (P,ϕ) : C −→ C/G is a G-invariant functor.

P : C −→ C/G is a G-covering functor.

P : C −→ C/G is universal among G-invariant functors starting
from C.
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A generalization of Gabriels Galois covering

The Pushdown functor P�

C: a skeletally small k-category with a G-action

I The canonical functor P : C −→ C/G induces a functor

P � : Mod-(C/G) −→ Mod-C
M 7→M ◦ P

I The functor P � possesses a left adjoint P� : Mod-C −→ Mod-C/G,
which is called the pushdown functor.
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G-action on K(prj-C), resp. Kb(prj-C).
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G-action on K(prj-C)

I The G-action on Mod-C can be canonically extended to the
G-action on K(prj-C), resp. Kb(prj-C).

That is, for every complex X := (Xi, di)i∈Z and every α ∈ G,
αX := (αXi, αdi)i∈Z.
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P� : K(prj-C) −→ K(prj-(C/G))
(P�, P

�) is an adjoint pair.

I [Asashiba] The pushdown functor
P� : Kb(prj-C) −→ Kb(prj-(C/G)) is a G-precovering.
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A generalization of Gabriels Galois covering Our results

Totally acyclic complexes

I A complex X in C(prj-C) is called totally acyclic of projectives if
for every projective object P ∈ prj-C, the induced complexes
HomC(X, P ) and HomC(P,X) of abelian groups are acyclic.

I The full subcategory of K(prj-C) consisting of totally acyclic
complexes of projective is denoted by Ktac(prj-C).
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I A complex X in C(prj-C) is called totally acyclic of projectives if
for every projective object P ∈ prj-C, the induced complexes
HomC(X, P ) and HomC(P,X) of abelian groups are acyclic.

I The full subcategory of K(prj-C) consisting of totally acyclic
complexes of projective is denoted by Ktac(prj-C).

Proposition

The pushdown functor P� : mod-C −→ mod-(C/G) induces a functor

P� : Ktac(prj-C) −→ Ktac(prj-(C/G)).
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Gp-C

An object G in mod-C is called Gorenstein projective if G is a syzygy of
a totally acyclic complex of finitely generated projective C-modules, i.e.

· · · // C−1 // C0

  

// C1 // C2 // · · ·

G

>>
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a totally acyclic complex of finitely generated projective C-modules, i.e.

· · · // C−1 // C0
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G
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We denote the full subcategory of mod-C consisting of all Gorenstein
projective objects in mod-C by Gp-C.
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The stable category Gp-C

Let X,Y ∈ Gp-C.

P(X,Y ): the subgroup of morphisms belong to Gp-C(X,Y ) such that
factor through a projective P ∈ prj-C.

X
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// Y

P

>>

The stable category Gp-C is defined as follows:

Obj(Gp-C) = Obj(Gp-C);

Gp-C(X,Y ) = Gp-C(X,Y )/P(X,Y ).
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A generalization of Gabriels Galois covering Our results

One can easily show that there is a triangle equivalence

Gp-C ' Ktac(prj-C),

sending a Gorenstein projective module to its complete resolution.
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One can easily show that there is a triangle equivalence

Gp-C ' Ktac(prj-C),

sending a Gorenstein projective module to its complete resolution.

theorem

Let C be a small G-category. Then the pushdown functor

P� : Gp-C −→ Gp-(C/G)

is a G-precovering.
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Locally support finite

C: a k-category
M : a C-module
We denote by Supp-M the support of M , i.e., the full subcategory of C
consisting of all objects x of C such that M(x) 6= 0.
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Let C be a k-category and x be an object of C. Cx denotes the full
subcategory of C formed by the points of all Supp-M , where
M ∈ ind-C and M(x) 6= 0, i.e.

Cx =
⋃

M∈ind-C
M(x)6=0

Supp-M.

A locally bounded k-category C is called locally support finite if
for every x ∈ C, Cx is finite.
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A generalization of Gabriels Galois covering Our results

Our Main Theorem

Theorem

Let C be a locally support finite with a free G-action. Assume that the
induced G-action on mod-C is also free.

P� : Gp-C −→ Gp-(C/G) is a G-covering.

G ∈ ind-(Gp-C) =⇒ P�G ∈ ind-(Gp-C/G).

P� : ind-(Gp-C) −→ ind-(Gp-C/G) is a G-covering. So,

ind-(Gp-C/G) ' ind-(Gp-C)/G.

C is locally Cohen-Macaulay finite if and only if C/G is so.
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ind-(Gp-C/G) ' ind-(Gp-C)/G.

A locally Cohen-Macaulay finite category is a locally support finite
category B such that the number of M ∈ ind-(Gp-B) satisfying
M(x) 6= 0 is finite for each x ∈ B.
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��

vα
"" γ // w β

||

I = 〈α2, β2, αγ − γβ〉

{
F (vi) = v
F (wi) = w

,

 F (αi) = α
F (γi) = γ
F (βi) = β
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