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DYNAMICAL SYSTEMS:

Let A be a C*-algebra and G be locally compact group. Let
Aut(A) ={p: A— A|1—1, onto, * — homo.}.

Definition: A C*-dynamical system is a triple (A, G, «) consisting
of a C*-algebra A, a locally compact, Hausdorff group G and a strongly
continuous homomorphism « : G — Aut(A).

This means that g — a(g)(a) is continuous, and we have
a(g192)(a) = a(g1)[e(g2)(a)]
a(g)~(a) = alg™")(a)
a(g)(a)” = a(g)(a”).

Example: Let G be a locally compact group. Let
TG = Aut(C(G) st m(@)()y) = Fay)

for each x,y € G. Obviously (Co(G), m, G) is a dynamical system.

More generally, let X locally compact space and G be locally compact
group with the action G x X — X, let ¢, € homeo(X) be defined by
q4(x) = g.x, for g € G and = € X, then for

MG = Aut(Co(X)),  m(9)(F)y) = flg™ ),
(Co(X),m,G) is a dynamical system.
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Conversely, let X locally compact space, GG be locally compact group
and o : G — Aut(Co(X)) be an action. For each g € G and x € X, we
have a x-homomorphism

O.(X) 29 oy (x) A5 ¢
f=alg)(f) = alg)(f)(x).
There is h(g) € Homeo(X) such that a(g)(f)(z) = f(h(g)(x)) and

a(g192)(f)[z] = flh(g192) ()]
= a(g1)(a(g2)(f))[z] = alg2)(f)[R(g1) ()]
= [[P(g2)(h(g1)())].

Thus we define the action of G on X by g.x := h(g~!)(x) and we have
a(9)(f)(x) = f(g~'.x) for each g € G and x € X. Now, we show that

GxX—=X
(9.2) = g.x = h(g~")(x)

is continuous. Let O, , be an open subset of X such that g.z € Og.
By Urysohn Lemma, there is f € C.(X)* such that g.x < f < Og.,.
As 1 = f(g.x) = a(g7')(f)(x) and « is sot-continuous, for ¢ = 1/2
there is an open subset O, C X such that x € O, and for each y € O,
we have [|a(g7 ") (f)(x) — alg™")(f)(y)|| < e. On the other hand, « is
sot-continuous, thus there is an open subset O, C G such that, for each
g € O,, we have ||a(g ") (f) — a(¢"1)(f)|| < e. Therefore, for each
g € Oy and y € O, we have

[f(g-x) = f(g' 9)l = lle(g™ ) (F)@) — alg NN < L.

This means that ¢'.y € O,, and 0,.0, C O, ,. Thus the action of G
on X is continuous.

Representation on groups: Let G be a locally compact group
and 7 : G — U(H,) be sot-continuous *-representation. That means,
g — m(g)h is continuous and

m(9192)[h] = 7(g1)[7(g2)h]

m(g) =m(9)" =7(g7").
For 7, there is an extension

7:C(G) = B(H;) st =n(f)= [ f(x)n(z)dz
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such that dz is left Haar measure of G. As

l=(F)ll = | /G f (@) ()de] < /G @) r@)lldz = 1]
there is a lift of 7 on L}(G),
m: LYG) = B(H,) st =( /f

Consider the universal representation

Ty = @7 : L'(G) = &,B(H,) C B(H, = ®.H,)

defined by

0_

Jo f(@)m(x)d
Tu(f) = (7(f))= = .
fG f(x)n'(z)dz

L O - ’ .

We define
(@) = o) ¢ B(H,).

We want C*(G) to be a C*-algebra, so we give its product and involu-
tion.

Product: Let f,g € C*(G), we would like to have w(f.g) = 7 (f)7(g).
We have

Wumzzﬁm@ﬂ@m
:/f x( d/ (2)7(z)dz
//f yxw@_//j oy~ 2)m(x)dady
-

Thus we define the convolution by

f gl /f
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Involution: We would like to have 7w (f*) = 7(f)*, that is,
w(f*) = /G 1 (@) (x)dz
= () =] /G f(@)m(x)da]* = /G (e )da
— / FlzHA@@ Dr(z)de
G

where A is the modular function of the left Haar measure of G. Thus
for each x € GG, we define

CROSSED PRODUCTS:

Let A be a C*-algebra and G a locally compact group. Let o : G —
Aut(A) be an action. The representations

p:A— B(H,)
and
U:G—U(H,)
are called a-covariant representations, if for each a € A and z € G,
pla(x)(a)) = U(z)p(a)U(z™").
We define
pxU:A® C.(G) — B(H,)
0o = pU() = pla) [ S@U s = [ plf)U (s
G G
As A® C.(G) C C.(G, A), then we may extend p x U to
pxU:C.(G,A) — B(H,)

F—pxU(F)= /Gp(F(x))U(x)dx

Example: Consider o = 1 : G — Aut(C,(G)) and representations
p:Co(G) = B(L(G)) st p(f)(g) = fg

and
U=m:G— B(LXG)) st m(x)(9)(y) =glz'y)
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for g € L*(G) and z,y € G. We have

plm(z)(N)(9)(y) = [m(x)(f)gl(y) = m(z)(f)W)g(y) = flzy)g(y).
On the other hand,

U@)p(HU (@) y) = U@)p(HHmz")(9)]y) = [p(f)m(z) (9= "y)

s

That means,

p(m(2)()(g) = Ulz)p(/)U(z")(9)
and (p,U) is a-covariant pair.
Question: Does there exist an a-covariant pair for each dynamical
system (A, G, a)?

Let A C B(H). As the action o : G — Aut(A) is sot-continuous, we
have the embedding

p:A— GG, A)
a = p(a)(z) := a(z™")(a).
On the other hand,
Co(G, A) C M(Co(G, A)) = M(Co(G) @pmin A)
C B(L*(G) ®; H) = B(L*(G, H))

where M (Cy(G) @umin A) is the multiplier algebra of Cy(G) @i A. We
define

p:A— B(L*(G,H)) st p(a)(F)(z):=a(@)(a)(F(z))
and
U=m:G—=UL*G,H)) st U)(F)y):=F'y).
In this case,
pla(z)(a)[Fl(y) = aly™ z)(a)[F(y)]-
On the other hand,



6 HAMED NIKPEY

This means that (p,U) is an a-covariant pair. For the universal repre-
sentation

Dy p X U: Oc(GaA) - @(p,U)B(H ) - B(@(p U)H )

defined by

Jo p(f (2))U(x)dx

[ (F@)U (@) de

| 0
we define the crossed product

A X o G = C (G A) - B<€B(p,U)Hp)-

Same as for C*(G), we would like A x,, G to become a C*-algebra.
Thus we should find its product and involution.

Product: Let f,g € C.(G, A). For f.gin A x, G,

pxUF9) = [ pl(Fg))U(a)da
(f) pxUl(g)
(F@)U (y)dy / plg(x))U (z)dz

G

|
N

X Q
.~

)

p(fy)U(y)p(g(x))U(x)dxdy

(f(y)pla(y)(g(z)]U(y)U (x)dxdy

[f(y)a(y)(g(x))]U (yz)dzdy

i)

S—a
)

[ (y)a(y)(g(y~"2))U (x)dzdy

Q
=

F)aly)(gy™"2))dylU (z)dz.

|
— i S 5 —

=,
Q

Thus we define

f a9l /f
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Involution: We would like p x U(f*) = [p x U(f)]*, for each a-
covariant pair (p, U), that is,

px U = [ @)

G

Thus for each f € A x, G, we define
F1(@) = a(@)(fe))AE),
This means that, for a-covariant pair (p, U), we have a x-representation
pxU:Ax,G— B(H,)
such that

PR U(f) = / o (2))U()de.

G

Now we want to characterize all representations of A x,, G.

As an example, let A = C, and G = R be the real line. Here o = id
and (C,R,id) is a dynamical system. Let
p:C—B(H, and U:R—U(H,)
be id-covariant representations. As p = I, for each unitary representa-
tion U of G =R, (p,U) is a id-covariant pair. Thus

Ax,G=C.(R,C)" =C*R) = Co(R) = Co(R)
which is not a unital C*-algebra. In this case, A = CI can not be
embedded into A x, G = C,(R).

In general one could embed A and G into the multiplier algebra of
A %, G. As each element f € C.(G,A) in A x, G, given all values
p X U(f) for a-covariant pairs (p, U), we define

in: A— M(Ax,G)
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such that
iA(a)(f) =ia(a)[(p x U(f)) pU)]
= [pla)p x U(H)lpuw

~ [p(a >/G (@)U (@)dn)] oy

— | /G plaf (@)U (@)dz)) ),
and

iala)(f)(z) = af(x)
Define

ZgG—>M(A NQG)
such that

ic(z)(f) = ic(@)[(p x U(f)) )
= [U(x)p x U(Hpw

~ [U(x) /G p(F U )dy)
~ | /G plo(@) (Fu)U (@) dy)] ooy
- / pla(@) (F (e ) U () )] oy

and

ic(@)(F)(y) = alz)(f(z™y)).

Now let
o:Ax,G— B(H,)

be a non-degenerate representation. Define

po: A— B(H,)
such that
pe(a)(col(p x U(f))ulh) == cl(pla) px U(f))pu]h
= ol(pxUlaf))puwlh
= olpx Ulia(a)f))pulh
and define

U,: G—U(H,)
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such that

Us(2)(olp X U(f))pun]h) = alU(x) p X U(f))pun]h
= ol(px Ulic()f)).un]h-

Thus
po(a(z)(a))o[(p x U(f))pulh] = al(pla(z)(a)) p x U(f))pu)lh
= o[(U(@)p(@)U (™) p US)par]h
= Uy (@)pa(@)Us (™) [o[(p 5 U(F)) o)

This means that,

po(a(@)(a)) = Us(2)po(a)Us(z7)

and (p,, U,) is an a-covariant pair. We have

alp x U(f)ullalp x U(g))punlh) = al(p x U(f)p x U(g))pu)lh

= al( | AF@IV (@) p e Ule)) o

:[fAﬂmﬂ@@Mxﬂme@mmdh
Thus
ﬂﬂ:ﬂmxvumwﬂzzjxﬂmwxmm

and
0= ps X U,.

Example: (i) Let G = Zy = {0,1} and A be any non-degenerate
C*-subalgebra of B(H). Let o : Zy — Aut(A) be an action. Since
a(0) = I, a can be characterized by «(1). Let (p, U) be the a-covariant
pair given by

p:A— B(l*(Z)®, H) = B(C* @, H) = B(H?)
p(a)(F)(z) = a(z™!(a))(F(z))
and left regular representation
U=m:G— B(l*(Z)®y H) = B(H?).
Let
~ ~ A 0
FGCC(ZQ7A):C(ZQ,A):C(Z2)®A:€2 ®A: |:O A:|
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Then F'=a ® dy + b ® 67, and
prU(a® 6 +b®d)=pla)U(0)+ p(b)U(1) = p(a) + p(b)U(1).

As pla) € BU), pla) = |11 12| such that {T}}L, € B(H). For
3 4

each h € H, there is hq, ho € H such that
hi |1y Ta| [h| _ |[M
olo] = [ 7] o] - 1)

p(a)(h ® (50) = hl ® 50 + hQ ® (51.

or

We have
hy = p(a)(h © 60)(0) = [(0)(a)h]do(0) = ah,
and
hy = p(a)(h ® do)(1) = [a(1)(a)h]do(1) = 0.
Thus 77 = a and T3 = 0. Similarly, for each g € H, there are g1,92 € H

such that
o )] = [ %] o] = [2]
" p(a)(g®01) = g1 ® by + go @ 6.
We have
g1 = p(a)(g ® 61)(0) = [a(0)(a)h]6:(0) = 0,
and

g2 = p(a)(g @ 61)(1) = [a(1)(a)g]é: (1) = a(1)(a)g.
Thus 75 = 0 and Ty = a(1)(a), and

/=[5 atia)

U(l) = [(f (1)} .

px U Co(Zgy A) = C(Zg, A) = (X @ A — B(H?)

is given by

Similarly,

Thus

pxU(@®d+b®d)=pla)+pb)U(1) = {a(la)(b) a(lb)(a)} .
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As p x U is injective,

ANQZQQ{{ } ca,be A,

b
a(1)(b) a(1)(a)

(ii) Let G = {z;}'; be a finite group and 7 : G — Aut(C.(G)) be

an action. Consider the a-covariant pair (p, U) with
p:Co(G) = I = B(E(G)) = B(2) = My(C)
f=p(N9) =Ty
for g € I2, and the left regular representation
U=m:G— B(I*(G)) = M,(C).
By definition,

0 . 0 f(xn—l)
and each m;(z;) is a shift operator in M, (C). Let zy = e, then

1 0 0
0 1 0

nxn

nxn
is the identity of M,,(C). Let 0y € Co(G) = I¢°. Then

C 0 0
p X U(Céy x x,) = Cp(dg)U(x,) = | : oo
0 ... 0 o]

For each i, m(x;) is a shift operator in M,,(C). In each row, there is
one coordinate 1 and the rest are 0. Thus

CcC C ... C

n—1 n—1 0 0 0

span{ pxU(Cdoxx;) }iy = span{Cp(do)U (7;)}izy = . ) .
0O ... 0 0



12 HAMED NIKPEY

Similarly,
0o 0 ... 0
. . cC CcC ... C
span{ pxU(Cé xx;)} 1=y = span{Cp(61)U(z;)} =y = | . S
0 0 0

nxn

Since
pxU:C(G,C(@R) = C(G)® C(G) — B(£%) = M,(C)
is a faithful representation,

pxU(Ce(G, Co(G)) = p(C(G))U(C(G)) = span{p(8:)U ()} ;2o = Ma(C).
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SECOND SESSION: SUNDAY, 1393/10/07
SOME IMPORTANT CROSSED PRODUCTS:

Let a =id : G — Aut(A) be a dynamical system. Let
p:A— B(H,)
and
U:G—U(H,)

be a-covariant representations, then
U2)p(a) = plaz)(@))U(z) = p(a)U (a).
We can extend the unitary representation U to
U:C"(G)— B(H,)
and we have a x-representation

p® U:A S maz C*(G) — B(Hp)

On the other hand, A ®;,4. C*(G) can be characterized by all its

non-degenerate x-representations
TRW : A®pmae C*(G) — B(H,),
where the values of 7 and U are commuting. We may define
W :G — B(H,)
such that

n

W(x)[Z (@)W (f;)] = W(x)[Z W(f)m(a;)] = Z W (m(z)(fi))m(a;)

= w(a)W(m(z)(f:))-

i=1
then (m, W) is an id-covariant pair. Thus for each

n

Zai & fz € A & CC(G) g C’c(GvA)’

=1
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1Y i ® fill asaa = supunll > plai)U(f:)
i=1 =1
<UD ® fill agmancr @) = sup@w)ll D w(a)W(f)|
i=1 =1

n
<> ai® fillasac:
i=1

This means that
AXy G = ARQpa C*(G).

Let B be any C*-algebra. We show that
(A Na G) ®maac B = (A ®maa: B) >qo¢®id G
where
a®id: G — Aut(A Qe B)
is defined by
(a®id)(z)(a®b) =a(z)(a) @b
for each x € G, a € Aand b € B. Let
p:A®@me B— B(H,)
and
U:G— B(H,)

be (a0 ® id)-covariant representations. We may write p = p; ® py such
that

pla @ b) = pi(a)pz(b) = pa(b)p1(a).
We have
®id)(a @ b)]
a®bU(z™)
(@)p1(a)p2(b)U (z71).
On the other hand,

and
prle(z)(a)lpa(b) = U(x)pr(a)pa(b)U (z71).

Using a bounded approximate identity of A, we get
pa(b) = U(x)p2(b)U (27"
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and

U(x)pa(b) = p2(b)U ()
for each b € B and x € G. This means that p, and U have commuting
values. Same way, by bounded approximate identity of B, we have

pi(a(z)(a)) = U(z)pi(a)U (™).
That means (p;,U) is a-covariant representation. Thus
prxU:Ax,G— B(H,)

and
p2: B — B(H,)

are commuting representations such that

p1 X Ula @ [f)p2(b) = p1(a)U(f)p2(b) = p2(b)p1(a)U(f)

= p2(b)(pr x U)(a @ f).

Thus,
(p1 X U)®p2: (A Xy G) @maz B — B(H,).

Conversely, let
(m X U) @7 : (AXNg G) @pae B— B(H,)
be a non-degenerate *-representation. Then
[(m1 xU) @ m[(a® f) @b =[m @ (m x U)][b® (a® f)]
and
T1(a)U(f)m2(b) = ma(b)m1(a)U(f).
Since {¢, }» C C.(G), using a bounded approximate identity for (L*(G), *),
7T1(CL)7TQ(b) = 7T2<b>71'1 (CL)
and
T=m Q7o : AQmax B— B(H,).
Similarly, using a bounded approximate identity for A and {m;(z)(¢:)}-,
mo(b)U (z) = U(x)ma(b).
Thus

ml(a(z) @1id)(a @ b)]

l(a(z)(a) @ b)] = mi(a(r)(a))m(b)
U(z)m(a)U (2~ )ma(b) = U(x)mi(a)m(b)U(z7")
U(z)m(a®b)U(z™).

Therefore (m,U) is an (o ® id)-covariant pair and

T XUt (A®maz B) Xa G — B(Hy).

T)mla
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Let {a;}7y C A, {b;}1, C B and {f;}*; C C.(G), then

1D (@i @ 8) @ fill dsae Bynaniac = supoll Y plai @ 0)U(f)]

i=1 i=1

= sup(.v)|| Z p1(ai)p2(bi)U (i)l

=1

= sup (|| Z p1(ai)U(fi)p2(bi)l
i=1

= Sup(p ol Y o1 ¥ Ula; ® f3)pa(bi)|

i=1
=D (@ @ b)) ® fill (AxaG)@man -
=1

This means that

(A ®max B) X a®id G = (A X G) ®ma1‘ B.

Rotation algebra: Let 6 be an irrational number. Let
mo: Z — Aut(C(T)) st m(n)(f)(z) = f(e?™z)

for each n € Z and x € T. Obviously, (C(T),Z,m) is a dynamical
system. Let

p:C(T) = B(H,)
and
U:7Z—U(H,)

be any my-covariant representations. Let f, € C(T) be such that
fo(z) = z, for z € T. Then, C(T) = C*(f,). Thus

P Nz =D plfo)’

i=—n 1=—n

and p can be characterized by p(f,). On the other hand, one can extend
U to

U:¢NZ) — U(H,)
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such that

U(im Z)\U ZAU(S” i)\iU(dl)”

i=—n i=—n i=—n i=—n

Thus U can be characterized by U(d;). Since,
p X U(Z)\izmi®5 Z/\ZP YU (6)Y,

C(T) xg Z can be characterized by p(f,) and U(d;) such that
U(01)p(fo) = plag(1)(fs))U(61),

and
ag(1)(fo)(z) = fole ™) = ™ fo (),
and
U©@)p(fo) = e ™ p(fo)U(61).
This means that
C(T) 39 Z = C*(p(f5),U(61))
such that o(f,) = T and

U(61)p(fo) = ™ p(fo)U (61).

Now, let U and V be unitaries in B(H) such that UV = eV,
Note that

A€co(V)< V — Al isnot invertible
< U™(V — AI) is not invertible
& (e7?™Yy — X[)U™ is not invertible
&V —e¥™\I s not invertible

& ™)\ € ¢(V) is not invertible.

As 0 € Q°, we have o(V) = T and C(T) = C*(V). Consider the

*-representation

and unitary
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We have
pro(m)(£.)) = ple™ 7 ) = ¢~ f,) = ¢~2mindy
= UmVUT" =U'(n)p(f)U'(n)".
Therefore, for each f € C(T),
p(mo(n)(f)) = U'(n)p(f)U' (n)”
and (p, U’) is a mp-covariant pair. Thus
pxU :C(T) %, Z — B(H)

is a *-representation. By [1, Proposition 2.56], C'(T) X, Z is a simple
C*-algebra and p x U’ is a faithful representation. This means that

C(T) x5, Z = C*(V, U).

Let I be an ideal of A. Let a : G — Aut(A) be an action such
that «(G)(I) C I. Note that C.(G,I) sits in C.(G, A) as a *-closed
two-sided ideal. Therefore, its closure Ez([) is a closed ideal.

Now, a; : G — Aut([l) is dynamical system, and we show that

[ %, G = Ex(I).
Let
m:1— B(H;) and W :G — B(H,)

be a non-degenerate aj-covariant representation. As [ is an ideal in A,
there is an extension

7:A— B(H,)

such that

7(a)(w(b)h) := w(ab)h
We have
(a(x)(a))m(b)h = wla(z)(a)b]h
mla(z)(aa(z™)(b))]h

= W(x)rlaa(z™ ) (0)]W (z1)h
= W(2)(a)m(ala™ )W (@™)h
= W (z)7(a)W (x~ )7 (b)h.

Thus
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That is, (7, W) is an a-covariant pair. Let f € C.(G,I) C C.(G, A).
Then,
[l axac = supllp x U(f)I| = supllpr x U(f)]
< [fllrsae = supllm x W ()|l = sup|l@ x W (f)]|
< | fllaxac,
which means that

1 fllanae = | fll1xac
and
[ %0, G = Ex(]).
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THIRD SESSION: MONDAY, 1393/10/8

HILBERT C*-MODULES:

Let H and K be Hilbert spaces. Consider the inner product
(Sl, Sg) — B(H) <Sl, 82> = 5155

For each T' € B(H) and Sy, 5, € B(K, H),
(1) m)(S1, S2)" = (51535)" = 525* m)(S2, 51),
(2) <TSl, SQ> TSPS; — <Sl, SQ>

(3) B (S1,TS2) = S155T" = pm) <31782>
and for each S € B(K, H),
1S11* = 1SS* (| = Iz (S, S)I.

This is an example of a left Hilbert C*-module. In general, let V'
be a Banach space and A be a C*-algebra. Let V be left A Banach
module, that is,

AxV =V
(a,T) — a.T
is a continuous bilinear mapping. Instead of a.T, we write aT. The

Banach space V' is called a left Hilbert A-module, if there is an inner
product

A<,>ZVXV%A

such that
(1) A(T,T)>0 foreach T eV,
(2) A(T,T)=0 ifand onlyif T =0,
(3)  a(aT,S)=a(T,S) foreachT,Se€V,ac A,
(4) a1, 5)" = a(5,T),
(5) V is complete by the norm ||T||* = ||4(T, T)||.

The module is called full if 4(V,V) is dense in A. In the rest of this

note, the modules are assumed to be full.
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Let B(V') be the set of adjointable maps ¢ : V' — V| that is, the set
of maps ¢ : V' — V such that there exists a map ¢* : V — V with

ale(T), S) = a(T, " (5)),

for each T, S € V. Note that in general, ¢ : V — V is not adjointable.
For example, let C|0, 1] be the left C|0, 1] Hilbert C*-module with inner

product (f, g) = fg. Let
pC1 = C01) st (f) = FO.
If ¢ is adjointable, there is ¢* : C[0, 1] — C|0, 1] such that
ale(f),g) = alf.¢"(9))

and

For f =1,
9=f03=¢(f)g= alp(f).g) = alf,¢*(9)) = fe*(9) = v*(9).
Thus ¢* =id. For f(x) =z and g =1,
0=f(0)g= ale(f).9) = alf,9"(9) = fo (9) = f.

which is a contradiction.

Same as inner product of Hilbert spaces,
[A(T, S) < T]I]]S]]
for each T, S € V. Thus, for each ¢ € B(V),
lell* = supllo(D)* = suplla{e(T), o(TH | = supllalp™o(T), T)||
< suplle"(T)|| = [l¢"ell = suplla{e*(T), S)|
= sup||a{p(T), p(5)) |
< Jlel?

where the sup is on the unit ball of V. Thus, ||¢[]* = ||¢*¢|| and B(V)
is a C*-algebra. For T\, S € V, we define ¢rgs by

pros(S) = a5, 9)T.
Let 51,52 € V, then
a{(pres(51), S2) = a{a(S1, 9)T, S2) = (51, 8) a(T,S2) = a(S1, a(S2,T)5)
= (51, pserS?).
That is,

*
Pres = LSoT
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and prgs € B(V). We write T'® S instead of prgg. Define K(V) to
be the subspace of B(V') generated by all T'® S, for 7,5 € V.

We define an inner product on {é} making it a left Hilbert A-

module. We have {é} is a left A-module by

al| |ad
Y|~ |aT
and we define the inner product by

A m , {;b = ad” + (T, S).

It is easy to check that {é] is a left Hilbert C*-module. We have
A V| A N A
Ve K(V)| |V 1%
a Ty bl | ab+ A(T1,S)
Ty TsTy| |S| |T*b+ a(S,T)T5|"

A %4 A
is a C*-algebra such that V' is its corner. The algebra L£(V) is called
the linking C*-algebra of V.

such that

Obviously,

Now let C' C B(H) be a C*-algebra and p € B(H) be a projection.
Let p~ = I — p, then

o= 2% pr .
p=Cp p=Cp
Let A :=pCp, B :=p-Cp* and V := pCp*. Then
A6 VxV = A
(T,5) —TS".
Obviously, V = pCp* is a left Hilbert A-module and
A V}

C=LV)= [v* Bl
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That means, each left Hilbert C*-module is the corner of some C*-
algebra. Thus, for each T},T; and T3 € V,

- R Y
SRR - e

-0 51 STl Sp =10 Bl )

AT, To)Ts = YTy Ty = Ti(Ts, T3)

Motivated by the above idea, we say that the C*-algebras A and B are
Morita equivalent if there is a Banach space V' such that V is a left A
Hilbert C*-module and a right B Hilbert C*-module and

A<T17 T2>T3 = Tl <T27 T3>Ba
for each T, T, and T3 € V. In this case, we have K(V') = B and
AV

That means,

is a C*-algebra.

Induced ideals: Let A and B be Morita equivalent by V. Then
[A g] is a C*-algebra. Let I be ideal of A. Then

V*
Jonvl, [ 1 v
¢ ([0 0 }) = [(JV)* V*IV]
and V*IV is an ideal of B. We call ind5(I) = V*IV the induced
representation of I. On the other hand, V*IV is ideal of B, and

C*(B V(VOJV)}):C*% Aév}):(]*({g 13/]): [(NI/)* VI*‘]/V]'
Thus,
indg(ind3 (1)) = indg(V*IV) = I.
Let b € B be such that Vb C IV. Then V*Vb C V*IV and b C
V*IV. If b € V*IV, then
Vb CVVIV = AIV = 1V.
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That means,

ind5(I) =V*IV ={bec B:VbC IV}.

Induced representations: Let A and B be Morita equivalent by

V, that is, [{/4* g] be a C*-algebra. Let p: B — B(H,) be a non-

degenerate *-representation. We find some Hilbert space K such that
AV K . .

e B] can act on { | As the action of V' on H, must give an
element of K, and the action is bilinear, the best candidate for K is
V ® H, with inner product

(T'®h,S®g)=(p(S*T)h,g).
Also,
(Tb® h, S ® g) = (p(S*Tb)h, g)
= (p(ST)p(b)h, g)
= (T ®p)h,S®g).

In the above inner product, Tb ® h = T ® p(b)h, and V ®p H, is a
Hilbert space. Thus we have the action

A V| |VesH,
V* B H, '
Now we define

indg(p) : A — B(V ®p H,),

then by definition,

n

ind(p)(a) [Z T,@h) =) aT,®h;.

=1

On the other hand, inds(p) : A — B(V ®p H,). Next, we find a
Hilbert space K’ such that

AV V®BHp
V* B K’ )
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As V* acts bilinearly on V®pH,, we should define K" := V*®(V®pH,)
with inner product

(TF ® (51 @ h1), Ty @ (S2 @ hy)) = (indg(p)(T2T;)(S1 @ hy), Sa @ ho)

= (

= (ToT}'S1 ® hy, S2 @ hy)
= (p(S5 1Ty S1)h1, ha)

= <P(T1*51)h17 P(Téksz))h2>~

Thus there is isometric surjection

V*ea(VepH, - H,
T"® (S®h) = p(T*S)h

and
ind5 (indy(p)) : B— B(V* ®4 (V ®p H,)) — B(H,)
such that
ind% (indg(p)) (b)[T*@(S@h)] = bT*@(S1®@h) — p(bT*S)h = p(b)p(T*S)h.

That means,

indj (indg(p)) = p.

Let A, B and C be C*-algebras such that A and B and also B and
C are Morita equivalent. Let V' and W be Banach spaces such that

AV L [Bow
v< B| ¢ w+ ¢

are C*-algebras. We want to find (7), such that

AV 7
L=|V* B W
o Wr O

is a C*-algebra. If L is a C*-algebra, then
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As the product is bilinear, the best candidate for (?) is V @ W. On
the other hand, the product of L is associative

0O 7 0110 00 00 O (0 b 0] [0 0 0O
({0 0 of |0 b O[)|O O S| =10 0 0[]0 O S
0 0 010 00 00 O 0 0 0] (000
00 0
=10 0 Th® S
00 0
which is equal to
07T 0 0 0 0[]0 0 O 0 T 0] [0 0 O
0O 0 0|(|0 b O |0 O S{)=10 0 0] |0 O Sb
0 0 0 0 0 0[]0 0 O 0 0 0] (00 O
00 0
=10 0 T®bS
00 0
That means, Th® S =T ® bS and
A Vi VepW
v B w
W*@pV*: W C
is C*-algebra. Let
I 00
p=10 0 0
0 0 I
The C*-algebra pLp is spatially isomorphic to
A VeopW

W*@p V* C

and A and C' are Morita equivalent.
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FOURTH SESSION: 1393/10/09

CROSSED PRODUCT OF LINKING C*-ALGEBRAS:

Let V be an A-B Hilbert C*-module. Let
a:G— Aut(A) and (G — Aut(B)
be actions and
¢ : G —inv(V)
be an sot-continuous map, where inv(V') is the family of all invertible
mappings on V. We say that ¢ is a-f-compatible if
(1) e(x)(aT) = afx)(a)elr)(T),
(2) (@)(Th) = p(@)(T)B)(0).
3) {p(@)(T), p(2)(S))p = B(x)(T, 5)B)-

Then
ale(@)(T), p(2)(8)) @(2)(S") = p(@)(T) {p(2)(S), p(2)(S")) B
= p(@)(T) B(x)((S,5')B)
= (@)(T(S,S') B)
= (@) (4(T,5) 5)
= a(z)(a(T, 5)) o(x)(S)

That means,

alp(2)(T), o(x)(9)) = a(x)(a(T, 5)).
As ¢ is sot-continuous,
¢ = L?* g} :G—)Aut([
is a dynamical system,
a T _|a@)(a) olx)(T)
25 3= et )
Thus we can construct the crossed product
AV
|:V* B:| Ao G.
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Let
AV
: {V* B} - B(Hp)
and
U:G— B(H,)
be ®-covariant representations. We can extend p to the unitization

A+CI 0
0 B+CI|-

Let

H = p é 8])Hp and K = p({g ﬂ)Hp.

We have H, = H ® K and

1 pe AV
= : — B(H® K
7= \p Pz] {V* B] e k)

p({a T})_{m(a) pz(T)}‘

ST b]7 [p2AS) ps(b)
Also,
_ U U
U= {U,* UJ .G = B(H®K).
As we have
a(z)(a)) 0 a 0O
[Pl( (0)< ) 0} _p(q)(x)({o 0}))
a 0O
—U) <[0 O})U(ax D
_ 33 95 ) Ui(@)pu (@)U’ (@71
- U @)p (@) U'@)p(a)U'(@7h)]
we get Uy (z)p1(a)U'(z71) = 0, and using a bounded approximate iden-
tity of A and z = e, we get U’ =0, and
U 0
S

Therefore, (p1,U;) is an a-covariant pair and (p3, Us) is a [-covariant
pair.

Now, let
p:B—DB(H, and U:G — B(H,)
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be [-covariant representations. For the linking C*-algebra

e

o
we have the action

indg(p) : A — B(V @5 H,)
such that

ind(p)(0) > Ti@h)) =Y aT} @ hs.
=1 =1

Also we have
indy(p): V — B(H,,V ®@p H,)

indy(p)(T)(h) =T @ h.
By definition of inner product,
(indp(p)(T)(h), S @ g) = (T ®h, S ® g)
= (h, p(T"5)9).

Thus there is

indy(p)* : V* = B(V ®p H,, H,)
such that

ind}(p)"(T")(S & h) = p(TS")h
which is the adjoint of indj(p). Therefore we have an *-representation

A gV
ind(p) = Z.lef((pp)l mde(p)] : {‘f}* g} — B( {V (g; Hp} ).

p
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That means,

indg (p)la(z)(a)] = [p(x) ® U()lindg(p)(a)[p(a™") @ U(z™")]

On the other hand,
(ind(p)(p(2)(T))(h), S @ g) =

That means,

indg(p)(p(2)(T)) = (¢(x) ® U(z))indz(T)U(27").

Thus

ind(U) = {WgU 8} :GaB({V%H’)})

is a unitary representation such that (ind(p),ind(U)) is ®-covariant
pair. Let f € C.(G, B), then

| {8 ﬂ lcovynac = supllp x U( [8 ﬂ)H = supl {8 ps X%2(f)])u

= supl|p3 x Uz(f)]|
<N fllBxsa = supewyllm = W(f)]

— sup|lind(x) x ind(W)( {8 ﬂ )l

0 0
Therefore,

0 0

0 7] Nevrac = 17lmuce
and

AV e G — Ax, G Vx,G
V* Bl T*T T [(Vx,G) BxgG|
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Next, we want to find the appropriate product. Let f € C.(G, A)
and g € C(c(G,V). Then

0 fg| |f 0[]0 ¢ Axe G Vx,G
0 0| €|(Vx,G)* BxsG

0 0 0 0

which can be characterized by its covariant representations. Let

| P AV

and

_ U O,
U_{O U2].G—>B(H@K)

be ®-covariant representations. Then

qu(B f(')g])chmU([g 8])(I>>4U([8 g]).

Thus
Lols F4 s = [ o7 Showa [ oy 75w
= [ Lo e o5ty
:/G/GP( :f%y) 8: )p({g s@(y)ég(x))}ww)dxdy
L Lo7& ohety @68 ywwrasay
<> |

Therefore,
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Now we want to characterize the involution. Let g € C.(G, V), then

=ty o =1 o]0 oputa
:/GU(x)*p( {g&) 8])*@:
= [vtag %G a

and



DYNAMICAL SYSTEM AND CROSSED PRODUCTS 33

Now, let g1, g2 € Co(G, V). Then

0 0
. + pxU(
[O I -92] P [0 g

OgJ {0 s J)U(:)j)dx

K 8]><p>« oo %))

— (pxU)
= [, Oprwan [y #5hwa

LA
- L
- L
L
-LLL
-LLL
-LLL
-LLL
=/G/G_

=L

That means,

g1 92

[0
(

[0
(

<
~—

<
~—

0
(
0
95 (y)

co oo oo oo oo
S~
S
—
<
SN—
—
S
—
—

| < !

- L
S~—
S~—
b
<
N
SN—
S
—~
<
N—
—
S
[\)
P
<
)
S~—
S~—
~—

By (g1 (y), gg(yx)>B]:| U(x)dxdy
0
Ja B 91(y), 92(yx)) Bl dy

/B ), 92(y)) Bldy.
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finally, we want to discuss Morita equivalence of crossed product
C*-algebras. Let

¢ : G —inv(V)
be an
a:G— Aut(A) and [:G — Aut(B)
compatible mapping. And
v G — inv(W)
be a
f:G— Aut(B) and ~:G — Aut(C)
compatible mapping. Then
AV e G — Ax, G Vx,G
V* Bl TPT T [(Vx,G) BxgG|’

and
B W o G — BxgG WX, G
W o7V T (WX, G Cx, G

are C*-algebras. Consider the action

a v PeRY A V o VepW

O:=| ¢ B v |G — Aut( V* B W)
Then

A V VegW

v B W

W*®gV* W C

N@G

V x, G)* B x3G W x, G
B P

Ax, G Vx,G (VW) XueyG
(W*@p V*) Xyrger G (W 3y G)* C %, G.

Therefore,

Ax, G (VopW) Xegyp G
(W*@p V*) Xyrger G Cx,G

is a C*-algebra. This means that, the C*-algebras A x, G and C x, G
are Morita equivalent.
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