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Dynamical systems:

Let A be a C∗-algebra and G be locally compact group. Let

Aut(A) = {ϕ : A→ A | 1− 1, onto, ∗ − homo.}.
Definition: A C∗-dynamical system is a triple (A,G, α) consisting

of a C∗-algebra A, a locally compact, Hausdorff group G and a strongly
continuous homomorphism α : G→ Aut(A).

This means that g → α(g)(a) is continuous, and we have

α(g1g2)(a) = α(g1)[α(g2)(a)]

α(g)−1(a) = α(g−1)(a)

α(g)(a)∗ = α(g)(a∗).

Example: Let G be a locally compact group. Let

πl : G→ Aut(C◦(G)) s.t πl(x)(f)(y) = f(x−1y)

for each x, y ∈ G. Obviously (C◦(G), πl, G) is a dynamical system.
More generally, letX locally compact space andG be locally compact

group with the action G×X → X, let ϕg ∈ homeo(X) be defined by
ϕg(x) = g.x, for g ∈ G and x ∈ X, then for

πl : G→ Aut(C◦(X)), πl(g)(f)(y) = f(g−1.y),

(C◦(X), πl, G) is a dynamical system.
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Conversely, let X locally compact space, G be locally compact group
and α : G→ Aut(C◦(X)) be an action. For each g ∈ G and x ∈ X, we
have a ∗-homomorphism

C◦(X)
α(g)−−→ C◦(X)

Λx−→ C
f → α(g)(f)→ α(g)(f)(x).

There is h(g) ∈ Homeo(X) such that α(g)(f)(x) = f(h(g)(x)) and

α(g1g2)(f)[x] = f [h(g1g2)(x)]

= α(g1)(α(g2)(f))[x] = α(g2)(f)[h(g1)(x)]

= f [h(g2)(h(g1)(x))].

Thus we define the action of G on X by g.x := h(g−1)(x) and we have
α(g)(f)(x) = f(g−1.x) for each g ∈ G and x ∈ X. Now, we show that

G×X → X

(g, x)→ g.x = h(g−1)(x)

is continuous. Let Og.x be an open subset of X such that g.x ∈ Og.x.
By Urysohn Lemma, there is f ∈ Cc(X)+ such that g.x ≺ f ≺ Og.x.
As 1 = f(g.x) = α(g−1)(f)(x) and α is sot-continuous, for ε = 1/2
there is an open subset Ox ⊆ X such that x ∈ Ox and for each y ∈ Ox

we have ‖α(g−1)(f)(x) − α(g−1)(f)(y)‖ < ε. On the other hand, α is
sot-continuous, thus there is an open subset Og ⊆ G such that, for each
g′ ∈ Og, we have ‖α(g−1)(f) − α(g′−1)(f)‖ < ε. Therefore, for each
g′ ∈ Og and y ∈ Ox we have

|f(g.x)− f(g′.y)| = ‖α(g−1)(f)(x)− α(g′−1)(f)(y)‖ < 1.

This means that g′.y ∈ Og.x and Og.Ox ⊆ Og.x. Thus the action of G
on X is continuous.

Representation on groups: Let G be a locally compact group
and π : G → U(Hπ) be sot-continuous ∗-representation. That means,
g → π(g)h is continuous and

π(g1g2)[h] = π(g1)[π(g2)h]

π(g)∗ = π(g)−1 = π(g−1).

For π, there is an extension

π : Cc(G)→ B(Hπ) s.t π(f) =

∫
G

f(x)π(x)dx
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such that dx is left Haar measure of G. As

‖π(f)‖ = ‖
∫
G

f(x)π(x)dx‖ ≤
∫
G

|f(x)|‖π(x)‖dx = ‖f‖1,

there is a lift of π on L1(G),

π : L1(G)→ B(Hπ) s.t π(f) =

∫
G

f(x)π(x)dx.

Consider the universal representation

πu := ⊕ππ : L1(G)→ ⊕πB(Hπ) ⊆ B(Hu := ⊕πHπ)

defined by

πu(f) = (π(f))π =



. . . 0∫
G
f(x)π(x)dx

. . .∫
G
f(x)π′(x)dx

0
. . .

 .

We define

C∗(G) = Cc(G)
‖.‖
⊆ B(Hu).

We want C∗(G) to be a C∗-algebra, so we give its product and involu-
tion.

Product: Let f, g ∈ C∗(G), we would like to have π(f.g) = π(f)π(g).
We have

π(f.g) =

∫
G

f.g(x)π(x)dx

= π(f)π(g) =

∫
G

f(y)π(y)dy

∫
G

g(x)π(x)dx

=

∫
G

∫
G

f(y)g(x)π(yx)dxdy =

∫
G

∫
G

f(y)g(y−1x)π(x)dxdy

=

∫
G

[

∫
G

f(y)g(y−1x)dy]π(x)dx.

Thus we define the convolution by

f ∗ g(x) := f.g(x) =

∫
G

f(y)g(y−1x)dy.
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Involution: We would like to have π(f ∗) = π(f)∗, that is,

π(f ∗) =

∫
G

f ∗(x)π(x)dx

= π(f)∗ = [

∫
G

f(x)π(x)dx]∗ =

∫
G

f(x)π(x−1)dx

=

∫
G

f(x−1)∆(x−1)π(x)dx

where ∆ is the modular function of the left Haar measure of G. Thus
for each x ∈ G, we define

f ∗(x) = f(x−1)∆(x−1).

Crossed Products:

Let A be a C∗-algebra and G a locally compact group. Let α : G→
Aut(A) be an action. The representations

ρ : A→ B(Hρ)

and
U : G→ U(Hρ)

are called α-covariant representations, if for each a ∈ A and x ∈ G,

ρ(α(x)(a)) = U(x)ρ(a)U(x−1).

We define

ρo U :A⊗ Cc(G)→ B(Hρ)

a⊗ f → ρ(a)U(f) = ρ(a)

∫
G

f(x)U(x)dx =

∫
G

ρ(f(x)a)U(x)dx.

As A⊗ Cc(G) ⊆ Cc(G,A), then we may extend ρo U to

ρo U :Cc(G,A)→ B(Hρ)

F → ρo U(F ) =

∫
G

ρ(F (x))U(x)dx.

Example: Consider α = πl : G→ Aut(C◦(G)) and representations

ρ : C◦(G)→ B(L2(G)) s.t ρ(f)(g) = fg

and

U = πl : G→ B(L2(G)) s.t πl(x)(g)(y) = g(x−1y)
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for g ∈ L2(G) and x, y ∈ G. We have

ρ[πl(x)(f)](g)(y) = [πl(x)(f)g](y) = πl(x)(f)(y)g(y) = f(x−1y)g(y).

On the other hand,

[U(x)ρ(f)U(x−1)](g)(y) = U(x)[ρ(f)πl(x
−1)(g)](y) = [ρ(f)πl(x

−1)(g)](x−1y)

= [fπl(x
−1)(g)](x−1y) = f(x−1y)πl(x

−1)(g)(x−1y)

= f(x−1y)g(y).

That means,

ρ(πl(x)(f))(g) = U(x)ρ(f)U(x−1)(g)

and (ρ, U) is α-covariant pair.

Question: Does there exist an α-covariant pair for each dynamical
system (A,G, α)?

Let A ⊆ B(H). As the action α : G→ Aut(A) is sot-continuous, we
have the embedding

ρ : A→ Cb(G,A)

a→ ρ(a)(x) := α(x−1)(a).

On the other hand,

Cb(G,A) ⊆M(C0(G,A)) = M(C0(G)⊗min A)

⊆ B(L2(G)⊗2 H) = B(L2(G,H))

where M(C0(G)⊗minA) is the multiplier algebra of C0(G)⊗minA. We
define

ρ : A→ B(L2(G,H)) s.t ρ(a)(F )(x) := α(x−1)(a)(F (x))

and

U = πl : G→ U(L2(G,H)) s.t U(x)(F )(y) := F (x−1y).

In this case,

ρ(α(x)(a))[F ](y) = α(y−1x)(a)[F (y)].

On the other hand,

U(x)ρ(a)U(x−1)[F ](y) = ρ(a)[U(x−1)F ](x−1y)

= α(y−1x)(a)[U(x−1)F ](x−1y)

= α(y−1x)(a)[F (y)].
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This means that (ρ, U) is an α-covariant pair. For the universal repre-
sentation

⊕(ρ,U) ρo U : Cc(G,A)→ ⊕(ρ,U)B(Hρ) ⊆ B(⊕(ρ,U)Hρ)

defined by

f ↪→



. . . 0∫
G
ρ(f(x))U(x)dx

. . .∫
G
ρ′(f(x))U ′(x)dx

0
. . .

 ,

we define the crossed product

Aoα G := Cc(G,A)
‖.‖
⊆ B(⊕(ρ,U)Hρ).

Same as for C∗(G), we would like A oα G to become a C∗-algebra.
Thus we should find its product and involution.

Product: Let f, g ∈ Cc(G,A). For f.g in Aoα G,

ρo U(f.g) =

∫
G

ρ((f.g)(x))U(x)dx

= ρo U(f) ρo U(g)

=

∫
G

ρ(f(y))U(y)dy

∫
G

ρ(g(x))U(x)dx

=

∫
G

∫
G

ρ(f(y))U(y)ρ(g(x))U(x)dxdy

=

∫
G

∫
G

ρ(f(y))ρ[α(y)(g(x))]U(y)U(x)dxdy

=

∫
G

∫
G

ρ[f(y)α(y)(g(x))]U(yx)dxdy

=

∫
G

∫
G

ρ[f(y)α(y)(g(y−1x))]U(x)dxdy

=

∫
G

ρ[

∫
G

f(y)α(y)(g(y−1x))dy]U(x)dx.

Thus we define

f ∗α g(x) := f.g(x) =

∫
G

f(y)α(y)(g(y−1x))dy.
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Involution: We would like ρ o U(f ∗) = [ρ o U(f)]∗, for each α-
covariant pair (ρ, U), that is,

ρo U(f ∗) =

∫
G

ρ(f ∗(x))U(x)dx

= [ρo U(f)]∗ = [

∫
G

ρ(f(x))U(x)dx]∗

=

∫
G

U(x)∗ρ(f(x))∗dx =

∫
G

U(x−1)ρ(f(x)∗)dx

=

∫
G

ρ[α(x−1)(f(x))∗]U(x−1)dx

=

∫
G

ρ[α(x)(f(x−1))∗∆(x−1)]U(x)dx.

Thus for each f ∈ Aoα G, we define

f ∗(x) = α(x)(f(x−1)∗)∆(x−1).

This means that, for α-covariant pair (ρ, U), we have a ∗-representation

ρo U : Aoα G→ B(Hρ)

such that

ρo U(f) =

∫
G

ρ(f(x))U(x)dx.

�

Now we want to characterize all representations of Aoα G.

As an example, let A = C, and G = R be the real line. Here α = id
and (C,R, id) is a dynamical system. Let

ρ : C→ B(Hρ) and U : R→ U(Hρ)

be id-covariant representations. As ρ = I, for each unitary representa-
tion U of G = R, (ρ, U) is a id-covariant pair. Thus

Aoα G = Cc(R,C)
‖.‖

= C∗(R) ∼= C◦(R̂) ∼= C◦(R)

which is not a unital C∗-algebra. In this case, A = CI can not be
embedded into Aoα G ∼= C◦(R).

In general one could embed A and G into the multiplier algebra of
A oα G. As each element f ∈ Cc(G,A) in A oα G, given all values
ρo U(f) for α-covariant pairs (ρ, U), we define

iA : A→M(Aoα G)
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such that

iA(a)(f) = iA(a)[(ρo U(f))(ρ,U)]

:= [ρ(a)ρo U(f)](ρ,U)

= [ρ(a)

∫
G

ρ(f(x))U(x)dx)](ρ,U)

= [

∫
G

ρ(af(x))U(x)dx)](ρ,U),

and

iA(a)(f)(x) = af(x).

Define

iG : G→M(Aoα G)

such that

iG(x)(f) = iG(x)[(ρo U(f))(ρ,U)]

:= [U(x)ρo U(f)](ρ,U)

= [U(x)

∫
G

ρ(f(y))U(y)dy)](ρ,U)

= [

∫
G

ρ[α(x)(f(y))]U(xy)dy)](ρ,U)

= [

∫
G

ρ[α(x)(f(x−1y))]U(y)dy)](ρ,U),

and

iG(x)(f)(y) = α(x)(f(x−1y)).

Now let

σ : Aoα G→ B(Hσ)

be a non-degenerate representation. Define

ρσ : A→ B(Hσ)

such that

ρσ(a)(σ[(ρo U(f))(ρ,U)]h) := σ[(ρ(a) ρo U(f))(ρ,U)]h

= σ[(ρo U(af))(ρ,U)]h

= σ[ρo U(iA(a)f))(ρ,U)]h

and define

Uσ : G→ U(Hσ)
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such that

Uσ(x)(σ[ρo U(f))(ρ,U)]h) := σ[U(x) ρo U(f))(ρ,U)]h

= σ[(ρo U(iG(x)f))(ρ,U)]h.

Thus

ρσ(α(x)(a))[σ[(ρo U(f))(ρ,U)]h] = σ[(ρ(α(x)(a)) ρo U(f))(ρ,U)]h

= σ[(U(x)ρ(a)U(x−1) ρo U(f))(ρ,U)]h

= Uσ(x)ρσ(a)Uσ(x−1)[σ[(ρo U(f))(ρ,U)]h].

This means that,

ρσ(α(x)(a)) = Uσ(x)ρσ(a)Uσ(x−1)

and (ρσ, Uσ) is an α-covariant pair. We have

σ[ρo U(f))(ρ,U)](σ[ρo U(g))(ρ,U)]h) = σ[(ρo U(f)ρo U(g))(ρ,U)]h

= σ[(

∫
G

ρ(f(x))U(x)dx ρo U(g))(ρ,U)]h

=

∫
G

ρσ(f(x))Uσ(x)dx σ[ρo U(g))(ρ,U)]h.

Thus

σ[f ] = σ[(ρo U(f))(ρ,U)] =

∫
G

ρσ(f(x))Uσ(x)dx

and

σ = ρσ o Uσ.

Example: (i) Let G = Z2 = {0, 1} and A be any non-degenerate
C∗-subalgebra of B(H). Let α : Z2 → Aut(A) be an action. Since
α(0) = I, α can be characterized by α(1). Let (ρ, U) be the α-covariant
pair given by

ρ :A→ B(`2(Z)⊗2 H) = B(C2 ⊗2 H) ∼= B(H2)

ρ(a)(F )(x) = α(x−1(a))(F (x))

and left regular representation

U = πl : G→ B(`2(Z)⊗2 H) ∼= B(H2).

Let

F ∈ Cc(Z2, A) = C(Z2, A) = C(Z2)⊗ A = `∞2 ⊗ A ∼=
[
A 0
0 A

]
.
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Then F = a⊗ δ0 + b⊗ δ1, and

ρo U(a⊗ δ0 + b⊗ δ1) = ρ(a)U(0) + ρ(b)U(1) = ρ(a) + ρ(b)U(1).

As ρ(a) ∈ B(H2), ρ(a) =

[
T1 T2

T3 T4

]
such that {Ti}4

i=1 ⊆ B(H). For

each h ∈ H, there is h1, h2 ∈ H such that

ρ(a)

[
h
0

]
=

[
T1 T2

T3 T4

] [
h
0

]
=

[
h1

h2

]
or

ρ(a)(h⊗ δ0) = h1 ⊗ δ0 + h2 ⊗ δ1.

We have

h1 = ρ(a)(h⊗ δ0)(0) = [α(0)(a)h]δ0(0) = ah,

and

h2 = ρ(a)(h⊗ δ0)(1) = [α(1)(a)h]δ0(1) = 0.

Thus T1 = a and T3 = 0. Similarly, for each g ∈ H, there are g1, g2 ∈ H
such that

ρ(a)

[
0
g

]
=

[
T1 T2

T3 T4

] [
0
g

]
=

[
g1

g2

]
or

ρ(a)(g ⊗ δ1) = g1 ⊗ δ0 + g2 ⊗ δ1.

We have

g1 = ρ(a)(g ⊗ δ1)(0) = [α(0)(a)h]δ1(0) = 0,

and

g2 = ρ(a)(g ⊗ δ1)(1) = [α(1)(a)g]δ1(1) = α(1)(a)g.

Thus T2 = 0 and T4 = α(1)(a), and

ρ(a) =

[
a 0
0 α(1)(a)

]
.

Similarly,

U(1) =

[
0 1
1 0

]
.

Thus

ρ× U : Cc(Z2, A) = C(Z2, A) = `∞2 ⊗ A→ B(H2)

is given by

ρo U(a⊗ δ0 + b⊗ δ1) = ρ(a) + ρ(b)U(1) =

[
a b

α(1)(b) α(1)(a)

]
.
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As ρ× U is injective,

Aoα Z2
∼= {
[

a b
α(1)(b) α(1)(a)

]
: a, b ∈ A}.

�.

(ii) Let G = {xi}n−1
i=0 be a finite group and πl : G→ Aut(C◦(G)) be

an action. Consider the α-covariant pair (ρ, U) with

ρ :C◦(G) = l∞n → B(l2(G)) = B(l2n) = Mn(C)

f → ρ(f)(g) = fg

for g ∈ l2n, and the left regular representation

U = πl : G→ B(l2(G)) = Mn(C).

By definition,

ρ(f) =


f(x0) 0 0 . . .

0 f(x1) 0 . . .
...

. . .
...

0 . . . 0 f(xn−1)


n×n

and each πl(xi) is a shift operator in Mn(C). Let x0 = e, then

πl(x0) = In =


1 0 0 . . .
0 1 0 . . .
...

. . .
...

0 . . . 0 1


n×n

is the identity of Mn(C). Let δ0 ∈ C◦(G) = l∞n . Then

ρo U(Cδ0 o xo) = Cρ(δ0)U(xo) =

C 0 0 . . .
...

. . .
...

0 . . . 0 0


n×n

For each i, πl(xi) is a shift operator in Mn(C). In each row, there is
one coordinate 1 and the rest are 0. Thus

span{ρoU(Cδ0oxi)}n−1
i=0 = span{Cρ(δ0)U(xi)}n−1

i=0 =


C C . . . C
0 0 . . . 0
...

. . .
...

0 . . . 0 0


n×n

.
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Similarly,

span{ρoU(Cδ1oxi)}n−1
i=0 = span{Cρ(δ1)U(xi)}n−1

i=0 =


0 0 . . . 0
C C . . . C
...

. . .
...

0 . . . 0 0


n×n

.

Since

ρo U : Cc(G,C◦(G)) = C(G)⊗ C(G)→ B(`2
n) = Mn(C)

is a faithful representation,

ρoU(Cc(G,C◦(G)) = ρ(C(G))U(C(G)) = span{ρ(δi)U(xj)}n,n−1
i=1,j=0 = Mn(C).
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Second session: Sunday, 1393/10/07

Some important Crossed Products:

Let α = id : G→ Aut(A) be a dynamical system. Let

ρ : A→ B(Hρ)

and

U : G→ U(Hρ)

be α-covariant representations, then

U(x)ρ(a) = ρ(α(x)(a))U(x) = ρ(a)U(x).

We can extend the unitary representation U to

U : C∗(G)→ B(Hρ)

and we have a ∗-representation

ρ⊗ U : A⊗max C∗(G)→ B(Hρ).

On the other hand, A ⊗max C∗(G) can be characterized by all its
non-degenerate ∗-representations

π ⊗W : A⊗max C∗(G)→ B(Hπ),

where the values of π and U are commuting. We may define

W : G→ B(Hπ)

such that

W (x)[
n∑
i=1

π(ai)W (fi)] = W (x)[
n∑
i=1

W (fi)π(ai)] =
n∑
i=1

W (πl(x)(fi))π(ai)

=
n∑
i=1

π(ai)W (πl(x)(fi)).

then (π,W ) is an id-covariant pair. Thus for each

n∑
i=1

ai ⊗ fi ∈ A⊗ Cc(G) ⊆ Cc(G,A),
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‖
n∑
i=1

ai ⊗ fi‖AoαG = sup(ρ,U)‖
n∑
i=1

ρ(ai)U(fi)‖

≤ ‖
n∑
i=1

ai ⊗ fi‖A⊗maxC∗(G) = sup(π,W )‖
n∑
i=1

π(ai)W (fi)‖

≤ ‖
n∑
i=1

ai ⊗ fi‖AoαG.

This means that

Aoα G ∼= A⊗max C
∗(G).

�.

Let B be any C∗-algebra. We show that

(Aoα G)⊗max B ∼= (A⊗max B) oα⊗id G

where
α⊗ id : G→ Aut(A⊗max B)

is defined by
(α⊗ id)(x)(a⊗ b) = α(x)(a)⊗ b

for each x ∈ G, a ∈ A and b ∈ B. Let

ρ : A⊗max B → B(Hρ)

and
U : G→ B(Hρ)

be (α ⊗ id)-covariant representations. We may write ρ = ρ1 ⊗ ρ2 such
that

ρ(a⊗ b) = ρ1(a)ρ2(b) = ρ2(b)ρ1(a).

We have

ρ[α(x)(a)⊗ b] = ρ[(α(x)⊗ id)(a⊗ b)]
= U(x)ρ[a⊗ b]U(x−1)

= U(x)ρ1(a)ρ2(b)U(x−1).

On the other hand,

ρ[α(x)(a)⊗ b] = ρ1[α(x)(a)]ρ2(b)

and
ρ1[α(x)(a)]ρ2(b) = U(x)ρ1(a)ρ2(b)U(x−1).

Using a bounded approximate identity of A, we get

ρ2(b) = U(x)ρ2(b)U(x−1)
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and
U(x)ρ2(b) = ρ2(b)U(x)

for each b ∈ B and x ∈ G. This means that ρ2 and U have commuting
values. Same way, by bounded approximate identity of B, we have

ρ1(α(x)(a)) = U(x)ρ1(a)U(x−1).

That means (ρ1, U) is α-covariant representation. Thus

ρ1 o U : Aoα G→ B(Hρ)

and
ρ2 : B → B(Hρ)

are commuting representations such that

ρ1 o U(a⊗ f)ρ2(b) = ρ1(a)U(f)ρ2(b) = ρ2(b)ρ1(a)U(f)

= ρ2(b)(ρ1 o U)(a⊗ f).

Thus,
(ρ1 o U)⊗ ρ2 : (Aoα G)⊗max B → B(Hρ).

Conversely, let

(π1 o U)⊗ π2 : (Aoα G)⊗max B → B(Hπ)

be a non-degenerate ∗-representation. Then

[(π1 o U)⊗ π2][(a⊗ f)⊗ b] = [π2 ⊗ (π1 o U)][b⊗ (a⊗ f)]

and
π1(a)U(f)π2(b) = π2(b)π1(a)U(f).

Since {ϕr}r ⊆ Cc(G), using a bounded approximate identity for (L1(G), ∗),
π1(a)π2(b) = π2(b)π1(a)

and
π = π1 ⊗ π2 : A⊗max B → B(Hπ).

Similarly, using a bounded approximate identity forA and {πl(x)(ϕr)}r,
π2(b)U(x) = U(x)π2(b).

Thus

π[(α(x)⊗ id)(a⊗ b)] = π[(α(x)(a)⊗ b)] = π1(α(x)(a))π2(b)

= U(x)π1(a)U(x−1)π2(b) = U(x)π1(a)π2(b)U(x−1)

= U(x)π(a⊗ b)U(x−1).

Therefore (π, U) is an (α⊗ id)-covariant pair and

π o U : (A⊗max B) oα G→ B(Hπ).
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Let {ai}ni=1 ⊆ A, {bi}ni=1 ⊆ B and {fi}ni=1 ⊆ Cc(G), then

‖
n∑
i=1

(ai ⊗ bi)⊗ fi‖(A⊗maxB)oαoidG = sup(ρ,U)‖
n∑
i=1

ρ(ai ⊗ bi)U(fi)‖

= sup(ρ,U)‖
n∑
i=1

ρ1(ai)ρ2(bi)U(fi)‖

= sup(ρ,U)‖
n∑
i=1

ρ1(ai)U(fi)ρ2(bi)‖

= sup(ρ1oU,ρ2)‖
n∑
i=1

ρ1 o U(ai ⊗ fi)ρ2(bi)‖

= ‖
n∑
i=1

(ai ⊗ bi)⊗ fi‖(AoαG)⊗maxB.

This means that

(A⊗max B) oα⊗id G ∼= (Aoα G)⊗max B.

�.

Rotation algebra: Let θ be an irrational number. Let

πθ : Z→ Aut(C(T)) s.t πθ(n)(f)(x) = f(e−2πinθx)

for each n ∈ Z and x ∈ T. Obviously, (C(T),Z, πθ) is a dynamical
system. Let

ρ : C(T)→ B(Hρ)

and

U : Z→ U(Hρ)

be any πθ-covariant representations. Let f◦ ∈ C(T) be such that
f◦(z) = z, for z ∈ T. Then, C(T) = C∗(f◦). Thus

ρ(
n∑

i=−n

λiz
i) =

n∑
i=−n

λiρ(f◦)
i

and ρ can be characterized by ρ(f◦). On the other hand, one can extend
U to

U : `1(Z)→ U(Hρ)
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such that

U(
n∑

i=−n

λiδi) =
n∑

i=−n

λiU(δi) =
n∑

i=−n

λiU(δn1 ) =
n∑

i=−n

λiU(δ1)n.

Thus U can be characterized by U(δ1). Since,

ρo U(
n∑
−n

λiz
mi ⊗ δi) =

n∑
−n

λiρ(f◦)
miU(δ1)i,

C(T) oθ Z can be characterized by ρ(f◦) and U(δ1) such that

U(δ1)ρ(f◦) = ρ(αθ(1)(f◦))U(δ1),

and

αθ(1)(f◦)(x) = f◦(e
−2πiθx) = e−2πiθf◦(x),

and

U(δ1)ρ(f◦) = e−2πiθρ(f◦)U(δ1).

This means that

C(T) oθ Z = C∗(ρ(f◦), U(δ1))

such that σ(f◦) = T and

U(δ1)ρ(f◦) = e−2πiθρ(f◦)U(δ1).

Now, let U and V be unitaries in B(H) such that UV = e−2πiθV U .
Note that

λ ∈ σ(V )⇔ V − λI is not invertible

⇔ Un(V − λI) is not invertible

⇔ (e−2πinθV − λI)Un is not invertible

⇔ V − e2πinθλI is not invertible

⇔ e2πinθλ ∈ σ(V ) is not invertible.

As θ ∈ Qc, we have σ(V ) = T and C(T) ∼= C∗(V ). Consider the
∗-representation

ρ : C(T)→ C∗(V ) ⊆ B(H)

f → ρ(f) = f(V )

and unitary

U ′ : Z→ U(H) s.t. U ′(n) = Un.
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We have

ρ(πθ(n)(f◦)) = ρ(e−2πinθf◦) = e−2πinθρ(f◦) = e−2πinθV

= UnV U−n = U ′(n)ρ(f◦)U
′(n)∗.

Therefore, for each f ∈ C(T),

ρ(πθ(n)(f)) = U ′(n)ρ(f)U ′(n)∗

and (ρ, U ′) is a πθ-covariant pair. Thus

ρo U ′ : C(T) oπθ Z→ B(H)

is a ∗-representation. By [1, Proposition 2.56], C(T) oπθ Z is a simple
C∗-algebra and ρo U ′ is a faithful representation. This means that

C(T) oπθ Z ∼= C∗(V, U).

�.

Let I be an ideal of A. Let α : G → Aut(A) be an action such
that α(G)(I) ⊆ I. Note that Cc(G, I) sits in Cc(G,A) as a ∗-closed
two-sided ideal. Therefore, its closure Ex(I) is a closed ideal.

Now, αI : G→ Aut(I) is dynamical system, and we show that

I oαI G = Ex(I).

Let

π : I → B(Hπ) and W : G→ B(Hπ)

be a non-degenerate αI-covariant representation. As I is an ideal in A,
there is an extension

π̃ : A→ B(Hπ)

such that

π̃(a)(π(b)h) := π(ab)h.

We have

π̃(α(x)(a))π(b)h = π[α(x)(a)b]h

= π[α(x)(aα(x−1)(b))]h

= W (x)π[aα(x−1)(b)]W (x−1)h

= W (x)π̃(a)π(α(x−1)(b)W (x−1)h

= W (x)π̃(a)W (x−1)π(b)h.

Thus

π̃(α(x)(a)) = W (x)π̃(a)W (x−1).
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That is, (π̃,W ) is an α-covariant pair. Let f ∈ Cc(G, I) ⊆ Cc(G,A).
Then,

‖f‖AoαG = sup‖ρo U(f)‖ = sup‖ρI o U(f)‖
≤ ‖f‖IoαG = sup‖π oW (f)‖ = sup‖π̃ oW (f)‖
≤ ‖f‖AoαG,

which means that
‖f‖AoαG = ‖f‖IoαG

and
I oαI G = Ex(I).
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Third session: Monday, 1393/10/8

Hilbert C∗-modules:

Let H and K be Hilbert spaces. Consider the inner product

B(H)〈, 〉 : B(K,H)×B(K,H)→ B(H)

(S1, S2)→ B(H)〈S1, S2〉 := S1S
∗
2 .

For each T ∈ B(H) and S1, S2 ∈ B(K,H),

(1) B(H)〈S1, S2〉∗ = (S1S
∗
2)∗ = S2S

∗
1 = B(H)〈S2, S1〉,

(2) B(H)〈TS1, S2〉 = TS1S
∗
2 = T B(H)〈S1, S2〉

(3) B(H)〈S1, TS2〉 = S1S
∗
2T
∗ = B(H)〈S1, S2〉T ∗

and for each S ∈ B(K,H),

‖S‖2 = ‖SS∗‖ = ‖B(H)〈S, S〉‖.

This is an example of a left Hilbert C∗-module. In general, let V
be a Banach space and A be a C∗-algebra. Let V be left A Banach
module, that is,

A× V → V

(a, T )→ a.T

is a continuous bilinear mapping. Instead of a.T , we write aT . The
Banach space V is called a left Hilbert A-module, if there is an inner
product

A〈, 〉 : V × V → A

such that

(1) A〈T, T 〉 ≥ 0 for each T ∈ V ,
(2) A〈T, T 〉 = 0 if and only if T = 0,

(3) A〈aT, S〉 = a〈T, S〉 for each T, S ∈ V , a ∈ A ,

(4) A〈T, S〉∗ = A〈S, T 〉,
(5) V is complete by the norm ‖T‖2 = ‖A〈T, T 〉‖.

The module is called full if A〈V, V 〉 is dense in A. In the rest of this
note, the modules are assumed to be full.
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Let B(V ) be the set of adjointable maps ϕ : V → V , that is, the set
of maps ϕ : V → V such that there exists a map ϕ∗ : V → V with

A〈ϕ(T ), S〉 = A〈T, ϕ∗(S)〉,
for each T, S ∈ V . Note that in general, ϕ : V → V is not adjointable.
For example, let C[0, 1] be the left C[0, 1] Hilbert C∗-module with inner
product 〈f, g〉 = fḡ. Let

ϕ : C[0, 1]→ C[0, 1] s.t ϕ(f) = f(0)1.

If ϕ is adjointable, there is ϕ∗ : C[0, 1]→ C[0, 1] such that

A〈ϕ(f), g〉 = A〈f, ϕ∗(g)〉
and

ϕ(f)g = fϕ∗(g).

For f = 1,

g = f(0)g = ϕ(f)g = A〈ϕ(f), g〉 = A〈f, ϕ∗(g)〉 = fϕ∗(g) = ϕ∗(g).

Thus ϕ∗ = id. For f(x) = x and g = 1,

0 = f(0)g = A〈ϕ(f), g〉 = A〈f, ϕ∗(g)〉 = fϕ∗(g) = f,

which is a contradiction.

Same as inner product of Hilbert spaces,

‖A〈T, S〉‖ ≤ ‖T‖‖S‖
for each T, S ∈ V . Thus, for each ϕ ∈ B(V ),

‖ϕ‖2 = sup‖ϕ(T )‖2 = sup‖A〈ϕ(T ), ϕ(T )〉‖ = sup‖A〈ϕ∗ϕ(T ), T 〉‖
≤ sup‖ϕ∗ϕ(T )‖ = ‖ϕ∗ϕ‖ = sup‖A〈ϕ∗ϕ(T ), S〉‖
= sup‖A〈ϕ(T ), ϕ(S)〉‖
≤ ‖ϕ‖2

where the sup is on the unit ball of V . Thus, ‖ϕ‖2 = ‖ϕ∗ϕ‖ and B(V )
is a C∗-algebra. For T, S ∈ V , we define ϕT⊗S by

ϕT⊗S(S ′) = A〈S ′, S〉T.
Let S1, S2 ∈ V , then

A〈(ϕT⊗S(S1), S2〉 = A〈A〈S1, S〉T, S2〉 = A〈S1, S〉 A〈T, S2〉 = A〈S1, A〈S2, T 〉S〉
= 〈S1, ϕS⊗TS2〉.

That is,

ϕ∗T⊗S = ϕS⊗T
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and ϕT⊗S ∈ B(V ). We write T ⊗ S instead of ϕT⊗S. Define K(V ) to
be the subspace of B(V ) generated by all T ⊗ S, for T, S ∈ V .

We define an inner product on

[
A
V

]
making it a left Hilbert A-

module. We have

[
A
V

]
is a left A-module by

a

[
a′

T

]
=

[
aa′

aT

]
and we define the inner product by

A〈
[
a
T

]
,

[
a′

T ′

]
〉 = aa′∗ + A〈T, S〉.

It is easy to check that

[
A
V

]
is a left Hilbert C∗-module. We have[

A V
V ∗ K(V )

]
:

[
A
V

]
→
[
A
V

]
such that [

a T1

T ∗2 T3 ⊗ T4

] [
b
S

]
=

[
ab+ A〈T1, S〉

T ∗b+ A〈S, T4〉T3

]
.

Obviously,

L(V ) :=

[
A V
V ∗ K(V )

]
⊆ B(

[
A
V

]
)

is a C∗-algebra such that V is its corner. The algebra L(V ) is called
the linking C∗-algebra of V .

�.

Now let C ⊆ B(H) be a C∗-algebra and p ∈ B(H) be a projection.
Let p⊥ = I − p, then

C ∼=
[
pCp pCp⊥

p⊥Cp p⊥Cp⊥

]
.

Let A := pCp, B := p⊥Cp⊥ and V := pCp⊥. Then

A〈, 〉 :V × V → A

(T, S)→ TS∗.

Obviously, V = pCp⊥ is a left Hilbert A-module and

C ∼= L(V ) =

[
A V
V ∗ B

]
.
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That means, each left Hilbert C∗-module is the corner of some C∗-
algebra. Thus, for each T1, T2 and T3 ∈ V ,[

0 T1T
∗
2 T3

0 0

]
=

[
0 T1

0 0

] [
0 T2

0 0

]∗ [
0 T3

0 0

]
= (

[
0 T1

0 0

] [
0 T2

0 0

]∗
)

[
0 T3

0 0

]
=

[
0 T1T

∗
2

0 0

] [
0 T3

0 0

]
=

[
0 T1

0 0

]
(

[
0 T2

0 0

]∗ [
0 T3

0 0

]
) =

[
0 T1

0 0

] [
0 0
0 T ∗2 T3

]
.

That means,

A〈T1, T2〉T3 = T1T
∗
2 T3 = T1〈T2, T3〉B

Motivated by the above idea, we say that the C∗-algebras A and B are
Morita equivalent if there is a Banach space V such that V is a left A
Hilbert C∗-module and a right B Hilbert C∗-module and

A〈T1, T2〉T3 = T1〈T2, T3〉B,
for each T1, T2 and T3 ∈ V . In this case, we have K(V ) = B and

L(V ) =

[
A V
V ∗ B

]
is a C∗-algebra.

�.

Induced ideals: Let A and B be Morita equivalent by V . Then[
A V
V ∗ B

]
is a C∗-algebra. Let I be ideal of A. Then

C∗(

[
0 IV
0 0

]
) =

[
I IV

(IV )∗ V ∗IV

]
and V ∗IV is an ideal of B. We call indBA(I) = V ∗IV the induced
representation of I. On the other hand, V ∗IV is ideal of B, and

C∗(

[
0 V (V ∗IV )
0 0

]
) = C∗(

[
0 AIV
0 0

]
) = C∗(

[
0 IV
0 0

]
) =

[
I IV

(IV )∗ V ∗IV

]
.

Thus,
indAB(indBA(I)) = indAB(V ∗IV ) = I.

Let b ∈ B be such that V b ⊆ IV . Then V ∗V b ⊆ V ∗IV and b ⊆
V ∗IV . If b ∈ V ∗IV , then

V b ⊆ V V ∗IV = AIV = IV.
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That means,

indBA(I) = V ∗IV = {b ∈ B : V b ⊆ IV }.

�.

Induced representations: Let A and B be Morita equivalent by

V , that is,

[
A V
V ∗ B

]
be a C∗-algebra. Let ρ : B → B(Hρ) be a non-

degenerate ∗-representation. We find some Hilbert space K such that[
A V
V ∗ B

]
can act on

[
K
Hρ

]
. As the action of V on Hρ must give an

element of K, and the action is bilinear, the best candidate for K is
V ⊗Hρ with inner product

〈T ⊗ h, S ⊗ g〉 = 〈ρ(S∗T )h, g〉.

Also,

〈Tb⊗ h, S ⊗ g〉 = 〈ρ(S∗Tb)h, g〉
= 〈ρ(S∗T )ρ(b)h, g〉
= 〈T ⊗ ρ(b)h, S ⊗ g〉.

In the above inner product, Tb ⊗ h = T ⊗ ρ(b)h, and V ⊗B Hρ is a
Hilbert space. Thus we have the action[

A V
V ∗ B

] [
V ⊗B Hρ

Hρ

]
.

Now we define

indAB(ρ) : A→ B(V ⊗B Hρ),

then by definition,

indAB(ρ)(a)[
n∑
i=1

Ti ⊗ hi] =
n∑
i=1

aTi ⊗ hi.

On the other hand, indAB(ρ) : A → B(V ⊗B Hρ). Next, we find a
Hilbert space K ′ such that[

A V
V ∗ B

] [
V ⊗B Hρ

K ′

]
.
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As V ∗ acts bilinearly on V⊗BHρ, we should defineK ′ := V ∗⊗(V⊗BHρ)
with inner product

〈T ∗1 ⊗ (S1 ⊗ h1), T ∗2 ⊗ (S2 ⊗ h2)〉 = 〈indAB(ρ)(T2T
∗
1 )(S1 ⊗ h1), S2 ⊗ h2〉

= 〈T2T
∗
1S1 ⊗ h1, S2 ⊗ h2〉

= 〈ρ(S∗2T2T
∗
1S1)h1, h2〉

= 〈ρ(T ∗1S1)h1, ρ(T ∗2S2))h2〉.

Thus there is isometric surjection

V ∗ ⊗A (V ⊗B Hρ)→ Hρ

T ∗ ⊗ (S ⊗ h)→ ρ(T ∗S)h

and

indBA(indAB(ρ)) : B → B(V ∗ ⊗A (V ⊗B Hρ))→ B(Hρ)

such that

indBA(indAB(ρ))(b)[T ∗⊗(S⊗h)] = bT ∗⊗(S1⊗h)→ ρ(bT ∗S)h = ρ(b)ρ(T ∗S)h.

That means,

indBA(indAB(ρ)) = ρ.

�.

Let A, B and C be C∗-algebras such that A and B and also B and
C are Morita equivalent. Let V and W be Banach spaces such that[

A V
V ∗ B

]
and

[
B W
W ∗ C

]
are C∗-algebras. We want to find (?), such that

L =

 A V ?
V ∗ B W
?∗ W ∗ C


is a C∗-algebra. If L is a C∗-algebra, then0 T 0

0 0 0
0 0 0

0 0 0
0 0 S
0 0 0

 =

0 0 T.S
0 0 0
0 0 0

 ∈ L.
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As the product is bilinear, the best candidate for (?) is V ⊗W . On
the other hand, the product of L is associative

(

0 T 0
0 0 0
0 0 0

0 0 0
0 b 0
0 0 0

)

0 0 0
0 0 S
0 0 0

 =

0 Tb 0
0 0 0
0 0 0

0 0 0
0 0 S
0 0 0


=

0 0 0
0 0 Tb⊗ S
0 0 0

 .
which is equal to0 T 0

0 0 0
0 0 0

 (

0 0 0
0 b 0
0 0 0

0 0 0
0 0 S
0 0 0

) =

0 T 0
0 0 0
0 0 0

0 0 0
0 0 Sb
0 0 0


=

0 0 0
0 0 T ⊗ bS
0 0 0

 .
That means, Tb⊗ S = T ⊗ bS and A V V ⊗B W

V ∗ B W
W ∗ ⊗B V ∗ W ∗ C


is C∗-algebra. Let

p =

I 0 0
0 0 0
0 0 I

 .
The C∗-algebra pLp is spatially isomorphic to[

A V ⊗B W
W ∗ ⊗B V ∗ C

]
and A and C are Morita equivalent.
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Fourth session: 1393/10/09

crossed product of linking C∗-algebras:

Let V be an A-B Hilbert C∗-module. Let

α : G→ Aut(A) and β : G→ Aut(B)

be actions and

ϕ : G→ inv(V )

be an sot-continuous map, where inv(V ) is the family of all invertible
mappings on V . We say that ϕ is α-β-compatible if

(1) ϕ(x)(aT ) = α(x)(a)ϕ(x)(T ),

(2) ϕ(x)(Tb) = ϕ(x)(T )β(x)(b),

(3) 〈ϕ(x)(T ), ϕ(x)(S)〉B = β(x)(〈T, S〉B).

Then

A〈ϕ(x)(T ), ϕ(x)(S)〉 ϕ(x)(S ′) = ϕ(x)(T ) 〈ϕ(x)(S), ϕ(x)(S ′)〉B
= ϕ(x)(T ) β(x)(〈S, S ′〉B)

= ϕ(x)(T 〈S, S ′〉B)

= ϕ(x)(A〈T, S〉 S ′)
= α(x)(A〈T, S〉) ϕ(x)(S ′).

That means,

A〈ϕ(x)(T ), ϕ(x)(S)〉 = α(x)(A〈T, S〉).

As ϕ is sot-continuous,

Φ :=

[
α ϕ
ϕ∗ β

]
: G→ Aut(

[
A V
V ∗ B

]
)

is a dynamical system,

Φ(x)(

[
a T
S∗ b

]
) =

[
α(x)(a) ϕ(x)(T )
ϕ(x)(S)∗ β(x)(b)

]
.

Thus we can construct the crossed product[
A V
V ∗ B

]
oΦ G.
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Let

ρ :

[
A V
V ∗ B

]
→ B(Hρ)

and

U : G→ B(Hρ)

be Φ-covariant representations. We can extend ρ to the unitization[
A+ CI 0

0 B + CI

]
.

Let

H := ρ(

[
I 0
0 0

]
)Hρ and K := ρ(

[
0 0
0 I

]
)Hρ.

We have Hρ = H ⊕K and

ρ =

[
ρ1 ρ2

ρ∗2 ρ3

]
:

[
A V
V ∗ B

]
→ B(H ⊕K)

ρ(

[
a T
S∗ b

]
) =

[
ρ1(a) ρ2(T )
ρ2(S)∗ ρ3(b)

]
.

Also,

U =

[
U1 U ′

U ′∗ U2

]
: G→ B(H ⊕K).

As we have[
ρ1(α(x)(a)) 0

0 0

]
= ρ(Φ(x)(

[
a 0
0 0

]
))

= U(x)ρ(

[
a 0
0 0

]
)U(x−1)

=

[
U1(x)ρ1(a)U1(x−1) U1(x)ρ1(a)U ′(x−1)
U ′(x)ρ1(a)U1(x−1) U ′(x)ρ1(a)U ′(x−1)

]
,

we get U1(x)ρ1(a)U ′(x−1) = 0, and using a bounded approximate iden-
tity of A and x = e, we get U ′ = 0, and

U =

[
U1 0
0 U2

]
.

Therefore, (ρ1, U1) is an α-covariant pair and (ρ3, U2) is a β-covariant
pair.

Now, let

ρ : B → B(Hρ) and U : G→ B(Hρ)
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be β-covariant representations. For the linking C∗-algebra[
A V
V ∗ B

] [
V ⊗B Hρ

Hρ

]
we have the action

indAB(ρ) : A→ B(V ⊗B Hρ)

such that

indAB(ρ)(a)(
n∑
i=1

Ti ⊗ hi) =
n∑
i=1

aTi ⊗ hi.

Also we have
indVB(ρ) : V → B(Hρ, V ⊗B Hρ)

indVB(ρ)(T )(h) = T ⊗ h.
By definition of inner product,

〈indVB(ρ)(T )(h), S ⊗ g〉 = 〈T ⊗ h, S ⊗ g〉
= 〈h, ρ(T ∗S)g〉.

Thus there is
indVB(ρ)∗ : V ∗ → B(V ⊗B Hρ, Hρ)

such that
indVB(ρ)∗(T ∗)(S ⊗ h) = ρ(TS∗)h

which is the adjoint of indVB(ρ). Therefore we have an ∗-representation

ind(ρ) :=

[
indAB(ρ) indVB(ρ)
indVB(ρ)∗ ρ

]
:

[
A V
V ∗ B

]
→ B(

[
V ⊗B Hρ

Hρ

]
).

Next,

〈indAB(ρ)[α(x)(a)](T ⊗ h), S ⊗ g〉 = 〈α(x)(a)T ⊗ h, S ⊗ g〉

= 〈ρ[〈S, α(x)(a)T 〉B]h, g〉
= 〈ρ[〈ϕ(x)(ϕ(x−1)(S), ϕ(x)(aϕ(x−1)(T )〉B)] h, g〉
= 〈ρ[β(x)(〈ϕ(x−1)(S), aϕ(x−1)(T )〉B)] h, g〉
= 〈U(x)ρ[〈ϕ(x−1)(S), aϕ(x−1)(T )〉B] U(x−1)h, g〉
= 〈ρ[〈ϕ(x−1)(S), aϕ(x−1)(T )〉B] U(x−1)h, U(x−1)g〉
= 〈aϕ(x−1)(T )⊗ U(x−1)h, ϕ(x−1)(S)⊗ U(x−1)g〉
= 〈indAB(ρ)(a)[ϕ(x−1)⊗ U(x−1)](T ⊗ h), [ϕ(x−1)⊗ U(x−1](S ⊗ g)〉
= 〈[ϕ(x)⊗ U(x)]indAB(ρ)(a)[ϕ(x−1)⊗ U(x−1)](T ⊗ h), S ⊗ g〉.
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That means,

indAB(ρ)[α(x)(a)] = [ϕ(x)⊗ U(x)]indAB(ρ)(a)[ϕ(x−1)⊗ U(x−1)]

On the other hand,

〈indVB(ρ)(ϕ(x)(T ))(h), S ⊗ g〉 = 〈ϕ(x)(T )⊗ h, S ⊗ g〉
= 〈ρ(〈S, ϕ(x)(T )〉B)h, g〉
= 〈ρ(β(x)(〈ϕ(x−1)(S), T 〉B)h, g〉
= 〈U(x)ρ(〈ϕ(x−1)(S), T 〉B)U(x−1)h, g〉
= 〈ρ(〈ϕ(x−1)(S), T 〉B)U(x−1)h, U(x−1)g〉
= 〈〈T ⊗ U(x−1)h, ϕ(x−1)(S)⊗ U(x−1)g〉
= 〈〈ϕ(x)⊗ U(x))indVB(T )U(x−1)(h), S ⊗ g〉

That means,

indVB(ρ)(ϕ(x)(T )) = (ϕ(x)⊗ U(x))indVB(T )U(x−1).

Thus

ind(U) :=

[
ϕ⊗ U 0

0 U

]
: G→ B(

[
V ⊗B Hρ

Hρ

]
)

is a unitary representation such that (ind(ρ), ind(U)) is Φ-covariant
pair. Let f ∈ Cc(G,B), then

‖
[
0 0
0 f

]
‖L(V )oΦG = sup‖ρo U(

[
0 0
0 f

]
)‖ = sup‖

[
0 0
0 ρ3 o U2(f)

]
)‖

= sup‖ρ3 o U2(f)‖
≤ ‖f‖BoβG = sup(π,W )‖π oβ W (f)‖

= sup‖ind(π) o ind(W )(

[
0 0
0 f

]
)‖

≤
[
0 0
0 f

]
‖L(V )oΦG.

Therefore, [
0 0
0 f

]
‖L(V )oΦG = ‖f‖BoβG

and [
A V
V ∗ B

]
oΦ G =

[
Aoα G V oϕ G

(V oϕ G)∗ B oβ G

]
.
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Next, we want to find the appropriate product. Let f ∈ Cc(G,A)
and g ∈ C(c(G, V ). Then

[
0 f.g
0 0

]
=

[
f 0
0 0

] [
0 g
0 0

]
∈
[
Aoα G V oϕ G

(V oϕ G)∗ B oβ G

]

which can be characterized by its covariant representations. Let

ρ =

[
ρ1 ρ′

ρ′∗ ρ2

]
:

[
A V
V ∗ B

]
→ B(H ⊕K)

and

U =

[
U1 0
0 U2

]
: G→ B(H ⊕K)

be Φ-covariant representations. Then

Φ o U(

[
0 f.g
0 0

]
) = Φ o U(

[
f 0
0 0

]
)Φ o U(

[
0 g
0 0

]
).

Thus∫
G

ρ(

[
0 f.g(x)
0 0

]
)U(x)dx =

∫
G

ρ(

[
f(y) 0

0 0

]
)U(y)dy

∫
G

ρ(

[
0 g(x)
0 0

]
)U(x)dx

=

∫
G

∫
G

ρ(

[
f(y) 0

0 0

]
)ρ(Φ(y)(

[
0 g(x)
0 0

]
))U(yx)dxdy

=

∫
G

∫
G

ρ(

[
f(y) 0

0 0

]
)ρ(

[
0 ϕ(y)(g(x))
0 0

]
)U(yx)dxdy

=

∫
G

∫
G

ρ(

[
f(y) 0

0 0

]
)ρ(

[
0 ϕ(y)(g(y−1x))
0 0

]
)U(x)dxdy

=

∫
G

ρ(

[
0
∫
G
f(y)ϕ(y)(g(y−1x))dy

0 0

]
)U(x)dx.

Therefore,

f.g(x) =

∫
G

f(y)ϕ(y)(g(y−1x))dy.
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Now we want to characterize the involution. Let g ∈ Cc(G, V ), then

[
0 g∗

0 0

]
↔ ρo U(

[
0 g∗

0 0

]
) =

∫
G

ρ(

[
0 g∗(x)
0 0

]
)U(x)dx

= [ρo U(

[
0 0
g 0

]
)]∗ = [

∫
G

ρ(

[
0 0

g(x) 0

]
)U(x)dx]∗

=

∫
G

U(x)∗ρ(

[
0 0

g(x) 0

]
)∗dx

=

∫
G

U(x−1)ρ(

[
0 g(x)∗

0 0

]
)dx

=

∫
G

ρ(Φ(x−1)(

[
0 g(x)∗

0 0

]
))U(x−1)dx

=

∫
G

ρ(Φ(x)(

[
0 g(x−1)∗

0 0

]
))U(x)∆(x−1)dx

=

∫
G

ρ(

[
0 ϕ(x)(g(x−1))∗∆(x−1)
0 0

]
)U(x)dx

and

g∗(x) = ϕ(x)(g(x−1)∗)∆(x−1).
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Now, let g1, g2 ∈ Cc(G, V ). Then

[
0 0
0 g∗1.g2

]
↔ ρoU(

[
0 0
0 g∗1.g2

]
) =

∫
G

ρ(

[
0 0
0 g∗1.g2(x)

]
)U(x)dx

= (ρo U)(

[
0 0
g∗1 0

]
)(ρo U)(

[
0 g2

0 0

]
)

=

∫
G

ρ(

[
0 0

g∗1(y) 0

]
)U(y)dy

∫
G

ρ(

[
0 g2(x)
0 0

]
)U(x)dx

=

∫
G

∫
G

ρ(

[
0 0

g∗1(y) 0

]
)U(y)ρ(

[
0 g2(x)
0 0

]
)U(x)dxdy

=

∫
G

∫
G

ρ(

[
0 0

g∗1(y) 0

]
ρ(Φ(y)(

[
0 g2(x)
0 0

]
))U(yx)dxdy

=

∫
G

∫
G

ρ(

[
0 0

g∗1(y) 0

]
ρ(

[
0 ϕ(y)(g2(x))
0 0

]
)U(yx)dxdy

=

∫
G

∫
G

ρ(

[
0 0

g∗1(y) 0

]
ρ(

[
0 ϕ(y)(g2(y−1x))
0 0

]
)U(x)dxdy

=

∫
G

∫
G

[
0 0
0 g∗1(y)ϕ(y)(g2(y−1x))

]
U(x)dxdy

=

∫
G

∫
G

[
0 0
0 ϕ(y)(g1(y−1))∗∆(y−1)ϕ(y)(g2(y−1x))

]
U(x)dxdy

=

∫
G

∫
G

[
0 0
0 〈ϕ(y)(g1(y−1))∆(y−1), ϕ(y)(g2(y−1x))〉B

]
U(x)dxdy

=

∫
G

∫
G

[
0 0
0 β(y)[〈g1(y−1)∆(y−1), g2(y−1x)〉B]

]
U(x)dxdy

=

∫
G

∫
G

[
0 0
0 β(y−1)[〈g1(y), g2(yx)〉B]

]
U(x)dxdy

=

∫
G

[
0 0
0
∫
G
β(y−1)[〈g1(y), g2(yx)〉B]dy

]
U(x)dx.

That means,

g∗1.g2(x) =

∫
G

β(y−1)[〈g1(y), g2(yx)〉B]dy.

�.
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finally, we want to discuss Morita equivalence of crossed product
C∗-algebras. Let

ϕ : G→ inv(V )

be an

α : G→ Aut(A) and β : G→ Aut(B)

compatible mapping. And

ψ : G→ inv(W )

be a

β : G→ Aut(B) and γ : G→ Aut(C)

compatible mapping. Then[
A V
V ∗ B

]
oΦ G =

[
Aoα G V oϕ G

(V oϕ G)∗ B oβ G

]
,

and [
B W
W ∗ C

]
oΨ G =

[
B oβ G W oψ G

(W oψ G)∗ C oγ G

]
are C∗-algebras. Consider the action

Θ :=

 α ϕ ϕ⊗ ψ
ϕ∗ β ψ

ψ∗ ⊗ ϕ∗ ψ∗ γ

 : G→ Aut(

 A V V ⊗B W
V ∗ B W

W ∗ ⊗B V ∗ W ∗ C

).

Then  A V V ⊗B W
V ∗ B W

W ∗ ⊗B V ∗ W ∗ C

oΘ G

=

 Aoα G V oϕ G (V ⊗B W ) oϕ⊗ψ G
(V oα G)∗ B oβ G W oψ G

(W ∗ ⊗B V ∗) oψ∗⊗ϕ∗ G (W oψ G)∗ C oγ G.


Therefore,[

Aoα G (V ⊗B W ) oϕ⊗ψ G
(W ∗ ⊗B V ∗) oψ∗⊗ϕ∗ G C oγ G

]
is a C∗-algebra. This means that, the C∗-algebras AoαG and C oγ G
are Morita equivalent.

�
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