IPM Conference on Set Theory and Model Theory October 12-16, 2015, IPM, Tehran, Iran

Generalized Fraïssé Constructions and Atomic Models

John T. Baldwin

University of Illinois at Chicago, USA

I will begin with a short survey of extensions of the Fraïssé Construction, pointing out some different directions: Hrushovski Constructions, recent results in neostability/Urysohn spaces, building atomic models in large cardinalities. Then I will discuss:

Theorem 0.0.1 (Baldwin-Koerwien-Laskowski) There is a family of complete sentences of $L_{\omega_1,\omega}$, ϕ_n for $1 \leq n < \omega$ such that ϕ_n characterizes \aleph_n (has no model of cardinality greater than \aleph_n) and all models in \aleph_n are maximal. Each theory satisfies amalgamation in \aleph_k for $k \leq n-2$, fails it in \aleph_{r-1} and trivially satisfies it in \aleph_r . If there is a model of ϕ_n in an uncountable cardinal there are the maximal number.

I will stress the discovery in this paper of a new notion of *n*-dimensional amalgamation which allows the construction of *atomic* models in various uncountable cardinals. (Note that the theorem can be thought of as first order model theory by replacing "model of a complete sentence of $L_{\omega_1,\omega}$ ", by "atomic model of a complete first order theory".)

Background reading:

A field guide to Hrushovski Constructions (with luck I will do some updates)

http://homepages.math.uic.edu/~jbaldwin/pub/hrutrav.pdf

Disjoint amalgamation in locally finite AEC

http://homepages.math.uic.edu/~jbaldwin/pub/cut618.pdf