The 13th Seminar on Commutative Algebra and Related Topics, November 16 and 17, 2016 School of Mathematics, IPM, Tehran

MAXIMAL SUBRINGS OF AFFINE RINGS

ALBORZ AZARANG

Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran a_azarang@scu.ac.ir

2000 Mathematics Subject Classification. 13B99, 13A15, 13C13, 13G05, 13E05, 13C99. Key words and phrases. Fields, Maximal subring, affine domain.

ABSTRACT. We prove that if $R = F[\alpha_1, ..., \alpha_n]$ is an affine integral domain over a field F, then R has only finitely many maximal subrings if and only if F has only finitely many maximal subrings and each α_i is algebraic over F, which is similar to the celebrated Zariski's Lemma.

All rings in this note are commutative with $1 \neq 0$. All subrings, ring extensions, homomorphisms and modules are unital. A proper subring S of a ring R is called a maximal subring if S is maximal with respect to inclusion in the set of all proper subrings of R. In this paper RgMax(R) is the set of all maximal subrings of a ring R.

Theorem 1.1. [3, Corollary 1.9]. Let R be a ring, then either R has infinitely many maximal subrings or R is a Hilbert ring.

Theorem 1.2. Let E be a field. Then the following conditions are equivalent:

- (1) E has only finitely many maximal subrings.
- (2) E has a subfield F which has no maximal subring and [E:F] is finite.
- (3) every descending chain $\cdots \subset R_2 \subset R_1 \subset R_0 = E$, where each R_i is a maximal subring of R_{i-1} for $i \geq 1$, is finite.

Moreover, if one of the above conditions holds then F is unique and all chains in (3) have the same length, m say, and $R_m = F$.

Corollary 1.3. Let $E \subseteq K$ be a finite extension of fields. Then E has only finitely many maximal subrings if and only if K has only finitely many maximal subrings.

Affine Rings

Let us recall the important Zariski's Lemma (which play a key role in the proof of Hilbert's Nullstellensatz Theorem, see [15]) which say an affine integral domain $R = F[\alpha_1, \ldots, \alpha_n]$ over a field F is a field if and only if each α_i is algebraic over F.

One can easily see that in fact this lemma is also valid if instead of assuming that R is a field we just assume that R is semilocal (i.e., an affine integral domain $R = F[\alpha_1, \ldots, \alpha_n]$ over a field F is semilocal if and only if each α_i is algebraic over F and therefore R is a field too).

More generally, in the light of [11, Theorem 22], one also can prove that if T is an integral domain and $T = R[\alpha_1, \ldots, \alpha_n]$, then T is a G-domain (field) if and only if R is a G-domain and each α_i is algebraic over R.

The 13" Seminar on Commutative Algebra and Related Topics, November 16 and 17, 2016 School of Mathematics, IPM, Tehran

Theorem 2.1. Let $F \subseteq E$ be an extension of fields and $\alpha_1, \ldots, \alpha_n \in E$. Then

- (1) $K = F(\alpha_1, ..., \alpha_n)$ has only finitely many maximal subrings if and only if F has only finitely many maximal subrings and K/F is finite.
- (2) $R = F[\alpha_1, ..., \alpha_n]$ has only finitely many maximal subrings if and only if F has only finitely many maximal subrings and each α_i is algebraic over F (i.e., R/F is a finite extension of fields).

Corollary 2.2. Let F be an algebraically closed field and R be an affine integral domain over F. Then R has only finitely many maximal subrings if and only if $R = F = \bar{F}_p$ for some prime number p. In particular in this case R has no maximal subrings.

Proposition 2.3. Let F be a field and $R = F[\alpha_1, \ldots, \alpha_n]$ be a reduced F-algebra. If R has only finitely many maximal subrings, then the following statements hold:

- (1) F has only finitely many maximal subrings.
- (2) $R \cong K_1 \times \cdots \times K_m$, where each K_i is a finite field extension of F (therefore each K_i has only finitely many maximal subrings). Moreover, if K_i is infinite, then $K_i \ncong K_j$ for each $j \neq i$.

Corollary 2.4. Let F be a field and V be an affine variety in $A^n(F)$. If the coordinate ring F[V] of V has only finitely many maximal subrings, then V is finite. Moreover in this case either F[V] is finite or F[V] = F (and therefore |V| = 1).

Corollary 2.5. [6, Proposition V.1]. Let R be a ring with nonzero characteristic which has only finitely many subrings, then R is finite.

By the above corollary and [3, Proposition 2.1], one can easily deduce that if R is a zero-dimensional ring with only finitely many subrings, then R is a finite ring.

Lemma 2.6. Let K be a field and x be an indeterminate over K. Then any subring R, where $K \subseteq R \subseteq K[x]$ is affine over K (thus R is noetherian) and K[x] is integral over R. Moreover, R has a maximal subring $T \neq K$. Consequently, there exists an infinite chain $K \subseteq \cdots \subseteq R_1 \subseteq R_0 = K[x]$, where each R_i is a maximal subring of R_{i-1} and K[x] is integral over each R_i , for $i \geq 1$.

Corollary 2.7. Let R be a ring and x be an indeterminate over R. Then there exists an infinite chain $\cdots \subset R_1 \subset R_0 = R[x]$, where each R_i is a maximal subring of R_{i-1} and R[x] is integral over each R_i , for $i \geq 1$.

Proposition 2.8. Let K be an algebraically closed field and R be an K-algebra. Then either R has infinitely many maximal subrings or $K = \bar{F}_p$, for some prime number p, in which case R is a zero dimensional ring with unique prime ideal M such that $R/M \cong K$ and R is integral over F_p . In particular, if R is an integral domain then R = K.

The 13" Seminar on Commutative Algebra and Related Topics, November 16 and 17, 2016 School of Mathematics, IPM, Tehran

Theorem 2.9. Let $R \subseteq T$ be an extension of rings and $T = R[\alpha_1, \ldots, \alpha_n]$. Assume that T has only finitely many maximal subrings. Then the following statements hold:

- (1) R is zero-dimensional if and only if T is zero-dimensional.
- (2) R is semilocal (resp. artinian) if and only if T is semilocal (resp. artinian).

Moreover, in any case T is a finitely generated R-module and for each prime ideal P of R, the ring R/P has only finitely many maximal subrings. Furthermore, in case (2), R/N(R) has only finitely many maximal subrings up to isomorphism.

Example 2.10. Let K be an infinite field without maximal subrings which is not algebraically closed.

- (1) Assume that $R = K \times K$, then by [3, Corollary 3.5], R has infinitely many maximal subrings. Now let α and β be elements of algebraic closure of K with different degrees over K. Hence $K[\alpha] \ncong K[\beta]$ and therefore by [3] Corollary 3.7], the ring $T = K[\alpha] \times K[\beta]$ has only finitely many maximal subrings. It is clear that $T = R[(\alpha, \beta)]$.
- (2) Assume that R = K and $T = K \times K$. Clearly T = R[(1,0)]; as we see in (1), T has infinitely many maximal subrings but R has no maximal subrings.

The 13" Seminar on

Commutative Algebra and Related Topics, November 16 and 17, 2016 School of Mathematics, IPM, Tehran

Let K be a field, then in [8, Lemma 1.2] it is shown that the minimal ring extensions of K, up to K-algebra, isomorphism are as follow:

- (1) a finite minimal field extension E.
- (2) $K \times K$.
- (3) $K[x]/(x^2)$.

Conversely, in [3, Theorem 3.4], it is proved that R is a maximal subring of $K \times K$ if and only if R satisfies in exactly one of the following conditions:

- (1) $R = S \times K$ or $R = K \times S$, for some $S \in RgMax(K)$.
- (2) $R = \{(\sigma_1(x), \sigma_2(x)) \mid x \in K\}$, where $\sigma_i \in Aut(K)$ for i = 1, 2.

In the next theorem we determine exactly maximal subrings of $K[x]/(x^2)$. We recall that if $\sigma \in Aut(K)$, then the additive map $\delta : K \to K$ is called a σ -derivation of K if for each $x, y \in K$, we have $\delta(xy) = \sigma(x)\delta(y) + \sigma(y)\delta(x)$. One can easily see that for each nonzero element x of K we have $\delta(x^{-1}) = -\delta(x)\sigma(x)^{-2}$. In [8], it is shown that if R is a maximal subring of T, then $(R:T) := \{x \in T \mid Tx \subseteq R\}$ is a prime ideal of R. Moreover, T is integral over R if and only if $(R:T) \in Max(R)$; and otherwise (i.e., R is integrally closed in T) we have $(R:T) \in Spec(T)$. Now the following is in order.

Theorem 2.11. Let K be a field and $T = K[x]/(x^2)$ (= $K[\alpha]$, where $\alpha = x + (x^2)$). Then R is a maximal subring of T if and only if R satisfies in exactly one of the following conditions:

- (1) $R = S + K\alpha$, for $S \in RgMax(K)$.
- (2) $R = \{\sigma(x) + \delta(x)\alpha \mid x \in K\}$, where $\sigma \in Aut(K)$ and δ is a σ -derivation of K.

Now assume that K is a field, $\sigma \in Aut(K)$ and δ is a σ -derivation of K. If F is the prime subfield of K, then one can easily see that for each $x \in F$, we have $\delta(x) = 0$ (note, $\delta(1) = 0$). Moreover, if $x \in K$ is algebraic over F, then it is not hard to see that $\delta(x) = 0$. Thus if K is algebraic over its prime subfield then the only σ -derivation of K is 0. Now the following immediate corollaries are in order.

Corollary 2.12. Let K be a field which is algebraic over its prime subfield and $T = K[\alpha]$, where $\alpha^2 = 0$. Then R is a maximal subring of T if and only if either R = K or $R = S + K\alpha$ where $S \in RgMax(K)$.

Corollary 2.13. Let K be a field and $T = K[\alpha]$, where $\alpha^2 = 0$. Then T has finitely many maximal subrings if and only if K has only finitely many maximal subrings. Moreover in this case we have |RgMax(T)| = 1 + |RgMax(K)|.

The 13" Seminar on

Commutative Algebra and Related Topics, November 16 and 17, 2016 School of Mathematics, IPM, Tehran

References

- A. Azarang, The space of maximal subrings of a commutative ring, Comm. Alg. 43 (2) (2015) 795-811.
- [2] A. Azarang, O.A.S. Karamzadeh, Which fields have no maximal subrings?, Rend. Sem. Mat. Univ. Padova, 126 (2011) 213-228.
- [3] A. Azarang, G. Oman, Commutative rings with infinitely many maximal subrings, J. Algebra Appl. 13 (7) (2014) ID:1450037.
- [4] J.V. Brawley and G.E. Schnibben, Infinite algebraic extensions of finite fields, Contemporary mathemathics, 1989.
- [5] D.E. Dobbs, B. Mullins, and M. Picavet-l'Hermitte, The singly generated unital rings with only finitely many unital subrings, Comm. Algebra 36 (2008) 2638-2653.
- [6] D.E. Dobbs, B. Mullins, G. Picavet, and M. Picavet-l'Hermitte, On the FIP property for extensions of commutative rings, Comm. Algebra 33 (2005) 3091-3119.
- [7] D.E. Dobbs, G. Picavet, and M. Picavet-l'Hermitte, A Characterization of the commutative unital rings with only finitely many unital subrings, J. Algebra Appl. 7 (5) (2008) 601-622.
- [8] D. Ferrand, J.-P. Olivier, Homomorphismes minimaux danneaux, J. Algebra 16 (1970) 461-471.
- R. Gilmer, A note on rings with only finitely many subrings, Scripta Math. 29 (1973) 37-38.
- [10] R. Gilmer, Some finiteness conditions on the set of overring an integral domain. Proc. A.M.S. 131 (2003) 2337-2346.
- 11] I. Kaplansky, Commutative Rings, rev. ed. University of Chicago Press, Chicago, 1974.
- [12] A.A. Klein, The finiteness of a ring with a finite maximal subrings. Comm. Algebra 21 (4) (1993) 1389-1392.
- [13] T.J. Laffey, A finiteness theorem for rings, Proc. R. Ir. Acad. 92 (2) (1992) 285-288.
- [14] M.L. Modica, Maximal Subrings, Ph.D. Dissertation, University of Chicago, 1975.
- [15] Oscar Zariski, A new proof of Hilbert's Nullstellensatz, Bull. Amer. Math. Soc, 53 (1947) 362-368.

The 13" Seminar on Commutative Algebra and Related Topics, November 16 and 17, 2016 School of Mathematics, IPM, Tehran

Thanks For Your Attention

