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Intro, history:

For R a commutative ring, Spec(R) := {prime ideals of R},
a partially ordered set under ⊆.

Questions.
Question 1 1950, I. Kaplansky: What is Spec(R) for a Noetherian ring
R? i.e. Which posets occur?
[Work of Nagata ’50s; Hochster ’69; Lewis and Ohm ’71(?), McAdam
’77, Heitmann ’77,’79; Ratliff ’60s-70s]

Question 2 What is Spec(R) for a two-dimensional Noetherian
domain R? What is Spec(R) for a particular ring R ?
Question 3 What is Spec(R) for a two-dimensional Noetherian
polynomial ring R? Or a ring of power series? Or homomorphic image
of a ring of polynomials and power series?
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Part I: 2-dim. polynomial-power series rings

Setting: R = 1-dim Noetherian domain, k = field; eg. R = Z, k = Q.
What are the Spectra of R[y ],R[[x ]], k [[x , y ]], k [y ][[x ]], k [[x ]][y ], k [x , y ]?

•Spec(R[y ]) for R semilocal, characterized [Heinzer, sW; Shah;
Kearnes & Oman; W2]

•Spec(Z[y ]) for the integers Z, characterized [R. Wiegand, ’86].

• Spec(R[y ]) for R = D[g/f ] and D = order in algebraic number field:
Spec(R[y ]) ∼= Spec(Z[y ]) [rW; Li, sW; Saydam, sW].
For many other R, Spec(R[y ]) is unknown.
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Spec(R[y ]) for R semilocal; Henselian, non-Hens.

β P1 β β · · ·

• • • · · · # bullets = |max R|

(0)

β P1 P2 · · · Pn MESS

γ1 γ2 · · · γn

(0)
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2-dim. polynomial-power series rings, cont.

•Spec(k [x , y ]) for k ⊆ Fq, characterized [rW].

Spec(k [x , y ]) ∼= SpecZ[y ], for k ⊆ Fq [rW].
Then Spec(k [x , y ]) ∼= SpecZ[y ] ⇐⇒ k ⊆ Fq [W2].

•Spec(Q[x , y ]) is still unknown! Spec(k [x , y ]) unknown for other k !!

So we turn to the rest—rings with power series in them. MUCH easier!!
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What is Spec(Z[[x ]])??

Theorem [W. Heinzer, C. Rotthaus & SW, ’06; W2, ’09]
R a Noetherian domain, dim R = 1,

=⇒ Spec(R[[x ]]) is

(x) |R[[x ]]| |R[[x ]]| · · ·

• • • · · ·

(#{bullets} = |max R|)

(0)

R = Z =⇒ |maxZ| = |Z|, |Z[[x ]]| = |R|.

Corollary: Spec(Q[y ][[x ]]) ∼= Spec(Z[[x ]]).
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What is Spec(Q[[x ]][y ])?

Theorem [Heinzer & SW ’89; Shah ’96; KO ’10] Characterization of
Spec H[y ], for H a local Henselian Noetherian domain, dim H = 1,

=⇒ Spec(k [[x ]][y ]) is

|k [[x ]]| (x) |k [[x ]]| |k [[x ]]| · · ·

• • • · · ·

(#{bullets} = |max(k [y ])|

(0)

Spec(k [[x ]][y ]), for k a field.
Thus Spec(Q[[x ]][y ]) is just like Spec(Q[y ][[x ]]), except

that it has an “arm" sticking out on the left.
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Part II: Spec(E/Q), for E poly-power series

Let E = k [[x ]][y , z], R[[x ]][y ], R[y ][[x ]], or R[[x , y ]],
Here k = a field or R = a 1-dim Noetherian integral domain, and
Q ∈ Spec E , ht Q = 1, (usually) Q ̸= xE .

Notice that these rings are catenary, and Noetherian.

A ring A is catenary provided for every pair P ⊊ Q in Spec(A), the
number of prime ideals in every maximal chain of form

P = P0 ⊊ P1 ⊊ P2 ⊊ . . . ⊊ Pn = Q is the same.
Question: What is Spec(R[[x , y ]]/Q)? (Q = (x) is okay.)
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Spec(R[[x , y ]]/Q) Q = (x) is okay in (case i

Theorem [CEW, Theorem 4.1] R = 1-dim Noetherian domain,
Q ∈ Spec(R[[x , y ]]), ht Q = 1. Set B = R[[x , y ]]/Q. Then:
Case i: Q ⊈ (x , y)R[[x , y ]] =⇒ ∃n ∈ N , m1, . . . ,mn ∈ max(R) and
Spec(B) is:

|B| |B| · · · |B|

(m1, x , y) (m2, x , y) · · · (mn, x , y)

Q

OR
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Spec(R[[x , y ]]/Q) case ii

Case ii: Q ⊆ (x , y)R[[x , y ]] =⇒ Spec(B) ∼= Spec(R[[x ]]); so Spec(B)
is:

(x , y) |B| |B| · · ·

(m1, x , y) (m2, x , y) · · ·

Q

where the mi range over all the elements of max(R).

The diagrams show Spec(R[[x , y ]]/Q) is characterized for each case.
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Spec(E/Q), in the dim 1 case.

Here E = k [[x ]][y , z], R[[x ]][y ], or R[y ][[x ]] a mixed poly-power series,
where k = a field or R = a 1-dim Noetherian integral domain,
and Q ∈ Spec E , ht Q = 1, Q ̸= xE .

Case i: dim(E/Q) = 1. Then dim(Spec(E/Q)) = 1, =⇒ a “fan".
(This case occurs if Q | (m,Q)E ∈ max(E) or = E , ∀m ∈ max R—
Not for E = R[y ][[x ]].)

eg. Q = (2xy + 1) ⊆ Z[[x ]][y ] =⇒ Spec(E/Q) is:

(2xy + 1)

(3,2xy + 1) (5,2xy + 1) . . .

Spec(Z[[x ]][y ]/(2xy + 1) )

Note: The hgt-3 max ideals of Z[[x ]][y ] are {(p, x ,hi(y))}, where p
prime of Z, hi(y) irred mod pZ.
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Spec(R[y ][[x ]]/Q) with R countable, max(R) infinite.

(dim 2 always for this case)

e.g. E = Z[y ][[x ]], Q = (x − α),
α = 2 · 3 · y · (2y − 1) · (y + 1) · (y(y + 1) + 6).

(x ,2y − 1) (x ,3) (x , y + 1) (x , y)

(0) = (x − α)

(x , y(y + 1) + 6) (x ,2)

{(p, x ,2y − 1)} {(3, x ,h(y))} |N| |N| |N| |N|

(3, x , y) (5, x , y + 2) (2, x , y + 1) (2, x , y)(3, x , y + 1) (3, x , y) (2, x , y + 1) (2, x , y)

Note; Every height-two element has a set of |R| elements below it and
below no other height-two element (not shown).

Sylvia Wiegand (work of W. Heinzer, C. Rotthaus, SW & E. Celikbas, C. Eubanks-Turner, SW)Prime ideals, power series



Features of U = Spec(R[y ][[x ]]/Q) if R,Q as above.

Theorem: If U = Spec(R[y ][[x ]]/Q), where R a countable 1-dim
Noetherian domain, Q ∈ Spec(R[y ][[x ]]), ht Q = 1, Q ̸= (x), then

1 U has a unique minimal element, |U| = |R|, dim U = 2.
2 ∀t ∈ U,ht t = 2 =⇒ |t↓,e| = |R|.

((t↓,e = {v ∈ U | v < t , v ̸< s,∀s ̸= t}.)
3 max(U) = {ht-2 ∈ U}.

4 ∃F0 finite ⊆ { non-max ht-1 elements} with:
(a)

∪
f∈F0

f ↑ = {ht-2 ∈ U}. (f ↑ = {t ∈ U | f < t}.)

(b) ∀f ∈ F0, |f ↑ \ (
∪

g∈F0,g ̸=f g↑)| = N. ( =⇒ F0 ⊆ {j-primes}.)

(c) ∀f ̸= g ∈ F0, |f ↑ ∩ g↑| < ∞.
(F0 = { non-0, nonmax j-prime ideals} = {u ht-1 | |u↑| ≥ 2}.)

Define F := (
∪

f ̸=g∈F0
f ↑ ∩ g↑) ∪ F0, a finite set by item c.

Then F determines U.

Theorem: For every finite poset F of dim 1, ∃Q ∈ Spec(Z [y ][[x ]]) such
that F “determines" Spec(Z[y ][[x ]]/Q).
(Want every ht-1 element of F above 2 ht-0 elements of F .)
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g∈F0,g ̸=f g↑)| = N. ( =⇒ F0 ⊆ {j-primes}.)

(c) ∀f ̸= g ∈ F0, |f ↑ ∩ g↑| < ∞.
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(Want every ht-1 element of F above 2 ht-0 elements of F .)
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What is Spec(Z[[x ]][y ]/Q)?

Answer: For the example Q on previous slide
#{ht 1} ∩ max(Z[[y ][x ]]/Q)} = |R|. Otherwise, the spectrum is the
same.

Notes 1. In dim 2 case, for general Q, Spec(Z[[x ]][y ]/Q) is the same
as Spec(Z[[y ][x ]][y ]/Q), except that there may be |R| height-one
maximal ideals.

2. Let R or k be countable and |max R| = ∞. Then Spec(R[y ][[x ]]/Q)
can be characterized as indicated above, in terms of F . For
E = R[[x ]][y ], the “characterization" or “type" of Spec(E/Q) depends
on the set F and ε = #{ht-1 maximal ideals}.
•ℓy (Q) (ideal of leading coefficients in R[[x ]]) a unit =⇒ #{
height-one maximal ideals of E/Q} = 0,
•ℓy (Q) (ideal of leading coefficients in R[[x ]]) NOT a unit and R a UFD
=⇒ #{ height-one maximal ideals of E/Q} = |R[[x ]]|,
3. For E = k [[x ]][y ][z], #{ height-one maximal ideals of
E/Q} = |k [[x ]]|. So again, k countable =⇒ Spec(E/Q) is determined
by F (among possible spectra for k [[x ]][y ][z]/Q)
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Spectra for A = K ∩ R∗, K a field, R∗ = power series

Part III. (from [HRW]) Noetherian and Non-Noetherian Examples. Let
R = k [x , y ](x ,y) or R = k [x , y , z](x ,y ,z). ∴ Q(R) = k(x , y) or k(x , y , z).
Take R∗ = k [y ](y)[[x ]] or k [y , z](y ,z)[[x ]].

a) “Intersection Domain" A = K ∩ R∗ , K = a field ⊆ Q(R∗).
Take K = Q(R)(f ) ⊆ Q(R∗), where f ∈ xR∗ are algebraically
independent over Q(R).
b). "Approximation domain" B (approximating A) formed by adding
“endpieces" of f to R. (Described below.)

Notes 1. B is Noetherian ⇐⇒ (B = A and A is Noetherian.)
2. Sometimes A is Noetherian, but B is not.
3. If B is Noetherian then B is catenary, in fact universally catenary.
(For catenary, non-universally catenary Noetherian examples, we use
another version of the construction given above.)
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yzτ Example:

Let R = k [x , y , z](x ,y ,z) =⇒ R∗ = k [y , z](y ,z)[[x ]]. Choose τ ∈ xk [[x ]],
algebraically independent over k(x).
The yzτ Example: Let f = yzτ ∈ xR∗. Then f =

∑∞
i=1 aix i , ai ∈ yzk

For every n ∈ N, the nth endpiece fn of f is:

fn :=
∞∑

i=n+1

aix i−n.

Note: fn := an+1x + x
∑∞

i=n+2 aix i−n−1 = an+1x + xfn+1.

Set Bn := k [x , y , z, fn](x ,y ,z,fn). By Note, Bn ⊆ Bn+1.

Define the Approximation Domain B

B :=
∪

Bn.

In this example, B is not Noetherian, by our methods.
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The 1-coefficient example

Let R = k [x , y ](x ,y) =⇒ R∗ = k [y ](y)[[x ]]. Choose σ ∈ xk [[x ]],
algebraically independent over k(x).

The 1-coefficient example
Let f = yσ ∈ xR∗. Let B be the approximation domain,
B =

∪
k [x , y , z, fn](x ,y ,z,fn).

B is not Noetherian.
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The 2-coefficient example

Let R = k [x , y , z](x ,y ,z) =⇒ R∗ = k [y , z](y ,z)[[x ]]. Choose
τ, σ ∈ xk [[x ]], algebraically independent over k(x).

The 2-coefficient example
Let f = yσ + zτ ∈ xR∗. Let B be the approximation domain. So
B =

∪
k [x , y , z, fn](x ,y ,z,fn).

B is not Noetherian.
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Spec B, for the 1-coeff example, B ⊂ k [[x , y ]]

mB := (x , y)B

Q := (y , {fi})B

xB ∈ Type I y(y + τ)B ∈ Type II yB ∈ Type III

(0)

Spec B
“Type I" =“B/P is Noetherian"; “Type III"= “P not contracted."
“Type II" = “P = P∗ ∩ B, ∃P∗ ∈ Spec(k [[x , y ]]."
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Properties of the 1-coefficient example

B is a non-Noetherian local integral domain (B,mB) such that:
1 dim B = 3.
2 The ring B is a UFD that is not catenary.
3 The maximal ideal mB of B is (x , y)B.
4 The mB-adic completion of B is a two-dimensional regular local

domain.
5 For every non-maximal prime ideal P of B, the ring BP is

Noetherian.
6 The ring B has precisely 1 prime ideal of height two.
7 Every prime ideal of B of height two is not finitely generated; all

other prime ideals of B are finitely generated.
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Part of Spec B, for the yzτ example, B ⊂ k [[x , y , z]]

•mB := (x , y , z)B

{(y , z − βx , {fi})B}{(z, y − βx , {fi})B}
•(x , z)B •(y , z, {fi})B

•(y , z)B

•(x , y)B

•zB

•(z, {fi})B •(y , {fi})B

•yB
•xB

•(0)
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yzτ Theorem:

Theorem Let B be the yzτ example. Then:
1 B = 4-dim local UFD, max ideal mB = (x , y , z)B, B̂ = k [[x , y , z]].
2 B[1/x ] = Noetherian regular UFD, dim(B/xB) = 2. If P ∈ Spec B,

BP an RLR ⇐⇒ BP is Noetherian ⇐⇒ (yz, x)R∗ ∩ B ⊈ P.
∴ ht P ≤ 2 =⇒ BP is an RLR.

3 What ideals of B are finitely generated? Partial answer:
1 Every height-one prime ideal is principal.
2 Q1 := (y , {fn})B = yR∗ ∩ B, Q2 := (z, {fn})B = zR∗ ∩ B,

Q3 := (y , z, {fn})B = (y , z)R∗ ∩ B are prime ideals, not finitely
generated; ht Q1 = ht Q2 = 2, ht Q3 = 3.

3 The prime ideals (x , y)B and (x , z)B have height three.
4 If P is a height-two prime ideal of B that contains an element of the

form y + g(z, x) or z + h(x , y), where 0 ̸= g(z, x) ∈ (x , z)k [x , z] and
0 ̸= h(x , y) ∈ (x , y)k [x , y ], then P is generated by two elements.

5 If a is an ideal of B that contains x + yzg(y , z), for some polynomial
g(y , z) ∈ k [y , z], then a is finitely generated.

6 ∃∞ many ht-3 non-finitely generated prime ideals, e.g.
Qi,α = (y − αx i , z, {fn})B, where i ∈ N and α ∈ k .
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d-coefficient Example

Let R = k [x , y1, . . . , yd ](x ,y1,...,yd ), R∗ = k [y1, . . . , yd ](−)[[x ]],
τ1, . . . , τd ∈ xk [[x ]] algebraically independent over k(x), and
f = y1τ1 + . . . ydτd ∈ xR∗ Define B =

∪
k [x , y1, . . . , yd , fn](x ,y1,...,yd ,fn).

Then B is a non-catenary, non-Noetherian local UFD of dimension
d + 2 such that:
(i) B has exactly 1 prime ideal of height d + 1;
(ii) The height-(d + 1) prime ideal is not finitely generated;
(iii) The localization of B at every nonmaximal prime ideal of B is
Noetherian.
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THANKS!
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