Prime ideals in rings of power series \& polynomials

Sylvia Wiegand
(work of W. Heinzer, C. Rotthaus, SW \& E. Celikbas, C. Eubanks-Turner, SW)

Department of Mathematics
University of Nebraska-Lincoln

Tehran, 2016

Intro, history:

For R a commutative ring, $\operatorname{Spec}(R):=\{$ prime ideals of $R\}$, a partially ordered set under \subseteq.

Intro, history:

For R a commutative ring, $\operatorname{Spec}(R):=\{$ prime ideals of $R\}$, a partially ordered set under \subseteq.

Questions.

Question 1 1950, I. Kaplansky: What is $\operatorname{Spec}(R)$ for a Noetherian ring R? i.e. Which posets occur?
[Work of Nagata '50s; Hochster '69; Lewis and Ohm '71(?), McAdam '77, Heitmann '77,'79; Ratliff '60s-70s]

Intro, history:

For R a commutative ring, $\operatorname{Spec}(R):=\{$ prime ideals of $R\}$, a partially ordered set under \subseteq.

Questions.

Question 1 1950, I. Kaplansky: What is $\operatorname{Spec}(R)$ for a Noetherian ring R ? i.e. Which posets occur?
[Work of Nagata '50s; Hochster '69; Lewis and Ohm '71(?), McAdam '77, Heitmann '77,'79; Ratliff '60s-70s]

Question 2 What is $\operatorname{Spec}(R)$ for a two-dimensional Noetherian domain R ? What is $\operatorname{Spec}(R)$ for a particular ring R ?
Question 3 What is $\operatorname{Spec}(R)$ for a two-dimensional Noetherian polynomial ring R ? Or a ring of power series? Or homomorphic image of a ring of polynomials and power series?

Part I: 2-dim. polynomial-power series rings

Setting: $R=1$-dim Noetherian domain, $k=$ field; eg. $R=\mathbb{Z}, k=\mathbb{Q}$. What are the Spectra of $R[y], R[[x]], k[[x, y]], k[y][[x]], k[[x]][y], k[x, y]$?

Part I: 2-dim. polynomial-power series rings

Setting: $R=1$-dim Noetherian domain, $k=$ field; eg. $R=\mathbb{Z}, k=\mathbb{Q}$. What are the Spectra of $R[y], R[[x]], k[[x, y]], k[y][[x]], k[[x]][y], k[x, y]$?

- $\operatorname{Spec}(R[y])$ for R semilocal, characterized [Heinzer, sW; Shah; Kearnes \& Oman; W^{2}]

Part I: 2-dim. polynomial-power series rings

Setting: $R=1$-dim Noetherian domain, $k=$ field; eg. $R=\mathbb{Z}, k=\mathbb{Q}$. What are the Spectra of $R[y], R[[x]], k[[x, y]], k[y][[x]], k[[x]][y], k[x, y]$?
$\bullet \operatorname{Spec}(R[y])$ for R semilocal, characterized [Heinzer, sW; Shah; Kearnes \& Oman; W^{2}]

- $\operatorname{Spec}(\mathbb{Z}[y])$ for the integers \mathbb{Z}, characterized [R. Wiegand, '86].

Part I: 2-dim. polynomial-power series rings

Setting: $R=1$-dim Noetherian domain, $k=$ field; eg. $R=\mathbb{Z}, k=\mathbb{Q}$. What are the Spectra of $R[y], R[[x]], k[[x, y]], k[y][[x]], k[[x]][y], k[x, y]$?
$\bullet \operatorname{Spec}(R[y])$ for R semilocal, characterized [Heinzer, sW; Shah; Kearnes \& Oman; W^{2}]

- $\operatorname{Spec}(\mathbb{Z}[y])$ for the integers \mathbb{Z}, characterized [R. Wiegand, '86].
- $\operatorname{Spec}(R[y])$ for $R=D[g / f]$ and $D=$ order in algebraic number field: $\operatorname{Spec}(R[y]) \cong \operatorname{Spec}(\mathbb{Z}[y]) \quad[r W ;$ Li, sW; Saydam, sW]. For many other $R, \operatorname{Spec}(R[y])$ is unknown.

Spec ($R[y])$ for R semilocal; Henselian, non-Hens.

2-dim. polynomial-power series rings, cont.

- $\operatorname{Spec}(k[x, y])$ for $k \subseteq \overline{\mathbb{F}_{q}}$, characterized $\quad[r W]$.

2-dim. polynomial-power series rings, cont.

- $\operatorname{Spec}(k[x, y])$ for $k \subseteq \overline{\mathbb{F}_{q}}$, characterized [rW]. $\operatorname{Spec}(k[x, y]) \cong \operatorname{Spec} \mathbb{Z}[y]$, for $k \subseteq \overline{\mathbb{F}_{q}} \quad[\mathrm{rW}]$. Then $\operatorname{Spec}(k[x, y]) \cong \operatorname{Spec} \mathbb{Z}[y] \Longleftrightarrow k \subseteq \overline{\mathbb{F}_{q}}$ [$\left.W^{2}\right]$.

2-dim. polynomial-power series rings, cont.

- $\operatorname{Spec}(k[x, y])$ for $k \subseteq \overline{\mathbb{F}_{q}}$, characterized [rW]. $\operatorname{Spec}(k[x, y]) \cong \operatorname{Spec} \mathbb{Z}[y]$, for $k \subseteq \overline{F_{q}} \quad[\mathrm{rW}]$. Then $\operatorname{Spec}(k[x, y]) \cong \operatorname{Spec} \mathbb{Z}[y] \Longleftrightarrow k \subseteq \overline{\mathbb{F}_{q}} \quad\left[\mathrm{~W}^{2}\right]$.
- $\operatorname{Spec}(\mathbb{Q}[x, y])$ is still unknown! $\operatorname{Spec}(k[x, y])$ unknown for other $k!!$

2-dim. polynomial-power series rings, cont.

- $\operatorname{Spec}(k[x, y])$ for $k \subseteq \overline{\mathbb{F}_{q}}$, characterized [rW]. $\operatorname{Spec}(k[x, y]) \cong \operatorname{Spec} \mathbb{Z}[y]$, for $k \subseteq \overline{\mathbb{F}_{q}} \quad[\mathrm{rW}]$. Then $\operatorname{Spec}(k[x, y]) \cong \operatorname{Spec} \mathbb{Z}[y] \Longleftrightarrow k \subseteq \overline{\mathbb{F}_{q}} \quad\left[\mathrm{~W}^{2}\right]$.
- $\operatorname{Spec}(\mathbb{Q}[x, y])$ is still unknown! $\operatorname{Spec}(k[x, y])$ unknown for other $k!!$ So we turn to the rest-rings with power series in them. MUCH easier!!

What is $\operatorname{Spec}(\mathbb{Z}[[x]])$??

Theorem [W. Heinzer, C. Rotthaus \& SW, '06; W', '09]
R a Noetherian domain, $\operatorname{dim} R=1$,
$\Longrightarrow \quad \operatorname{Spec}(R[[x]])$ is

What is $\operatorname{Spec}(\mathbb{Z}[[x]])$??

Theorem [W. Heinzer, C. Rotthaus \& SW, '06; W², '09]
R a Noetherian domain, $\operatorname{dim} R=1$,
$\Longrightarrow \quad \operatorname{Spec}(R[[x]])$ is

What is $\operatorname{Spec}(\mathbb{Z}[[x]])$??

Theorem [W. Heinzer, C. Rotthaus \& SW, '06; W², '09]
R a Noetherian domain, $\operatorname{dim} R=1$,
$\Longrightarrow \quad \operatorname{Spec}(R[[x]])$ is

What is $\operatorname{Spec}(\mathbb{Z}[[x]])$??

Theorem [W. Heinzer, C. Rotthaus \& SW, '06; W², '09]
R a Noetherian domain, $\operatorname{dim} R=1$,
$\Longrightarrow \quad \operatorname{Spec}(R[[x]])$ is

$$
R=\mathbb{Z} \quad \Longrightarrow \quad|\max \mathbb{Z}|=|\mathbb{Z}|, \quad|\mathbb{Z}[[x]]|=|\mathbb{R}| .
$$

Corollary: $\operatorname{Spec}(\mathbb{Q}[y][[x]]) \cong \operatorname{Spec}(\mathbb{Z}[[x]])$.

What is $\operatorname{Spec}(\mathbb{Q}[[x]][y]) ?$

What is $\operatorname{Spec}(\mathbb{Q}[[x]][y])$?

Theorem [Heinzer \& SW '89; Shah '96; KO '10] Characterization of Spec $H[y]$, for H a local Henselian Noetherian domain, $\operatorname{dim} H=1$, $\Longrightarrow \quad \operatorname{Spec}(k[[x]][y])$ is

What is $\operatorname{Spec}(\mathbb{Q}[[x]][y]) ?$

Theorem [Heinzer \& SW '89; Shah '96; KO '10] Characterization of Spec $H[y]$, for H a local Henselian Noetherian domain, $\operatorname{dim} H=1$, $\Longrightarrow \quad \operatorname{Spec}(k[[x]][y])$ is

$\operatorname{Spec}(k[[x]][y])$, for k a field.

What is $\operatorname{Spec}(\mathbb{Q}[[x]][y])$?

Theorem [Heinzer \& SW '89; Shah '96; KO '10] Characterization of Spec $H[y]$, for H a local Henselian Noetherian domain, $\operatorname{dim} H=1$, $\Longrightarrow \quad \operatorname{Spec}(k[[x]][y])$ is

$\operatorname{Spec}(k[[x]][y])$, for k a field.
Thus $\operatorname{Spec}(\mathbb{Q}[[x]][y])$ is just like $\operatorname{Spec}(\mathbb{Q}[y][[x]])$, except that it has an "arm" sticking out on the left.

Part II: $\operatorname{Spec}(E / Q)$, for E poly-power series

Let $E=k[[x]][y, z], R[[x]][y], R[y][[x]]$, or $R[[x, y]]$,
Here $k=$ a field or $R=$ a 1 -dim Noetherian integral domain, and $Q \in \operatorname{Spec} E$, ht $Q=1$, (usually) $Q \neq x E$.

Part II: $\operatorname{Spec}(E / Q)$, for E poly-power series

Let $E=k[[x][[y, z], R[x]][y], R[y][[x]]$, or $R[[x, y]]$,
Here $k=$ a field or $R=$ a 1-dim Noetherian integral domain, and $Q \in \operatorname{Spec} E$, ht $Q=1$, (usually) $Q \neq x E$.
Notice that these rings are catenary, and Noetherian.
A ring A is catenary provided for every pair $P \subsetneq Q$ in $\operatorname{Spec}(A)$, the number of prime ideals in every maximal chain of form

$$
P=P_{0} \subsetneq P_{1} \subsetneq P_{2} \subsetneq \ldots \subsetneq P_{n}=Q \text { is the same. }
$$

Question: What is $\operatorname{Spec}(R \llbracket x, y \rrbracket / Q) ?(Q=(x)$ is okay. $)$

$\operatorname{Spec}(R[[x, y]] / Q) Q=(x)$ is okay in (case i

Theorem [CEW, Theorem 4.1] $R=1$-dim Noetherian domain, $Q \in \operatorname{Spec}(R \llbracket x, y \rrbracket)$, ht $Q=1$. Set $B=R \llbracket x, y \rrbracket / Q$. Then:
Case i: $Q \nsubseteq(x, y) R \llbracket x, y \rrbracket \Longrightarrow \exists n \in \mathcal{N}, \mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n} \in \max (R)$ and $\operatorname{Spec}(B)$ is:

$\operatorname{Spec}(R[[x, y]] / Q) Q=(x)$ is okay in (case i

Theorem [CEW, Theorem 4.1] $R=$ 1-dim Noetherian domain, $Q \in \operatorname{Spec}(R \llbracket x, y \rrbracket)$, ht $Q=1$. Set $B=R \llbracket x, y \rrbracket / Q$. Then:
Case i: $Q \nsubseteq(x, y) R \llbracket x, y \rrbracket \Longrightarrow \exists n \in \mathcal{N}, \mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n} \in \max (R)$ and $\operatorname{Spec}(B)$ is:

OR

$\operatorname{Spec}(R[[x, y]] / Q)$ case if

Case ii: $Q \subseteq(x, y) R \llbracket x, y \rrbracket \Longrightarrow \operatorname{Spec}(B) \cong \operatorname{Spec}(R \llbracket x \rrbracket) ; \operatorname{so} \operatorname{Spec}(B)$ is:

$\operatorname{Spec}(R[[x, y]] / Q)$ case if

Case ii: $Q \subseteq(x, y) R \llbracket x, y \rrbracket \Longrightarrow \operatorname{Spec}(B) \cong \operatorname{Spec}(R \llbracket x \rrbracket)$; so $\operatorname{Spec}(B)$ is:

where the \mathfrak{m}_{i} range over all the elements of $\max (R)$.
The diagrams show $\operatorname{Spec}(R[[x, y]] / Q)$ is characterized for each case.

$\operatorname{Spec}(E / Q)$, in the dim 1 case.

Here $E=k[[x]][y, z], R[[x]][y]$, or $R[y][[x]]$ a mixed poly-power series, where $k=$ a field or $R=$ a 1 -dim Noetherian integral domain, and $Q \in \operatorname{Spec} E$, ht $Q=1, Q \neq x E$.

$\operatorname{Spec}(E / Q)$, in the dim 1 case.

Here $E=k[[x]][y, z], R[[x]][y]$, or $R[y][[x]]$ a mixed poly-power series, where $k=$ a field or $R=$ a 1 -dim Noetherian integral domain, and $Q \in \operatorname{Spec} E$, ht $Q=1, Q \neq x E$.
Case i: $\operatorname{dim}(E / Q)=1$. Then $\operatorname{dim}(\operatorname{Spec}(E / Q))=1, \Longrightarrow$ a "fan".
(This case occurs if $Q \mid(\mathfrak{m}, Q) E \in \max (E)$ or $=E, \forall \mathfrak{m} \in \max R$ Not for $E=R[y][[x]]$.)
eg. $Q=(2 x y+1) \subseteq \mathbb{Z}[[x]][y] \Longrightarrow \operatorname{Spec}(E / Q)$ is:

$\operatorname{Spec}(E / Q)$, in the dim 1 case.

Here $E=k[[x]][y, z], R[[x]][y]$, or $R[y][[x]]$ a mixed poly-power series, where $k=$ a field or $R=$ a 1 -dim Noetherian integral domain, and $Q \in \operatorname{Spec} E$, ht $Q=1, Q \neq x E$.
Case i: $\operatorname{dim}(E / Q)=1$. Then $\operatorname{dim}(\operatorname{Spec}(E / Q))=1, \Longrightarrow$ a "fan".
(This case occurs if $Q \mid(\mathfrak{m}, Q) E \in \max (E)$ or $=E, \forall \mathfrak{m} \in \max R$ Not for $E=R[y][[x]]$.)
eg. $Q=(2 x y+1) \subseteq \mathbb{Z}[[x]][y] \Longrightarrow \operatorname{Spec}(E / Q)$ is:

$$
\operatorname{Spec}(\mathbb{Z}[[x]][y] /(2 x y+1))
$$

Note: The hgt-3 max ideals of $\mathbb{Z}[[x]][y]$ are $\left\{\left(p, x, h_{i}(y)\right)\right\}$, where p

$\operatorname{Spec}(R[y][[x]] / Q)$ with R countable, $\max (R)$ infinite.

(dim 2 always for this case)
e.g. $E=\mathbb{Z}[y][[x]], Q=(x-\alpha)$,
$\alpha=2 \cdot 3 \cdot y \cdot(2 y-1) \cdot(y+1) \cdot(y(y+1)+6)$.

Note; Every height-two element has a set of $|\mathbb{R}|$ elements below it and below no other height-two element (not shown).

Features of $U=\operatorname{Spec}(R[y][[x]] / Q)$ if R, Q as above.

Theorem: If $U=\operatorname{Spec}(R[y][[x]] / Q)$, where R a countable 1-dim Noetherian domain, $Q \in \operatorname{Spec}(R[y][[x]])$, ht $Q=1, Q \neq(x)$, then
(1) U has a unique minimal element, $|U|=|\mathbb{R}|, \operatorname{dim} U=2$.
(2) $\forall t \in U$, ht $t=2 \Longrightarrow\left|t^{\downarrow, e}\right|=|\mathbb{R}|$.

$$
\left(\left(t^{\downarrow, e}=\{v \in U \mid v<t, v \nless s, \forall s \neq t\} .\right)\right.
$$

(3) $\max (U)=\{\mathrm{ht}-2 \in U\}$.

Features of $U=\operatorname{Spec}(R[y][[x]] / Q)$ if R, Q as above.

Theorem: If $U=\operatorname{Spec}(R[y][[x]] / Q)$, where R a countable 1-dim Noetherian domain, $Q \in \operatorname{Spec}(R[y][[x]])$, ht $Q=1, Q \neq(x)$, then
(1) U has a unique minimal element, $|U|=|\mathbb{R}|, \operatorname{dim} U=2$.
(2) $\forall t \in U$, ht $t=2 \Longrightarrow\left|t^{\downarrow, e}\right|=|\mathbb{R}|$.

$$
\left(\left(t^{\downarrow, e}=\{v \in U \mid v<t, v \nless s, \forall s \neq t\} .\right)\right.
$$

(3) $\max (U)=\{\mathrm{ht}-2 \in U\}$.

Features of $U=\operatorname{Spec}(R[y][[x]] / Q)$ if R, Q as above.

Theorem: If $U=\operatorname{Spec}(R[y][[x]] / Q)$, where R a countable 1 -dim Noetherian domain, $Q \in \operatorname{Spec}(R[y][[x]])$, ht $Q=1, Q \neq(x)$, then
(1) U has a unique minimal element, $|U|=|\mathbb{R}|, \operatorname{dim} U=2$.
(2) $\forall t \in U$, ht $t=2 \Longrightarrow|t, e|=|\mathbb{R}|$.
$((t+, e=\{v \in U \mid v<t, v \nless s, \forall s \neq t\})$.
(3) $\max (U)=\{\mathrm{ht}-2 \in U\}$.
(9) $\exists F_{0}$ finite $\subseteq\{$ non-max ht-1 elements $\}$ with:
(a) $\bigcup_{t \in F_{0}} f^{\uparrow}=\{\mathrm{ht}-2 \in U\} .\left(f^{\uparrow}=\{t \in U \mid f<t\}\right.$.)

Features of $U=\operatorname{Spec}(R[y][[x]] / Q)$ if R, Q as above.

Theorem: If $U=\operatorname{Spec}(R[y][[x]] / Q)$, where R a countable 1-dim Noetherian domain, $Q \in \operatorname{Spec}(R[y][[x]])$, ht $Q=1, Q \neq(x)$, then
(1) U has a unique minimal element, $|U|=|\mathbb{R}|, \operatorname{dim} U=2$.
(2) $\forall t \in U$, ht $t=2 \Longrightarrow|t, e e|=|\mathbb{R}|$.
$((t+, e=\{v \in U \mid v<t, v \nless s, \forall s \neq t\})$.
($\max (U)=\{h t-2 \in U\}$.
(1) $\exists F_{0}$ finite $\subseteq\{$ non-max ht-1 elements $\}$ with:
(a) $\bigcup_{f \in F_{0}} f^{\uparrow}=\{h t-2 \in U\}$. $\left(f^{\uparrow}=\{t \in U \mid f<t\}\right.$.)
(b) $\forall f \in F_{0},\left|f^{\uparrow} \backslash\left(\bigcup_{g \in F_{0}, g \neq f} g^{\uparrow}\right)\right|=\mathbb{N} . \quad\left(\Longrightarrow F_{0} \subseteq\{j\right.$-primes $\}$.)
(c) $\forall f \neq g \in F_{0},\left|f^{\uparrow} \cap g^{\uparrow}\right|<\infty$.
($F_{0}=\{$ non-0, nonmax j-prime ideals $\}=\left\{u\right.$ ht- $\left.\left.1| | u^{\uparrow} \mid \geq 2\right\}.\right)$
Define $F:=\left(\bigcup_{f \neq g \in F_{0}} f^{\uparrow} \cap g^{\uparrow}\right) \cup F_{0}$, a finite set by item c. Then F determines U.

Features of $U=\operatorname{Spec}(R[y][[x]] / Q)$ if R, Q as above.

Theorem: If $U=\operatorname{Spec}(R[y][[x]] / Q)$, where R a countable 1-dim Noetherian domain, $Q \in \operatorname{Spec}(R[y][[x]])$, ht $Q=1, Q \neq(x)$, then
(1) U has a unique minimal element, $|U|=|\mathbb{R}|, \operatorname{dim} U=2$.
(2) $\forall t \in U$, ht $t=2 \Longrightarrow \mid t, e)|=|\mathbb{R}|$.
$\left(\left(t{ }^{\prime}, e=\{v \in U \mid v<t, v \nless s, \forall s \neq t\}.\right)\right.$
(3) $\max (U)=\{h t-2 \in U\}$.
(9) $\exists F_{0}$ finite $\subseteq\{$ non-max ht-1 elements $\}$ with:
(a) $\bigcup_{t \in F_{0}} f^{\uparrow}=\{\mathrm{ht}-2 \in U\}$. $\left(f^{\uparrow}=\{t \in U \mid f<t\}\right.$.)
(b) $\forall f \in F_{0},\left|f^{\uparrow} \backslash\left(\bigcup_{g \in F_{0}, g \neq f} g^{\uparrow}\right)\right|=\mathbb{N} . \quad\left(\Longrightarrow F_{0} \subseteq\{j\right.$-primes $\}$.)
(c) $\forall f \neq g \in F_{0},\left|f^{\uparrow} \cap g^{\uparrow}\right|<\infty$.
($F_{0}=\{$ non-0, nonmax j-prime ideals $\}=\left\{u\right.$ ht- $\left.\left.1| | u^{\uparrow} \mid \geq 2\right\}.\right)$
Define $F:=\left(\bigcup_{f \neq g \in F_{0}} f^{\uparrow} \cap g^{\uparrow}\right) \cup F_{0}$, a finite set by item c. Then F determines U.

Theorem: For every finite poset F of $\operatorname{dim} 1, \exists Q \in \operatorname{Spec}(Z[y][[x]])$ such that F "determines" $\operatorname{Spec}(\mathbb{Z}[y][[x]] / Q)$.
(Want every ht-1 element of F above $2 \mathrm{ht}-0$ elements of F.)

What is Spec $(\mathbb{Z}[[x]][y] / Q)$?

What is Spec $(\mathbb{Z}[[x]][y] / Q)$?

Answer: For the example Q on previous slide $\#\{$ ht 1$\} \cap \max (\mathbb{Z}[[y][x]] / Q)\}=|\mathbb{R}|$. Otherwise, the spectrum is the same.

What is Spec $(\mathbb{Z}[[x]][y] / Q)$?

Answer: For the example Q on previous slide $\#\{$ ht 1$\} \cap \max (\mathbb{Z}[[y][x]] / Q)\}=|\mathbb{R}|$. Otherwise, the spectrum is the same.

Notes 1. In dim 2 case, for general $Q, \operatorname{Spec}(\mathbb{Z}[[x]][y] / Q)$ is the same as $\operatorname{Spec}(\mathbb{Z}[[y][x]][y] / Q)$, except that there may be $|\mathbb{R}|$ height-one maximal ideals.

What is Spec $(\mathbb{Z}[[x]][y] / Q)$?

Answer: For the example Q on previous slide $\#\{$ ht 1$\} \cap \max (\mathbb{Z}[[y][x]] / Q)\}=|\mathbb{R}|$. Otherwise, the spectrum is the same.

Notes 1. In dim 2 case, for general $Q, \operatorname{Spec}(\mathbb{Z}[[x]][y] / Q)$ is the same as $\operatorname{Spec}(\mathbb{Z}[[y][x]][y] / Q)$, except that there may be $|\mathbb{R}|$ height-one maximal ideals.
2. Let R or k be countable and $|\max R|=\infty$. Then $\operatorname{Spec}(R[y][[x]] / Q)$ can be characterized as indicated above, in terms of F. For $E=R[[x]][y]$, the "characterization" or "type" of $\operatorname{Spec}(E / Q)$ depends on the set F and $\varepsilon=\#\{\mathrm{ht}-1$ maximal ideals $\}$.
$\bullet \ell_{y}(Q)$ (ideal of leading coefficients in $R[[x]]$) a unit $\Longrightarrow \#\{$ height-one maximal ideals of $E / Q\}=0$,
$\bullet \ell_{y}(Q)$ (ideal of leading coefficients in $\left.R[[x]]\right)$ NOT a unit and R a UFD $\Longrightarrow \#\{$ height-one maximal ideals of $E / Q\}=|R[[x]]|$,

What is Spec $(\mathbb{Z}[[x]][y] / Q)$?

Answer: For the example Q on previous slide $\#\{$ ht 1$\} \cap \max (\mathbb{Z}[[y][x]] / Q)\}=|\mathbb{R}|$. Otherwise, the spectrum is the same.

Notes 1. In dim 2 case, for general $Q, \operatorname{Spec}(\mathbb{Z}[[x]][y] / Q)$ is the same as $\operatorname{Spec}(\mathbb{Z}[[y][x]][y] / Q)$, except that there may be $|\mathbb{R}|$ height-one maximal ideals.
2. Let R or k be countable and $|\max R|=\infty$. Then $\operatorname{Spec}(R[y][[x]] / Q)$ can be characterized as indicated above, in terms of F. For $E=R[[x]][y]$, the "characterization" or "type" of $\operatorname{Spec}(E / Q)$ depends on the set F and $\varepsilon=\#\{\mathrm{ht}-1$ maximal ideals $\}$.
$\bullet \ell_{y}(Q)$ (ideal of leading coefficients in $R[[x]]$) a unit $\Longrightarrow \#\{$ height-one maximal ideals of $E / Q\}=0$,
$\bullet \ell_{y}(Q)$ (ideal of leading coefficients in $\left.R[[x]]\right)$ NOT a unit and R a UFD $\Longrightarrow \#\{$ height-one maximal ideals of $E / Q\}=|R[[x]]|$,
3. For $E=k[[x]][y][z], \#\{$ height-one maximal ideals of
$E / Q\}=|k[[x]]|$. So again, k countable $\Longrightarrow \operatorname{Spec}(E / Q)$ is determined

Spectra for $A=K \cap R^{*}, K$ a field, $R^{*}=$ power series

Part III. (from [HRW]) Noetherian and Non-Noetherian Examples. Let $R=k[x, y]_{(x, y)}$ or $R=k[x, y, z]_{(x, y, z)} \therefore \mathcal{Q}(R)=k(x, y)$ or $k(x, y, z)$. Take $R^{*}=k[y]_{(y)}[[x]]$ or $k[y, z]_{(y, z)}[[x]]$.

Spectra for $A=K \cap R^{*}, K$ a field, $R^{*}=$ power series

Part III. (from [HRW]) Noetherian and Non-Noetherian Examples. Let $R=k[x, y]_{(x, y)}$ or $R=k[x, y, z]_{(x, y, z)} \therefore \mathcal{Q}(R)=k(x, y)$ or $k(x, y, z)$. Take $R^{*}=k[y]_{(y)}[[x]]$ or $k[y, z]_{(y, z)}[[x]]$.
a) "Intersection Domain" $A=K \cap R^{*}, K=$ a field $\subseteq \mathcal{Q}\left(R^{*}\right)$. Take $K=\mathcal{Q}(R)(f) \subseteq \mathcal{Q}\left(R^{*}\right)$, where $f \in x R^{*}$ are algebraically independent over $\mathcal{Q}(R)$.

Spectra for $A=K \cap R^{*}, K$ a field, $R^{*}=$ power series

Part III. (from [HRW]) Noetherian and Non-Noetherian Examples. Let $R=k[x, y]_{(x, y)}$ or $R=k[x, y, z]_{(x, y, z)} \therefore \mathcal{Q}(R)=k(x, y)$ or $k(x, y, z)$. Take $R^{*}=k[y]_{(y)}[[x]]$ or $k[y, z]_{(y, z)}[[x]]$.
a) "Intersection Domain" $A=K \cap R^{*}, K=$ a field $\subseteq \mathcal{Q}\left(R^{*}\right)$. Take $K=\mathcal{Q}(R)(f) \subseteq \mathcal{Q}\left(R^{*}\right)$, where $f \in x R^{*}$ are algebraically independent over $\mathcal{Q}(R)$.
b). "Approximation domain" B (approximating A) formed by adding "endpieces" of f to R. (Described below.)

Spectra for $A=K \cap R^{*}, K$ a field, $R^{*}=$ power series

Part III. (from [HRW]) Noetherian and Non-Noetherian Examples. Let $R=k[x, y]_{(x, y)}$ or $R=k[x, y, z]_{(x, y, z)} \cdot \therefore \mathcal{Q}(R)=k(x, y)$ or $k(x, y, z)$. Take $R^{*}=k[y]_{(y)}[[x]]$ or $k[y, z]_{(y, z)}[[x]]$.
a) "Intersection Domain" $A=K \cap R^{*}, K=$ a field $\subseteq \mathcal{Q}\left(R^{*}\right)$. Take $K=\mathcal{Q}(R)(f) \subseteq \mathcal{Q}\left(R^{*}\right)$, where $f \in x R^{*}$ are algebraically independent over $\mathcal{Q}(R)$.
b). "Approximation domain" B (approximating A) formed by adding "endpieces" of f to R. (Described below.)

Notes 1. B is Noetherian $\Longleftrightarrow(B=A$ and A is Noetherian.)
2. Sometimes A is Noetherian, but B is not.
3. If B is Noetherian then B is catenary, in fact universally catenary. (For catenary, non-universally catenary Noetherian examples, we use another version of the construction given above.)

$y z \tau$ Example:

Let $R=k[x, y, z]_{(x, y, z)} \Longrightarrow R^{*}=k[y, z]_{(y, z)}[[x]]$. Choose $\tau \in x k[[x]]$, algebraically independent over $k(x)$.
The $y z \tau$ Example: Let $f=y z \tau \in x R^{*}$. Then $f=\sum_{i=1}^{\infty} a_{i} x^{i}, a_{i} \in y z k$ For every $n \in \mathbb{N}$, the $n^{\text {th }}$ endpiece f_{n} of f is:

$$
f_{n}:=\sum_{i=n+1}^{\infty} a_{i} x^{i-n}
$$

Note: $f_{n}:=a_{n+1} x+x \sum_{i=n+2}^{\infty} a_{i} x^{i-n-1}=a_{n+1} x+x f_{n+1}$.
Set $B_{n}:=k\left[x, y, z, f_{n}\right]_{\left(x, y, z, f_{n}\right)}$. By Note, $B_{n} \subseteq B_{n+1}$.
Define the Approximation Domain B

$$
B:=\bigcup B_{n} .
$$

In this example, B is not Noetherian, by our methods.

The 1-coefficient example

Let $R=k[x, y]_{(x, y)} \Longrightarrow R^{*}=k[y]_{(y)}[[x]]$. Choose $\sigma \in x k[[x]]$, algebraically independent over $k(x)$.

The 1-coefficient example

Let $R=k[x, y]_{(x, y)} \Longrightarrow R^{*}=k[y]_{(y)}[[x]]$. Choose $\sigma \in x k[[x]]$, algebraically independent over $k(x)$.
The 1-coefficient example
Let $f=y \sigma \in x R^{*}$. Let B be the approximation domain,
$B=\bigcup k\left[x, y, z, f_{n}\right]_{\left(x, y, z, f_{n}\right)}$.
B is not Noetherian.

The 2-coefficient example

Let $R=k[x, y, z]_{(x, y, z)} \Longrightarrow R^{*}=k[y, z]_{(y, z)}[[x]]$. Choose $\tau, \sigma \in x k[[x]]$, algebraically independent over $k(x)$.

The 2-coefficient example

Let $R=k[x, y, z]_{(x, y, z)} \Longrightarrow R^{*}=k[y, z]_{(y, z)}[[x]]$. Choose $\tau, \sigma \in x k[[x]]$, algebraically independent over $k(x)$.
The 2-coefficient example
Let $f=y \sigma+z \tau \in x R^{*}$. Let B be the approximation domain. So
$B=\bigcup k\left[x, y, z, f_{n}\right]_{\left(x, y, z, f_{n}\right.}$.
B is not Noetherian.

Spec B, for the 1-coeff example, $B \subset k[[x, y]]$

Spec B
"Type I" ="B/P is Noetherian"; "Type III"= " P not contracted." "Type II" = "P = $P^{*} \cap B, \exists P^{*} \in \operatorname{Spec}(k[[x, y]] . "$

Properties of the 1 -coefficient example

B is a non-Noetherian local integral domain $\left(B, \mathfrak{m}_{B}\right)$ such that:
(1) $\operatorname{dim} B=3$.
(2) The ring B is a UFD that is not catenary.
(3) The maximal ideal \mathfrak{m}_{B} of B is $(x, y) B$.
(9) The \mathfrak{m}_{B}-adic completion of B is a two-dimensional regular local domain.
(0) For every non-maximal prime ideal P of B, the ring B_{P} is Noetherian.
(0) The ring B has precisely 1 prime ideal of height two.
(3) Every prime ideal of B of height two is not finitely generated; all other prime ideals of B are finitely generated.

Part of $\operatorname{Spec} B$, for the $y z \tau$ example, $B \subset k[[x, y, z]]$

yzт Theorem:

Theorem Let B be the $y z \tau$ example. Then:
(1) $B=4$-dim local UFD, max ideal $\mathfrak{m}_{B}=(x, y, z) B, \widehat{B}=k[[x, y, z]]$.
(2) $B[1 / x]=$ Noetherian regular UFD, $\operatorname{dim}(B / x B)=2$. If $P \in \operatorname{Spec} B$, B_{P} an RLR $\Longleftrightarrow B_{P}$ is Noetherian $\Longleftrightarrow(y z, x) R^{*} \cap B \nsubseteq P$. \therefore ht $P \leq 2 \Longrightarrow B_{P}$ is an RLR.
(3) What ideals of B are finitely generated? Partial answer:
(0) Every height-one prime ideal is principal.
(2) $Q_{1}:=\left(y,\left\{f_{n}\right\}\right) B=y R^{*} \cap B, \quad Q_{2}:=\left(z,\left\{f_{n}\right\}\right) B=z R^{*} \cap B$, $Q_{3}:=\left(y, z,\left\{f_{n}\right\}\right) B=(y, z) R^{*} \cap B$ are prime ideals, not finitely generated; ht $Q_{1}=$ ht $Q_{2}=2$, ht $Q_{3}=3$.
(3) The prime ideals $(x, y) B$ and $(x, z) B$ have height three.
(9) If P is a height-two prime ideal of B that contains an element of the form $y+g(z, x)$ or $z+h(x, y)$, where $0 \neq g(z, x) \in(x, z) k[x, z]$ and $0 \neq h(x, y) \in(x, y) k[x, y]$, then P is generated by two elements.
(3) If \mathfrak{a} is an ideal of B that contains $x+y z g(y, z)$, for some polynomial $g(y, z) \in k[y, z]$, then \mathfrak{a} is finitely generated.
(0) $\exists \infty$ many ht-3 non-finitely generated prime ideals, e.g.
$Q_{i, \alpha}=\left(y-\alpha x^{i}, z,\left\{f_{n}\right\}\right) B$, where $i \in \mathbb{N}$ and $\alpha \in k$.

d-coefficient Example

Let $R=k\left[x, y_{1}, \ldots, y_{d}\right]_{\left(x, y_{1}, \ldots, y_{d}\right)}, R^{*}=k\left[y_{1}, \ldots, y_{d}\right]_{(-)}[[x]]$,
$\tau_{1}, \ldots, \tau_{d} \in x k[[x]]$ algebraically independent over $k(x)$, and
$f=y_{1} \tau_{1}+\ldots y_{d} \tau_{d} \in x R^{*}$ Define $B=\bigcup k\left[x, y_{1}, \ldots, y_{d}, f_{n}\right]_{\left(x, y_{1}, \ldots, y_{d}, f_{n}\right)}$.
Then B is a non-catenary, non-Noetherian local UFD of dimension
$d+2$ such that:
(i) B has exactly 1 prime ideal of height $d+1$;
(ii) The height- $(d+1)$ prime ideal is not finitely generated;
(iii) The localization of B at every nonmaximal prime ideal of B is Noetherian.

THANKS!

