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Questions

Question1: [Judy Sally, 1990] What rings lie between a ring and its
field of fractions?

Question 2: [inspired by S. Abhyankar’s work] What rings lie between a
ring and a power series ring containing that ring? Such as, between
Q[x , y ](x ,y) and Q[y ](y)[[x ]], for Q the field of rational numbers and x , y
indeterminates over k .

•∃ uncountably many τi ∈ Q[y ](y)[[x ]], that are algebraically
independent over Q(x , y) [Abhyankar, PAMS, 1956]. (Even analytically
indep.!)

• In our work we show ∃ a wide variety of integral domains fitting
Questions 1 and 2. See book at:

[Reference: http://www.math.unl.edu/ swiegand1/2016Aprpower.pdf]
(April 2016 version—May be updated September 2016.)
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Basic Construction, this talk:

Over the past eighty years, important examples of Noetherian integral
domains have been constructed by:

Basic Construction 3: A := L ∩ S , where

• R = a typical Noetherian integral domain R, such as,
k [x , y ](x ,y), k a field, x , y indeterminates over k ,

• S = a homomorphic image of a power series ring over R,
• L = a field with R ⊆ L ⊆ Q(S), the total quotient ring of S.

Basic Construction 3 yields many unusual Noetherian or
non-Noetherian extension rings A of R.

This talk: Classical examples of Nagata and Rotthaus simplified,
streamlined by Basic Construction 1 & techniques of the book.
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Universality

Basic Construction 3 is universal in the sense that

For EVERY (A, n) = Noetherian local domain with field of fractions L, if
• ∃k = a “coefficient field” for A (k ∼= A/n, k ⊆ A) and
• L finitely generated over k ,

then ∃(R,m) such that •A = L ∩ S, as in Basic Construction 1, where
• S = R̂/I, I = ideal of the m-adic completion R̂,
• (R,m) a Noetherian local domain
• k = a coefficient field for R,
• L = is the field of fractions of R and
• R is “essentially finitely generated over k ”

(R = (a fin. gen k -algebra), localized).

Note: If time, we may show this universality property.
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Two goals of book:

Goal 1: Construct new non-Noetherian integral domains to illustrate
recent advances in ideal theory, such as examples featured in Ardibil.

Goal 2: Construct new examples of Noetherian rings,
• Continue tradition of [1930s] Akizuki, Schmidt, (on integral closure)
[1950s] Nagata ∗ (2-dim RLR, not Nagata, not excellent);
[1970-1990s]. Brodmann & Rotthaus, Ferrand & Raynaud, Heitmann,
Lequain, Nishimura, Ogoma (normal Noetherian local domain but not
universally catenary), Weston and others.
Christel Rotthaus ∗ (Nagata domain that is not excellent)
(In book, we analyze & shorten some of these.)

• New Noetherian examples in book include (1) 3-dim Noetherian RLR
(A, n) with a prime ideal P and n-adic completion n̂, such that PÂ is not
integrally closed. [answers question of C. Huneke]
(2) ∀n ≥ 2, a catenary Noetherian local domain with geometrically
regular formal fibers that is not universally catenary.
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Today: Nagata & Christel examples

Today: Discuss the Nagata and Christel examples:

Nagata Example: A 2-dim RLR, not Nagata.

Christel Example: A Nagata domain that is not excellent.

In the process, • Discuss/define “Nagata ring" & “excellent ring".

• Give simpler form of Basic Construction 3, techniques &
theorems used.
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General Setting, Simpler Construction

(A recent version, R need not be Noetherian, but “close”.)
Setting 4: Let R be an integral domain, x ∈ R, x ̸= 0, x a nonunit.
Let R∗ = x-adic completion= inverse limit (R/(xnR)) as n → ∞.

Assume •
∩∞

n=1 xnR = (0). • x is regular in R∗.
• R∗ is Noetherian.

Notes: (1) R∗ ∼ “power series in x over R"— expressions not unique!
(2) For (R,m) local Noetherian, R̂ = m-adic completion= inverse limit
(R/(mnR)) as n → ∞ ∼ “power series" in more elements.)

Construction 5: Let τ = τ1, τ2, . . . , τs ∈ xR∗ be algebraically
independent over R.
Assume • The elements of R[τ ] are regular in R∗.

Define the Intersection Domain:

A = Q(R[τ ]) ∩ R∗.
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Prototype examples:

Example 6: k a field R = k [x , y ](x ,y); R∗ = k [y ](y)[[x ]].
Let τ ∈ xk [[x ]] be transcendental over k(x); eg τ = ex − 1 for k = Q.

Define D = k(x , y , τ) ∩ (k [y ](y)[[x ]]) .

Fact: D = V [y ](x ,y), where V = k(x , τ) ∩ k [[x ]].
So V is a DVR, D is an RLR.

Example 7: k a field R = k [x , y , z](x ,y ,z); R∗ = k [y , z](y ,z,)[[x ]].

Similarly define D′ = k(x , y , z, τ, σ) ∩ (k [y , z](y ,z)[[x ]]) , where
τ, σ ∈ xk [[x ]] are alg. indep. over k(x), such as for k = Q, σ = ex − 1,
τ = ex2 − 1.
Fact: D′ = V ′[y , z](x ,y ,z), where V ′ = k(x , τ, σ) ∩ k [[x ]].
So V ′ is a DVR, D′ is an RLR.
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Approximation Domains:

Definitions/notes 8: (with Setting 4, Construction 5 above).
For τ ∈ xR∗, write τ =

∑∞
i=1 aix i . (non-unique)

For every n ∈ N, the nth endpiece τn of τ is:

τn :=
∞∑

i=n+1

aix i−n.

Note: τn := an+1x +
∑∞

i=n+2 aix i−n−1 = an+1x + xτn+1.

For several elements, set τ = τ1, . . . , τs, and τn = τ1n, τ2n, . . . , τsn.
Define Un := R[τn], Bn := (Un)(mR ,τn).

By Note, Un ⊆ Un+1 ⊆ Un[1/x ], Bn ⊆ Bn+1, and
Bn[1/x ] is a localization of U0 = R[τ ].

Define U :=
∪

Un, and the Approximation Domain B

B :=
∪

Bn.
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Construction Properties & Flatness Theorems:

New versions: R not necessarily Noetherian.
Use Setting 4, Construction 5 above.
Construction properties theorem 9:

A∗ = B∗ = R∗ (x-adic completions).
R/xR = B/xB = A/xA = R∗/xR∗.
B[1/x ] is a localization of U0 = R[τ ].
If R is a UFD, so is B.
If R is a regular Noetherian UFD, so is B[1/x ].
If R is Noetherian, so is B[1/x ].
If (R,m) is quasi-local, so are A,B,R∗, with max ideals
mA = mA,mB = mB, and m∗

R = mR∗.

Noetherian Flatness Theorem 10 TAE:
1 ψ : U0 = R[τ ] ↪→ R∗[1/x ] is flat.
2 B is Noetherian.
3 B ↪→ R∗ is faithfully flat.
4 A is Noetherian and A = B.
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Prototypes are Approximation Domains

Proof for Prototype Example 6 above R = k [x , y ](x ,y), where k , a field
characteristic k ̸= 2, R∗ = k [y ](y)[[x ]], and τ ∈ xk [[x ]]
D = k(x , y , τ) ∩ R∗.

k [x ][τ ] ↪→ k [[x ]][1/x ] is flat (always true for an inclusion into a field).
=⇒ k [y ]⊗k k [x ][τ ] ↪→ k [y ]⊗k k [[x ]][1/x ] is flat.
=⇒ k [x , y ][τ ] ↪→ k [y ][[x ]][1/x ] is flat, and
=⇒ U0 = R[τ ] ↪→ R∗[1/x ] is flat.
=⇒ D = the associated Approximation Domain and D is Noetherian,
by Noetherian Flatness Theorem 10 (overkill).

Similarly D′ in Prototype Example 7 equals its Approximation Domain
and is Noetherian.
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Nagata Example set-up

( Nagata constructs A as a nested union of localized polynomial rings;
here A is an intersection. )
(Inside Prototype Example 6 above) R = k [x , y ](x ,y), with characteristic
k ̸= 2, R∗ = k [y ](y)[[x ]], and τ ∈ xk [[x ]]. Then
•D = k(x , y , τ) ∩ R∗ = its Approximation Domain, •D is Noetherian
•U0 = R[τ ] ↪→ R∗[1/x ] is flat.

Nagata Example 11: Let f = (y + τ)2 ∈ xR∗, z an indeterminate.

Define A : = k(x , y , f ) ∩ k [y ](y)[[x ]] E : =
A[z]

(z2 − f )A[z]
,

Then: •A has unique max ideal mA = (x , y)A, • The element f is
prime in A, •Â = k [[x , y ]].
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The Nagata Example A is a 2-dim RLR

Here R = k [x , y ](x ,y), characteristic k ̸= 2, R∗ = k [y ](y)[[x ]],
A : = k(x , y , f ) ∩ k [y ](y)[[x ]].

Proof: Consider the diagram R∗[1/x ]

R ↪→ U0 = R[f ] T = R[τ ]

ψ

α:=ψφ

φ

The ring T = R[τ ] is a free R[f ]-module with free basis ⟨1, y + τ⟩.
∴ φ is flat.
Since τ defines the Prototype D, ψ : R[τ ] ↪→ R∗[1/x ] is flat.
Now α = ψ ◦ φ =⇒ α is flat.
Noetherian Flatness Theorem 10 =⇒ A is Noetherian (and = its
Approximation Domain). Since A = B ↪→ k [[x , y ]] is a flat local
homomorphism, A is a RLR [Matsumura, “Comm Rings", Thm 23.7].
dim A = 2, since mA = (x , y)A.
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Properties of Nagata example

Here R = k [x , y ](x ,y), char k ̸= 2, R∗ = k [y ](y)[[x ]],
A := k(x , y , f ) ∩ k [y ](y)[[x ]], fA = (y + τ)2.

Definition: A Noetherian ring R is Nagata if • ∀P ∈ Spec R and
∀ finite extension field L of Q(R/P), R/P

L
(integral closure of R/P in

L) is finitely generated as a module over R/P.

Claim: A is not a Nagata ring.
Proof: fA = (y + τ)2 =⇒ Â/fA = Â/f Â has a nonzero nilpotent
element, and dim(A/fA) = 1. ∴ the integral closure A/fA is not finitely
generated over A/fA by
Theorem: [Nagata “Local rings", Ex. 1, p. 22] For R a 1-dim Noeth.
local domain, R (integral closure of R) is a finitely generated R-module
⇐⇒ R is “analytically unramified" (R̂ has no nilpotent elements).
∴ A is not a Nagata ring.
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What about E?

Here R = k [x , y ](x ,y), where k , a field characteristic k ̸= 2,
R∗ = k [y ](y)[[x ]], and τ ∈ xk [[x ]]. Let f = (y + τ)2 ∈ xR∗, and let z be
an indeterminate.
A : = k(x , y , f ) ∩ k [y ](y)[[x ]] E : = A[z]

(z2−f )A[z] ,

•E = integrally closed Noetherian local domain.

•E is “analytically reducible" (Ê is not an integral domain), because

f Â = (y + τ)2Â =⇒ Ê = k [[x ,y ,z]]
(z−(y+τ))(z+(y+τ)) =⇒ not integral domain.

This was important —the first such example (about 1956).
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Christel’s Example

(Originally A was constructed as a direct limit.)

Christel’s Example: (Inside D′ of Prototype Example 7)
R = k [x , y , z](x ,y ,z), x , y , z = indeterminates over k = field of
characteristic 0, σ, τ ∈ xk [[x ]] alg. indep. over k(x).

Let f := (y + σ)(z + τ) ∈ xk [[x ]]). Define

A := k(x , y , z, f ) ∩ (k [y , z](y ,z)][[x ]]).

• The completion Â of A is k [[x , y , z]]. If A is Noetherian, then A is a
3-dimensional regular local domain.
We show A is Noetherian on the next slide.
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Christel’s Example A is Noetherian

Here R = k [x , y , z](x ,y ,z), characteristic k = 0, R∗ = k [y , z](y ,z)[[x ]],
σ, τ ∈ xk [[x ]], f := (y + σ)(z + τ).A : = k(x , y , f ) ∩ k [y , z](y ,z)[[x ]].

Consider the diagram R∗[1/x ]

R ↪→ U0 = R[f ] T = R[σ, τ ]

ψ

α:=ψφ

φ

Fact: The ring T = R[σ, τ ] is flat over R[f ], since the coefficients of
f = yz + σz + τy + στ as a polynomial in σ, τ generate R.
∴ φ is flat.

Since σ, τ defines the Prototype D′, ψ : R[σ, τ ] ↪→ R∗[1/x ] is flat.
Now α = ψ ◦ φ =⇒ α is flat.
Noetherian Flatness Theorem 10 =⇒ A is Noetherian (and = its
Approximation Domain).
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Excellence

Definitions: • For f : A → B a ring homomorphism of Noetherian rings,
and P ∈ Spec A. The fiber over P with respect to f is geometrically
regular if F = finite extension field of Q(A/P) =⇒ B ⊗A F is a
Noetherian regular ring (every localization is an RLR).
• Let (R,m) = Noetherian local ring, R̂ = m-adic completion of R.

• A Noetherian ring A is excellent if
(i) A is universally catenary,
(ii) For every prime ideal P of A, the map from AP to its PAP-adic

completion is regular (has geometrically regular fibers).
(iii) For every finitely generated A-algebra B, the set

Reg(B) = {P ∈ Spec B | BP is an RLR}
is an open subset of Spec B.

Remarks: •Z, all fields and all complete Noetherian local rings are
excellent. • All Dedekind domains of characteristic zero are excellent.
• Every excellent ring is a Nagata ring by [Matsumura “Comm. Alg",
Thm. 78, p. 257].
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Properties of Christel’s Example

Claim: Christel’s Example A is a Nagata domain that is not excellent.

Proof: •(y − σ, z − τ)Â = height-two prime ideal of A. Fact:
(y − σ, z − τ)Â ∩ A = (y − σ)(z − τ)A. ∴ (y − σ)(z − τ)A ∈ Spec A.
But Â

(y−σ),z−τ)A)Â/(y − σ)(z − τ)Â
(y−σ),z−τ)Â is a non-regular formal

fiber of A. ("formal"=“fiber of the map to Â".) ∴ A is not excellent.

• Since k ⊆ A & k characteristic zero, A is a Nagata domain if
∀P ∈ Spec A, A/P is a finite A/P-module by
Theorem [Matsumura, “Comm. Rings", p. 262] Let R be an integrally
closed Noetherian integral domain with field of fractions K . If L/K is a
finite separable algebraic field extension, then the integral closure of R
in L is a finite R-module. If R has characteristic zero, then the integral
closure of R in a finite algebraic field extension is a finite R-module.
• Since the formal fibers of A are reduced, the integral closure of A/P
is a finite A/P-module, by Theorem used for the Nagata example.
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d-coefficient Theorem:

d-coeff. Theorem: [HRW] Let d ≥ 2, R := k [x , y1, . . . yd ](x ,y1,...yd ).
Then ∃B | R ⊆ B ⊆ R∗ := k [y1, . . . , yd ](−)[[x ]] ⊆ R̂ := k [[x , y1, . . . , yd ]],
and B has a prime ideal Q := (y1y2, . . . , yd)R∗ ∩ B such that:

1 B = a non-Noetherian local UFD, maximal ideal mB = mRB,
dim(B) = d + 2.

2 The mB-adic completion B̂ = k [[x , y ]], dim(B̂) = d + 1.

3 B[1/x ] = a Noetherian regular UFD; B/xB = an RLR, dim d ;
∀P ∈ Spec B, P ̸= mB =⇒ BP = an RLR.

4 Q =
∪∞

n=1 Qn, Qn = (y1, y2, . . . , yd , fn)Bn; Q not finitely
generated. {Q} = {P ∈ Spec B | ht P = d + 1}. (fn = later.)

5 C = a saturated chain in Spec B =⇒ length (C) = d + 1 or d + 2;
∃ such C with length (C) = d + 1,d + 2; ∴ B not catenary,
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Spec B, for the 1-coeff example, B ⊂ k [[x , y ]]

mB := (x , y)B

Q := (y , {fi})B

xB ∈ Type I y(y + τ)B ∈ Type II yB ∈ Type III

(0)

Spec B
“Type I" =“B/P is Noetherian"; “Type III"= “P not contracted."
“Type II" = “P = P∗ ∩ B, ∃P∗ ∈ Spec(k [[x , y ]]."
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yzτ Theorem:

“yzτ " Example Theorem: ∃B | k [x , y , z](x ,y ,z) ⊆ B ⊆ k [[x , y , z]] and:

1 B = 4-dim local UFD, max ideal mB = (x , y , z)B, B̂ = k [[x , y , z]].
2 B[1/x ] = Noetherian regular UFD, dim(B/xB) = 2. If P ∈ Spec B,

BP an RLR ⇐⇒ BP is Noetherian ⇐⇒ (yz, x)R∗ ∩ B ⊈ P.
∴ ht P ≤ 2 =⇒ BP is an RLR.

3 B(x ,y)B and B(x ,z)B are 3-dim non-Noetherian local UFDs.
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yzτ Theorem, cont

yzτ Question: What ideals of B are finite generated? Partial answer:
1 Every height-one prime ideal is principal.
2 Q1 := (y , {fn})B = yR∗ ∩ B, Q2 := (z, {fn})B = zR∗ ∩ B,

Q3 := (y , z, {fn})B = (y , z)R∗ ∩ B are prime ideals, not finitely
generated; ht Q1 = ht Q2 = 2, ht Q3 = 3.

3 The prime ideals (x , y)B and (x , z)B have height three.
4 If P is a height-two prime ideal of B that contains an element of

the form y + g(z, x) or z + h(x , y), where
0 ̸= g(z, x) ∈ (x , z)k [x , z] and 0 ̸= h(x , y) ∈ (x , y)k [x , y ], then P
is generated by two elements.

5 If a is an ideal of B that contains x + yzg(y , z), for some
polynomial g(y , z) ∈ k [y , z], then a is finitely generated.

6 ∃∞ many ht-3 non-finitely generated prime ideals, e.g.
Qi,α = (y − αx i , z, {fn})B, where i ∈ N and α ∈ k .

Sylvia Wiegand (work of W. Heinzer, C. Rotthaus, S. Wiegand ) non-Noeth



Part of Spec B, for the yzτ example, B ⊂ k [[x , y , z]]

•mB := (x , y , z)B

{(y , z − βx , {fi})B}{(z, y − βx , {fi})B}
•(x , z)B •(y , z, {fi})B

•(y , z)B

•(x , y)B

•zB

•(z, {fi})B •(y , {fi})B

•yB
•xB

•(0)
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THANKS!

Sylvia Wiegand (work of W. Heinzer, C. Rotthaus, S. Wiegand ) non-Noeth


