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Questions

Question1: [Judy Sally, 1990] What rings lie between a ring and its
field of fractions?

Question 2: [inspired by S. Abhyankar's work] What rings lie between a
ring and a power series ring containing that ring? Such as, between
Q[x, ¥l(x,y) and Q[y][[x]], for Q the field of rational numbers and x, y
indeterminates over k.

e uncountably many 7; € Q[y],[[x]], that are algebraically
independent over Q(x, y) [Abhyankar, PAMS, 1956]. (Even analytically
indep.!)

e In our work we show 3 a wide variety of integral domains fitting
Questions 1 and 2. See book at:

[Reference: http://www.math.unl.edu/ swiegand1/2016Aprpower.pdf]
(April 2016 version—May be updated September 2016.)
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Basic Construction, this talk:

Over the past eighty years, important examples of Noetherian integral
domains have been constructed by:
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Basic Construction, this talk:

Over the past eighty years, important examples of Noetherian integral
domains have been constructed by:

Basic Construction3: |A := LN S|, where

e R = atypical Noetherian integral domain R, such as,
K[x, ¥](x,y) k afield, x, y indeterminates over k,
¢ S = a homomorphic image of a power series ring over R,
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Basic Construction, this talk:

Over the past eighty years, important examples of Noetherian integral
domains have been constructed by:

Basic Construction3: |A := LN S|, where

e R = atypical Noetherian integral domain R, such as,

K[x, ¥](x,y) k afield, x, y indeterminates over k,
¢ S = a homomorphic image of a power series ring over R,
e L = afield with R C L C Q(S), the total quotient ring of S.

Basic Construction 3 yields many unusual Noetherian or
non-Noetherian extension rings A of R.

This talk: Classical examples of Nagata and Rotthaus simplified,
streamlined by Basic Construction 1 & techniques of the book.
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Universality

Basic Construction 3 is universal in the sense that

For EVERY (A,n) = Noetherian local domain with field of fractions L, if
e Ik = a “coefficient field” for A (k = A/n, k C A) and
e [ finitely generated over k,
then 3(R, m) such that A = L N S, as in Basic Construction 1, where
S = :Ex’//, | = ideal of the m-adic completion R,
¢ (R, m) a Noetherian local domain
e k = a coefficient field for R,
e [ = is the field of fractions of R and
¢ R is “essentially finitely generated over k”
(R = (afin. gen k-algebra), localized).

Note: If time, we may show this universality property.
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Two goals of book:

Goal 1: Construct new non-Noetherian integral domains to illustrate
recent advances in ideal theory, such as examples featured in Ardibil.

Goal 2: Construct new examples of Noetherian rings,

e Continue tradition of [1930s] Akizuki, Schmidt, (on integral closure)
[1950s] Nagata * (2-dim RLR, not Nagata, not excellent);
[1970-1990s]. Brodmann & Rotthaus, Ferrand & Raynaud, Heitmann,
Lequain, Nishimura, Ogoma (normal Noetherian local domain but not
universally catenary), Weston and others.

Christel Rotthaus * (Nagata domain that is not excellent)

(In book, we analyze & shorten some of these.)
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Two goals of book:

Goal 1: Construct new non-Noetherian integral domains to illustrate
recent advances in ideal theory, such as examples featured in Ardibil.

Goal 2: Construct new examples of Noetherian rings,
e Continue tradition of [1930s] Akizuki, Schmidt, (on integral closure)

[1950s] Nagata * (2-dim RLR, not Nagata, not excellent);

[1970-1990s]. Brodmann & Rotthaus, Ferrand & Raynaud, Heitmann,
Lequain, Nishimura, Ogoma (normal Noetherian local domain but not
universally catenary), Weston and others.

Christel Rotthaus * (Nagata domain that is not excellent)

(In book, we analyze & shorten some of these.)

e New Noetherian examples in book include (1) 3-dim Noetherian RLR
(A, n) with a prime ideal P and n-adic completion n, such that PA is not
integrally closed. [answers question of C. Huneke]
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Two goals of book:

Goal 1: Construct new non-Noetherian integral domains to illustrate
recent advances in ideal theory, such as examples featured in Ardibil.

Goal 2: Construct new examples of Noetherian rings,
e Continue tradition of [1930s] Akizuki, Schmidt, (on integral closure)

[1950s] Nagata * (2-dim RLR, not Nagata, not excellent);

[1970-1990s]. Brodmann & Rotthaus, Ferrand & Raynaud, Heitmann,
Lequain, Nishimura, Ogoma (normal Noetherian local domain but not
universally catenary), Weston and others.

Christel Rotthaus * (Nagata domain that is not excellent)

(In book, we analyze & shorten some of these.)

e New Noetherian examples in book include (1) 3-dim Noetherian RLR
(A, n) with a prime ideal P and n-adic completion n, such that PA is not
integrally closed. [answers question of C. Huneke]

(2) vn > 2, a catenary Noetherian local domain with geometrically
regular formal fibers that is not universally catenary.
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Today: Nagata & Christel examples

Today: Discuss the Nagata and Christel examples:

Nagata Example: A 2-dim RLR, not Nagata.

Christel Example: A Nagata domain that is not excellent.

In the process, e Discuss/define “Nagata ring" & “excellent ring".

e Give simpler form of Basic Construction 3, techniques &
theorems used.
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General Setting, Simpler Construction

(A recent version, R need not be Noetherian, but “close”.)

Setting 4: Let R be an integral domain, x € R, x # 0, x a nonunit.
Let R* = x-adic completion= inverse limit (R/(x"R)) as n — oc.
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General Setting, Simpler Construction

(A recent version, R need not be Noetherian, but “close”.)
Setting 4: Let R be an integral domain, x € R, x # 0, x a nonunit.
Let R* = x-adic completion= inverse limit (R/(x"R)) as n — oc.
Assume o ()2, x"R = (0). e X is regular in R*.

e R* is Noetherian.
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General Setting, Simpler Construction

(A recent version, R need not be Noetherian, but “close”.)

Setting 4: Let R be an integral domain, x € R, x # 0, x a nonunit.
Let R* = x-adic completion= inverse limit (R/(x"R)) as n — oc.

Assume o ()2, x"R = (0). e x is regular in R*.

e R* is Noetherian.
Notes: (1) R* ~ “power series in x over A"— expressions not unique!
(2) For (R, m) local Noetherian, R = m-adic completion= inverse limit
(R/(m"R)) as n — oo ~ “power series" in more elements.)
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General Setting, Simpler Construction

(A recent version, R need not be Noetherian, but “close”.)

Setting 4: Let R be an integral domain, x € R, x # 0, x a nonunit.
Let R* = x-adic completion= inverse limit (R/(x"R)) as n — oc.

Assume o ()2, x"R = (0). e x is regular in R*.

e R* is Noetherian.
Notes: (1) R* ~ “power series in x over A"— expressions not unique!
(2) For (R, m) local Noetherian, R = m-adic completion= inverse limit
(R/(m"R)) as n — oo ~ “power series" in more elements.)

Construction 5: Let 7 = 74, 70, ...,7s € XR* be algebraically
independent over R.
Assume e The elements of R[r] are regular in R*.
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General Setting, Simpler Construction

(A recent version, R need not be Noetherian, but “close”.)

Setting 4: Let R be an integral domain, x € R, x # 0, x a nonunit.
Let R* = x-adic completion= inverse limit (R/(x"R)) as n — oc.

Assume o ()2, x"R = (0). e x is regular in R*.

e R* is Noetherian.
Notes: (1) R* ~ “power series in x over A"— expressions not unique!
(2) For (R, m) local Noetherian, R = m-adic completion= inverse limit
(R/(m"R)) as n — oo ~ “power series" in more elements.)

Construction 5: Let 7 = 74, 70, ...,7s € XR* be algebraically
independent over R.
Assume e The elements of R[r] are regular in R*.

Define the Intersection Domain:

A= Q(Rl))NR".
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Prototype examples:

Example 6: k afield R =Kk[x,¥]xy); R =Kkl
Let 7 € xk[[x]] be transcendental over k(x); egT =¢e*—1fork =Q.
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Prototype examples:

Example 6: k afield R =Kk[x,¥]xy); R =Kkl

Let 7 € xk[[x]] be transcendental over k(x); egT =¢e*—1fork =Q.
Define [ D = k(x, y.7) N (KIy][IxX]]) |
Fact: D = V[y](x,), where V = k(x, ) N Kk[[x]].
So Visa DVR, Dis an RLR.
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Prototype examples:

Example 6: k afield R =Kk[x,¥]xy); R =Kkl

Let 7 € xk[[x]] be transcendental over k(x); egT =¢e*—1fork =Q.
Define | D = k(x,y,7)N (k[y](y)[[x]]) .
Fact: D = V[y](x,), where V = k(x, ) N Kk[[x]].

So Visa DVR, Dis an RLR.

Example 7: k afield R =K[x,y,Z]lxyz2; R =Ky, Z]yz)[X]-
Similarly define | D' = k(x,y,z,7,0) N (kly, Z](, »[[x]]) , where

7,0 € XK[[x]] are alg. indep. over k(x), such as for k =Q, 0 = ¥ — 1,
T=e% —1.

Fact: D' = V'[y, Z](xy,z), where V' = k(x, 7, 0) N k[[x]].

So V'isa DVR, D’ is an RLR.
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Approximation Domains:

Definitions/notes 8: (with Setting 4, Construction 5 above).
For r € xR*, write 7 = )77, aix'. (non-unique)
For every n € N, the n'" endpiece 7, of 7 is:

-
o=y ax "

i=n+1

Note: 7 1= @np1X + 37 o @X "V = @pi1X + XTpiq.
For several elements, set 7 = 71,...,7s, and 7,, = T1n, T2n, - - - , Tsn-
Define Up := R[z,], Bn:= (Un)(mg.z,).
By Note, U, C Up 1 C Up[1/x], Bn C Byyq, and
Bnh[1/x] is a localization of Uy = R|[].
Define U := |J Up, and the Approximation Domain B

B::UBn.
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Construction Properties & Flatness Theorems:

New versions: R not necessarily Noetherian.
Use Setting 4, Construction 5 above.
Construction properties theorem 9:
@ A* = B* = R* (x-adic completions).
R/xR = B/xB = A/xA = R*/xR*.
B[1/x] is a localization of Uy = R[z].
If Risa UFD, so is B.
If Ris a regular Noetherian UFD, so is B[1/x].
If R is Noetherian, so is B[1/x].
If (R, m) is quasi-local, so are A, B, R*, with max ideals
my = mA, mg = mB, and mz = mA*.
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Construction Properties & Flatness Theorems:

New versions: R not necessarily Noetherian.
Use Setting 4, Construction 5 above.
Construction properties theorem 9:
@ A* = B* = R* (x-adic completions).
R/xR = B/xB = A/xA = R*/xR*.
B[1/x] is a localization of Uy = R[z].
If Risa UFD, so is B.
If Ris a regular Noetherian UFD, so is B[1/x].
If R is Noetherian, so is B[1/x].
If (R, m) is quasi-local, so are A, B, R*, with max ideals
my = mA, mg = mB, and mz = mA*.

Noetherian Flatness Theorem 10 TAE:
Q@ ¢ : Uy = R[r] — R*[1/x]is flat.
@ B is Noetherian.

@ B — R*is faithfully flat.
© Ais Noetherian and A = B.
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Prototypes are Approximation Domains

Proof for Prototype Example 6 above R = k[x, ], ), Where k, a field
characteristic k # 2, R* = k[y](,)[[x]], and 7 € xk[[x]]

D =k(x,y,7)NR".

k[x][r] < K[[x]][1/x] is flat (always true for an inclusion into a field).
= Kly] @« k[x][T] — K[y] ®« K[[x]][1/X] is flat.

= Kk[x,y|[r] — k[y][[x]][1/x] is flat, and

— Uy = R[] — R*[1/x]is flat.

= D = the associated Approximation Domain and D is Noetherian,
by Noetherian Flatness Theorem 10 (overkill). O

Similarly D’ in Prototype Example 7 equals its Approximation Domain
and is Noetherian.
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Nagata Example set-up

( Nagata constructs A as a nested union of localized polynomial rings;
here Ais an intersection. )
(Inside Prototype Example 6 above) R = K[x, y](x,), with characteristic
k # 2, R* = k[y][x]], and 7 € xk[[x]]. Then
oD = k(x,y,7) N R* = its Approximation Domain, eD is Noetherian
oy = R[7] — R*[1/x] is flat.

Nagata Example 11: Let f = (y + 7)? € xR*, z an indeterminate.

Define | A :
Then:
prime in A,

k(x, y, f) N kYl ]l

*A has unique max ideal ma = (X, y)A,
oA = K[[x, y1].

E:=

AlZ]

(22 - NAZ]

t)

e The element f is
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The Nagata Example A is a 2-dim RLR

Here R = K[x, y](x,y), Characteristic k # 2, R* = k[y],[[X]],
A:= k(x,y,f) N K[yl)lix])-
Proof: Consider the diagram B*[1/x]
=t
¥
R < Up=R[f] — T =Rl
Thering T = R[r] is a free R[f]-module with free basis (1, y + 7).
. pis flat.
Since 7 defines the Prototype D, v : R[r] — R*[1/x] is flat.

Now a =9 op = «is flat.

Noetherian Flatness Theorem 10 —> A is Noetherian (and = its
Approximation Domain). Since A = B — k|[[x, y]] is a flat local
homomorphism, A is a RLR [Matsumura, “Comm Rings", Thm 23.7].

dim A = 2, since mg = (X, y)A. O
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Properties of Nagata example

Here R = K[x, y]x,y), char k # 2, R* = k[y],[[x]],
A= k(x,y, ) N Kl lIX]], A= (y +7)2.

Definition: A Noetherian ring R is Nagata if e VP € Spec R and

v finite extension field L of Q(R/P), R/PL (integral closure of R/P in
L) is finitely generated as a module over R/P.

Claim: Ais not a Nagata ring.

Proof: A= (y +7)° = m = 7\/f2\ has a nonzero nilpotent
element, and dim(A/fA) = 1. . the integral closure A/fA is not finitely
generated over A/fA by

Theorem: [Nagata “Local rings”, Ex. 1, p. 22] For R a 1-dim Noeth.
local domain, R (integral closure of R) is a finitely generated R-module
<= R is “analytically unramified" (IA%’ has no nilpotent elements).

.. Ais not a Nagata ring.
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What about E?

Here R = K[x, y](x,y), Where k, a field characteristic k # 2,

R* = k[y](l[X]], and 7 € xk[[x]]. Let f = (y + 7)? € XR*, and let z be
an indeterminate. )

A= k(x,y, N KYplixl]  E:= A5k,

o E = integrally closed Noetherian local domain.

o E is “analytically reducible" (E is not an integral domain), because

A _ 22 T _ k[[X,y,Z]] i i
fA=(y+7)°A = E = oo = not integral domain.

This was important —the first such example (about 1956).
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Christel's Example

(Originally A was constructed as a direct limit.)

Christel's Example: (Inside D’ of Prototype Example 7)
R = Kk[x,¥,Z](xy.2), X,¥,Z = indeterminates over k = field of
characteristic 0, o, 7 € xk[[x]] alg. indep. over k(x).

Let f:=(y + o)(z + 1) € xKk[[x]]). Define
A = k(x.y.z.f) 0 (KLY, Zl(y,2[Ix1]).

e The completion A of Ais k[[x,y,z]]. If Ais Noetherian, then Ais a
3-dimensional regular local domain.

We show A is Noetherian on the next slide.
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Christel's Example A is Noetherian

Here R = K[x, y, Z](xy,z), Characteristic k = 0, R* = K[y, Z]y »[[X]],
o,7 € xK[[X]], f:=(y +o)(z+7).A:= k(x,y,{)N K[y, 2]y [[x]]-
Consider the diagram B*[1/x]
a:=1p
(4
R < Up = R[f] ——T = Ro, 7]
Fact: The ring T = RJo, 7] is flat over R([f], since the coefficients of
f=yz+o0z+ 1y + ot as a polynomial in o, 7 generate R.
. pis flat.
Since o, 7 defines the Prototype D', ¢ : R[o, 7] — R*[1/x] is flat.

Now a =9 op = «isflat.
Noetherian Flatness Theorem 10 = A is Noetherian (and = its
Approximation Domain). O
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Excellence

Definitions: e For f : A — B a ring homomorphism of Noetherian rings,
and P € Spec A. The fiber over P with respect to f is geometrically
regular if F = finite extension field of Q(A/P) =— B®aFisa
Noetherian regular ring (every localization is an RLR).

e Let (R, m) = Noetherian local ring, R = m-adic completion of R.

¢ A Noetherian ring A is excellent if
(i) Ais universally catenary,
(i) For every prime ideal P of A, the map from Ap to its PAp-adic
completion is regular (has geometrically regular fibers).
(iii) For every finitely generated A-algebra B, the set
Reg(B) = {P € Spec B | Bp is an RLR}
is an open subset of Spec B.

Remarks: oZ, all fields and all complete Noetherian local rings are
excellent. e All Dedekind domains of characteristic zero are excellent.
e Every excellent ring is a Nagata ring by [Matsumura “Comm. Alg",
Thm. 78, p. 257].
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Properties of Christel’'s Example

Claim: Christel's Example A is a Nagata domain that is not excellent.

Proof: o(y — o0,z — 7)2\ = height-two prime ideal of A. Fact:
(y—o0,z—1)ANA=(y —o)(z—71)A. .. (y —o)(z — 7)A € Spec A.
But A(yfa)ysz)A);‘/(y —o)(z— T)A(yig)ng)z is a non-regular formal
fiber of A. ("formal"="fiber of the map to A".) .-. Ais not excellent.

e Since k C A & k characteristic zero, A is a Nagata domain if

VP c Spec A, A/P is a finite A/P-module by

Theorem [Matsumura, “Comm. Rings", p. 262] Let R be an integrally
closed Noetherian integral domain with field of fractions K. If L/K is a
finite separable algebraic field extension, then the integral closure of R
in L is a finite R-module. If R has characteristic zero, then the integral
closure of R in a finite algebraic field extension is a finite R-module.

e Since the formal fibers of A are reduced, the integral closure of A/P
is a finite A/P-module, by Theorem used for the Nagata example. [
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d-coefficient Theorem:
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d-coefficient Theorem:

d-coeff. Theorem: [HRW]| Let d > 2, R := K[X, y1, ... Yal(x.y1,...ya)-
Then 38| RC BC R* = Klyi. ..., ydl)llx]] € R = k[lx,y1.....ydll,
and B has a prime ideal Q := (y1)y, ..., Y¥q)R* N B such that:

@ B = anon-Noetherian local UFD, maximal ideal mg = mpB,
dim(B) = d + 2.

@ The mg-adic completion B = k[[x,y]], dim(B)=d + 1.

© B[1/x] = a Noetherian regular UFD; B/xB = an RLR, dimd;
VP € SpecB, P #+mg — Bp =an RLR.
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d-coefficient Theorem:

d-coeff. Theorem: [HRW]| Let d > 2, R := K[X, y1, ... Yal(x.y1,...ya)-
Then 38| RC BC R* = Klyi. ..., ydl)llx]] € R = k[lx,y1.....ydll,
and B has a prime ideal Q := (y1)y, ..., Y¥q)R* N B such that:

@ B = anon-Noetherian local UFD, maximal ideal mg = mpB,
dim(B) = d + 2.

@ The mg-adic completion B = k[[x,y]], dim(B)=d + 1.

© B[1/x] = a Noetherian regular UFD; B/xB = an RLR, dimd;
VP € SpecB, P #+mg — Bp =an RLR.

0 Q:U?;O:1 Qn; Qn: (}’1aY2>---7Yda fn)Bna Q not flnltely
generated. {Q} ={P € SpecB| htP=d+ 1}. (f; = later.)
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d-coefficient Theorem:

d-coeff. Theorem: [HRW]| Let d > 2, R := K[X, y1, ... Yal(x.y1,...ya)-
Then 38| RC BC R* = Klyi. ..., ydl)llx]] € R = k[lx,y1.....ydll,
and B has a prime ideal Q := (y1)y, ..., Y¥q)R* N B such that:

@ B = anon-Noetherian local UFD, maximal ideal mg = mpB,
dim(B) = d + 2.

@ The mg-adic completion B = k[[x,y]], dim(B)=d + 1.

© B[1/x] = a Noetherian regular UFD; B/xB = an RLR, dimd;
VP € SpecB, P #+mg — Bp =an RLR.

0 Q:U?;O:1 Qn; Qn: (}’1aY2>---7Yda fn)an Q not flnltely
generated. {Q} ={P € SpecB| htP=d+ 1}. (f; = later.)

@ C = asaturated chain in Spec B = length (C) =d + 1 or d + 2;
3 such C with length (C) = d + 1,d + 2; .. B not catenary,
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Spec B, for the 1-coeff example, B C k[[x, y]]

Q:=(y,{fi})B

— N\

xBe y(y+r)Be yB € | Type llI

Spec B
“Type I" =“B/P is Noetherian";  “Type llI"= “P not contracted."
“Type II"=“P = P*n B, 3P* € Spec(k|[x, y]]."
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‘yz7" Example Theorem: 3B | k[X, y, Z](xy.z) € B C K[[x, y, Z]] and:

@ B = 4-dim local UFD, max ideal mg = (x, y, z)B, B = K[[x, v, Z]].

@ BJ[1/x] = Noetherian regular UFD, dim(B/xB) = 2. If P € Spec B,

Bp an RLR <= Bpis Noetherian <= (yz,x)R*NB ¢ P.
- htP<2 — BpisanRLR.

Q B(x,y)s and B(x , g are 3-dim non-Noetherian local UFDs.
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yzT Theorem, cont

yzT Question: What ideals of B are finite generated? Partial answer:

@ Every height-one prime ideal is principal.

Q Q :=(y,{fh}) B=yR*NnB, Q. :=(z,{f})B=2zR*NB,
Q; = (y,z,{fn})B = (y,z)R* n B are prime ideals, not finitely
generated; htQ; =htQ, =2, htQ; =3.

© The prime ideals (x, y)B and (x, z) B have height three.

© If Pis a height-two prime ideal of B that contains an element of
the form y + g(z, x) or z + h(x, y), where
0 # g(z,x) € (x,2)k[x,z] and 0 # h(x,y) € (x, y)Kk[x, y], then P
is generated by two elements.

@ If ais an ideal of B that contains x + yzg(y, z), for some
polynomial g(y, z) € K[y, z], then a is finitely generated.

© 3co many ht-3 non-finitely generated prime ideals, e.g.
Qi = (y —ax',z,{f,})B, where i ¢ Nand a € k.

Sylvia Wiegand (work of W. Heinzer, C. Rotthaus, S. Wiegand ) non-Noeth



Part of Spec B, for the yzr example, B C k[[x, y, Z]]
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THANKS!
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