Building integral domains inside power series rings

Sylvia Wiegand (work of W. Heinzer, C. Rotthaus, S. Wiegand)

Department of Mathematics University of Nebraska–Lincoln

Tehran, 2016

Question1: [Judy Sally, 1990] What rings lie between a ring and its field of fractions?

Question 2: [inspired by S. Abhyankar's work] What rings lie between a ring and a power series ring containing that ring? Such as, between $\mathbb{Q}[x, y]_{(x,y)}$ and $\mathbb{Q}[y]_{(y)}[[x]]$, for \mathbb{Q} the field of rational numbers and x, y indeterminates over k.

•∃ uncountably many $\tau_i \in \mathbb{Q}[y]_{(y)}[[x]]$, that are algebraically independent over $\mathbb{Q}(x, y)$ [Abhyankar, PAMS, 1956]. (Even analytically indep.!)

• In our work we show \exists a wide variety of integral domains fitting Questions 1 and 2. See book at:

[Reference: http://www.math.unl.edu/ swiegand1/2016Aprpower.pdf] (April 2016 version—May be updated September 2016.) Over the past eighty years, important examples of Noetherian integral domains have been constructed by:

Over the past eighty years, important examples of Noetherian integral domains have been constructed by:

Basic Construction 3: $A := L \cap S$,

, where

- R = a typical Noetherian integral domain R, such as, $k[x, y]_{(x,y)}$, k a field, x, y indeterminates over k,
- S = a homomorphic image of a power series ring over R,

Over the past eighty years, important examples of Noetherian integral domains have been constructed by:

Basic Construction 3: $A := L \cap S$, where

- R = a typical Noetherian integral domain R, such as,
 - $k[x, y]_{(x,y)}$, k a field, x, y indeterminates over k,
- S = a homomorphic image of a power series ring over R,
- L = a field with $R \subseteq L \subseteq Q(S)$, the total quotient ring of S.

Basic Construction 3 yields many unusual Noetherian or non-Noetherian extension rings *A* of *R*.

This talk: Classical examples of Nagata and Rotthaus simplified, streamlined by Basic Construction 1 & techniques of the book.

Basic Construction 3 is universal in the sense that

For EVERY (A, n) = Noetherian local domain with field of fractions L, if

- $\exists k = a$ "coefficient field" for $A \ (k \cong A/\mathfrak{n}, k \subseteq A)$ and
- L finitely generated over k,

then $\exists (R, \mathfrak{m})$ such that $\bullet A = L \cap S$, as in Basic Construction 1, where

- $S = \widehat{R}/I$, I = ideal of the m-adic completion \widehat{R} ,
- (R, \mathfrak{m}) a Noetherian local domain
- k = a coefficient field for R,
- L = is the field of fractions of R and
- R is "essentially finitely generated over k"
 - (R = (a fin. gen k-algebra), localized).

Note: If time, we may show this universality property.

Two goals of book:

Goal 1: Construct new non-Noetherian integral domains to illustrate recent advances in ideal theory, such as examples featured in Ardibil.

Goal 2: Construct new examples of Noetherian rings,

• Continue tradition of [1930s] Akizuki, Schmidt, (on integral closure)

[1950s] Nagata * (2-dim RLR, not Nagata, not excellent);

[1970-1990s]. Brodmann & Rotthaus, Ferrand & Raynaud, Heitmann, Lequain, Nishimura, Ogoma (normal Noetherian local domain but not universally catenary), Weston and others.

Christel Rotthaus * (Nagata domain that is not excellent)

(In book, we analyze & shorten some of these.)

Two goals of book:

Goal 1: Construct new non-Noetherian integral domains to illustrate recent advances in ideal theory, such as examples featured in Ardibil.

Goal 2: Construct new examples of Noetherian rings,

• Continue tradition of [1930s] Akizuki, Schmidt, (on integral closure)

[1950s] Nagata * (2-dim RLR, not Nagata, not excellent);

[1970-1990s]. Brodmann & Rotthaus, Ferrand & Raynaud, Heitmann, Lequain, Nishimura, Ogoma (normal Noetherian local domain but not universally catenary), Weston and others.

Christel Rotthaus * (Nagata domain that is not excellent) (In book, we analyze & shorten some of these.)

• New Noetherian examples in book include (1) 3-dim Noetherian RLR (A, \mathfrak{n}) with a prime ideal *P* and \mathfrak{n} -adic completion $\hat{\mathfrak{n}}$, such that $P\hat{A}$ is not integrally closed. [answers question of C. Huneke]

Two goals of book:

Goal 1: Construct new non-Noetherian integral domains to illustrate recent advances in ideal theory, such as examples featured in Ardibil.

Goal 2: Construct new examples of Noetherian rings,

• Continue tradition of [1930s] Akizuki, Schmidt, (on integral closure)

[1950s] Nagata * (2-dim RLR, not Nagata, not excellent);

[1970-1990s]. Brodmann & Rotthaus, Ferrand & Raynaud, Heitmann, Lequain, Nishimura, Ogoma (normal Noetherian local domain but not universally catenary), Weston and others.

Christel Rotthaus * (Nagata domain that is not excellent) (In book, we analyze & shorten some of these.)

• New Noetherian examples in book include (1) 3-dim Noetherian RLR (A, \mathfrak{n}) with a prime ideal *P* and \mathfrak{n} -adic completion $\hat{\mathfrak{n}}$, such that $P\hat{A}$ is not integrally closed. [answers question of C. Huneke]

(2) $\forall n \geq 2$, a catenary Noetherian local domain with geometrically regular formal fibers that is not universally catenary.

- Today: Discuss the Nagata and Christel examples:
- Nagata Example: A 2-dim RLR, not Nagata.
- Christel Example: A Nagata domain that is not excellent.
- In the process, Discuss/define "Nagata ring" & "excellent ring".
 - Give simpler form of Basic Construction 3, techniques & theorems used.

(A recent version, *R* need not be Noetherian, but "close".)

Setting 4: Let *R* be an integral domain, $x \in R, x \neq 0$, *x* a nonunit. Let $R^* = x$ -adic completion= inverse limit ($R/(x^n R)$) as $n \to \infty$.

(A recent version, *R* need not be Noetherian, but "close".)

Setting 4: Let *R* be an integral domain, $x \in R, x \neq 0$, *x* a nonunit. Let $R^* = x$ -adic completion= inverse limit $(R/(x^n R))$ as $n \to \infty$.

Assume • $\bigcap_{n=1}^{\infty} x^n R = (0)$

• R* is Noetherian.

(A recent version, R need not be Noetherian, but "close".)

Setting 4: Let R be an integral domain, $x \in R, x \neq 0, x$ a nonunit. Let $R^* = x$ -adic completion= inverse limit $(R/(x^n R))$ as $n \to \infty$.

- Assume $\bigcap_{n=1}^{\infty} x^n R = (0)$. x is regular in R^* . • R* is Noetherian

Notes: (1) $R^* \sim$ "power series in *x* over $R^{"}$ — expressions not unique! (2) For (R, \mathfrak{m}) local Noetherian, $\widehat{R} = \mathfrak{m}$ -adic completion= inverse limit $(R/(\mathfrak{m}^n R))$ as $n \to \infty \sim$ "power series" in more elements.)

(A recent version, *R* need not be Noetherian, but "close".)

Setting 4: Let *R* be an integral domain, $x \in R, x \neq 0$, *x* a nonunit. Let $R^* = x$ -adic completion= inverse limit $(R/(x^n R))$ as $n \to \infty$.

Assume • $\bigcap_{n=1}^{\infty} x^n R = (0)$. • x is regular in R^* . • R^* is Noetherian.

Notes: (1) $R^* \sim$ "power series in *x* over R^{-} — expressions not unique! (2) For (R, \mathfrak{m}) local Noetherian, $\widehat{R} = \mathfrak{m}$ -adic completion= inverse limit $(R/(\mathfrak{m}^n R))$ as $n \to \infty \sim$ "power series" in more elements.)

Construction 5: Let $\underline{\tau} = \tau_1, \tau_2, \dots, \tau_s \in xR^*$ be algebraically independent over R.

Assume • The elements of $R[\underline{\tau}]$ are regular in R^* .

(A recent version, *R* need not be Noetherian, but "close".)

Setting 4: Let *R* be an integral domain, $x \in R, x \neq 0$, *x* a nonunit. Let $R^* = x$ -adic completion= inverse limit $(R/(x^n R))$ as $n \to \infty$.

Assume • $\bigcap_{n=1}^{\infty} x^n R = (0)$. • x is regular in R^* . • R^* is Noetherian.

Notes: (1) $R^* \sim$ "power series in *x* over $R^{"}$ — expressions not unique! (2) For (R, \mathfrak{m}) local Noetherian, $\widehat{R} = \mathfrak{m}$ -adic completion= inverse limit $(R/(\mathfrak{m}^n R))$ as $n \to \infty \sim$ "power series" in more elements.)

Construction 5: Let $\underline{\tau} = \tau_1, \tau_2, \dots, \tau_s \in xR^*$ be algebraically independent over R.

Assume • The elements of $R[\underline{\tau}]$ are regular in R^* .

Define the Intersection Domain:

$$A = \mathcal{Q}(R[\underline{\tau}]) \cap R^*.$$

Prototype examples:

Example 6: *k* a field $R = k[x, y]_{(x,y)}$; $R^* = k[y]_{(y)}[[x]]$. Let $\tau \in xk[[x]]$ be transcendental over k(x); eg $\tau = e^x - 1$ for $k = \mathbb{Q}$.

Prototype examples:

Example 6: *k* a field $R = k[x, y]_{(x,y)}$; $R^* = k[y]_{(y)}[[x]]$. Let $\tau \in xk[[x]]$ be transcendental over k(x); eg $\tau = e^x - 1$ for $k = \mathbb{Q}$. Define $D = k(x, y, \tau) \cap (k[y]_{(y)}[[x]])$. Fact: $D = V[y]_{(x,y)}$, where $V = k(x, \tau) \cap k[[x]]$. So *V* is a DVR, *D* is an RLR.

Prototype examples:

Example 6: k a field $R = k[x, y]_{(x,y)}; R^* = k[y]_{(y)}[[x]].$ Let $\tau \in xk[[x]]$ be transcendental over k(x); eq $\tau = e^x - 1$ for $k = \mathbb{O}$. Define $| D = k(x, y, \tau) \cap (k[y]_{(v)}[[x]]) |$. Fact: $D = V[y]_{(x,y)}$, where $V = k(x, \tau) \cap k[[x]]$. So V is a DVR, D is an RLR. Example 7: k a field $R = k[x, y, z]_{(x,y,z)}; R^* = k[y, z]_{(y,z,)}[[x]].$ Similarly define $D' = k(x, y, z, \tau, \sigma) \cap (k[y, z]_{(y,z)}[[x]])$, where $\tau, \sigma \in xk[[x]]$ are alg. indep. over k(x), such as for $k = \mathbb{Q}, \sigma = e^x - 1$, $\tau = e^{x^2} - 1$ Fact: $D' = V'[y, z]_{(x, v, z)}$, where $V' = k(x, \tau, \sigma) \cap k[[x]]$. So V' is a DVR, D' is an RLR.

Approximation Domains:

Definitions/notes 8: (with Setting 4, Construction 5 above). For $\tau \in xR^*$, write $\tau = \sum_{i=1}^{\infty} a_i x^i$. (non-unique) For every $n \in \mathbb{N}$, the *n*th endpiece τ_n of τ is:

$$\tau_n := \sum_{i=n+1}^{\infty} a_i x^{i-n}.$$

Note: $\tau_n := a_{n+1}x + \sum_{i=n+2}^{\infty} a_i x^{i-n-1} = a_{n+1}x + x\tau_{n+1}$. For several elements, set $\underline{\tau} = \tau_1, \dots, \tau_s$, and $\underline{\tau}_n = \tau_{1n}, \tau_{2n}, \dots, \tau_{sn}$. Define $U_n := R[\underline{\tau}_n], \quad B_n := (U_n)_{(\mathfrak{m}_R, \underline{\tau}_n)}$. By Note, $U_n \subseteq U_{n+1} \subseteq U_n[1/x], \quad B_n \subseteq B_{n+1}$, and $B_n[1/x]$ is a localization of $U_0 = R[\underline{\tau}]$.

Define $U := \bigcup U_n$, and the Approximation Domain *B*

$$B:=\bigcup B_n.$$

Construction Properties & Flatness Theorems:

New versions: *R* not necessarily Noetherian. Use Setting 4, Construction 5 above.

Construction properties theorem 9:

- $A^* = B^* = R^*$ (x-adic completions).
- $R/xR = B/xB = A/xA = R^*/xR^*$.
- B[1/x] is a localization of $U_0 = R[\underline{\tau}]$.
- If R is a UFD, so is B.
- If *R* is a regular Noetherian UFD, so is B[1/x].
- If *R* is Noetherian, so is B[1/x].
- If (R, \mathfrak{m}) is quasi-local, so are A, B, R^* , with max ideals $\mathfrak{m}_A = \mathfrak{m}A, \mathfrak{m}_B = \mathfrak{m}B$, and $\mathfrak{m}_R^* = \mathfrak{m}R^*$.

Construction Properties & Flatness Theorems:

New versions: *R* not necessarily Noetherian. Use Setting 4, Construction 5 above.

Construction properties theorem 9:

- $A^* = B^* = R^*$ (x-adic completions).
- $R/xR = B/xB = A/xA = R^*/xR^*$.
- B[1/x] is a localization of $U_0 = R[\underline{\tau}]$.
- If R is a UFD, so is B.
- If *R* is a regular Noetherian UFD, so is B[1/x].
- If *R* is Noetherian, so is B[1/x].
- If (R, m) is quasi-local, so are A, B, R*, with max ideals
 m_A = mA, m_B = mB, and m^{*}_R = mR*.

Noetherian Flatness Theorem 10 TAE:

•
$$\psi: U_0 = R[\underline{\tau}] \hookrightarrow R^*[1/x]$$
 is flat.

- B is Noetherian.
- **3** $B \hookrightarrow R^*$ is faithfully flat.
- A is Noetherian and A = B.

Proof for Prototype Example 6 above $R = k[x, y]_{(x,y)}$, where k, a field characteristic $k \neq 2$, $R^* = k[y]_{(y)}[[x]]$, and $\tau \in xk[[x]]$ $D = k(x, y, \tau) \cap R^*$.

 $k[x][\tau] \hookrightarrow k[[x]][1/x]$ is flat (always true for an inclusion into a field).

- $\implies k[y] \otimes_k k[x][\tau] \hookrightarrow k[y] \otimes_k k[[x]][1/x]$ is flat.
- $\implies k[x,y][\tau] \hookrightarrow k[y][[x]][1/x]$ is flat, and
- $\implies U_0 = R[\tau] \hookrightarrow R^*[1/x]$ is flat.

 \implies *D* = the associated Approximation Domain and *D* is Noetherian, by Noetherian Flatness Theorem 10 (overkill).

Similarly D' in Prototype Example 7 equals its Approximation Domain and is Noetherian.

(Nagata constructs *A* as a nested union of localized polynomial rings; here *A* is an intersection.)

(Inside Prototype Example 6 above) $R = k[x, y]_{(x,y)}$, with characteristic $k \neq 2$, $R^* = k[y]_{(y)}[[x]]$, and $\tau \in xk[[x]]$. Then • $D = k(x, y, \tau) \cap R^*$ = its Approximation Domain, •D is Noetherian • $U_0 = R[\tau] \hookrightarrow R^*[1/x]$ is flat.

Nagata Example 11: Let $f = (y + \tau)^2 \in x \mathbb{R}^*$, z an indeterminate.

Define $A := k(x, y, f) \cap k[y]_{(y)}[[x]]$

$$E:=\frac{A[z]}{(z^2-f)A[z]},$$

Then: •*A* has unique max ideal $\mathfrak{m}_A = (x, y)A$, • The element *f* is prime in *A*, • $\widehat{A} = k[[x, y]]$.

The Nagata Example A is a 2-dim RLR

Here $R = k[x, y]_{(x,y)}$, characteristic $k \neq 2$, $R^* = k[y]_{(y)}[[x]]$, $A := k(x, y, f) \cap k[y]_{(y)}[[x]]$.

Proof: Consider the diagram

$$R \hookrightarrow U_0 = R[f] \xrightarrow{\varphi} T = R[\tau]$$

The ring $T = R[\tau]$ is a free R[f]-module with free basis $\langle 1, y + \tau \rangle$. $\therefore \varphi$ is flat.

Since τ defines the Prototype D, $\psi : R[\tau] \hookrightarrow R^*[1/x]$ is flat.

Now $\alpha = \psi \circ \varphi \implies \alpha$ is flat.

Noetherian Flatness Theorem 10 \implies *A* is Noetherian (and = its Approximation Domain). Since $A = B \hookrightarrow k[[x, y]]$ is a flat local homomorphism, *A* is a RLR [Matsumura, "Comm Rings", Thm 23.7]. dim A = 2, since $\mathfrak{m}_A = (x, y)A$.

Here
$$R = k[x, y]_{(x,y)}$$
, char $k \neq 2$, $R^* = k[y]_{(y)}[[x]]$,
 $A := k(x, y, f) \cap k[y]_{(y)}[[x]]$, $fA = (y + \tau)^2$.

Definition: A Noetherian ring *R* is Nagata if $\bullet \forall P \in \text{Spec } R$ and \forall finite extension field *L* of Q(R/P), $\overline{R/P}^L$ (integral closure of R/P in *L*) is finitely generated as a module over R/P.

Claim: A is not a Nagata ring.

Proof: $fA = (y + \tau)^2 \implies \widehat{A/fA} = \widehat{A}/\widehat{fA}$ has a nonzero nilpotent element, and dim(A/fA) = 1. \therefore the integral closure $\overline{A/fA}$ is not finitely generated over A/fA by

Theorem: [Nagata "Local rings", Ex. 1, p. 22] For *R* a 1-dim Noeth. local domain, \overline{R} (integral closure of *R*) is a finitely generated *R*-module $\iff R$ is "analytically unramified" (\widehat{R} has no nilpotent elements).

 \therefore *A* is not a Nagata ring.

Here $R = k[x, y]_{(x,y)}$, where k, a field characteristic $k \neq 2$, $R^* = k[y]_{(y)}[[x]]$, and $\tau \in xk[[x]]$. Let $f = (y + \tau)^2 \in xR^*$, and let z be an indeterminate.

 $A:=k(x,y,f)\cap k[y]_{(y)}[[x]]$ $E:=rac{A[z]}{(z^2-f)A[z]},$

•E = integrally closed Noetherian local domain.

•*E* is "analytically reducible" (\hat{E} is not an integral domain), because $f\hat{A} = (y + \tau)^2 \hat{A} \implies \hat{E} = \frac{k[[x,y,z]]}{(z-(y+\tau))(z+(y+\tau))} \implies$ not integral domain.

This was important —the first such example (about 1956).

(Originally A was constructed as a direct limit.)

Christel's Example: (Inside *D*' of Prototype Example 7) $R = k[x, y, z]_{(x,y,z)}, x, y, z =$ indeterminates over k = field of characteristic 0, $\sigma, \tau \in xk[[x]]$ alg. indep. over k(x).

Let
$$f := (y + \sigma)(z + \tau) \in xk[[x]])$$
. Define
$$A := k(x, y, z, f) \cap (k[y, z]_{(y,z)}[[x]]).$$

• The completion \widehat{A} of A is k[[x, y, z]]. If A is Noetherian, then A is a 3-dimensional regular local domain.

We show A is Noetherian on the next slide.

Christel's Example A is Noetherian

Here $R = k[x, y, z]_{(x,y,z)}$, characteristic k = 0, $R^* = k[y, z]_{(y,z)}[[x]]$, $\sigma, \tau \in xk[[x]]$, $f := (y + \sigma)(z + \tau)$. $A := k(x, y, f) \cap k[y, z]_{(y,z)}[[x]]$.

Consider the diagram

Fact: The ring $T = R[\sigma, \tau]$ is flat over R[f], since the coefficients of $f = yz + \sigma z + \tau y + \sigma \tau$ as a polynomial in σ, τ generate R. $\therefore \varphi$ is flat.

Since σ, τ defines the Prototype $D', \psi : R[\sigma, \tau] \hookrightarrow R^*[1/x]$ is flat. Now $\alpha = \psi \circ \varphi \implies \alpha$ is flat. Noetherian Flatness Theorem 10 \implies A is Noetherian (and = its Approximation Domain).

Excellence

Definitions: • For $f : A \to B$ a ring homomorphism of Noetherian rings, and $P \in \text{Spec } A$. The fiber over P with respect to f is geometrically regular if F = finite extension field of $\mathcal{Q}(A/P) \implies B \otimes_A F$ is a Noetherian regular ring (every localization is an RLR).

- Let (R, \mathfrak{m}) = Noetherian local ring, $\widehat{R} = \mathfrak{m}$ -adic completion of R.
- A Noetherian ring A is excellent if

(i) A is universally catenary,

(ii) For every prime ideal *P* of *A*, the map from A_P to its PA_P -adic completion is regular (has geometrically regular fibers).

(iii) For every finitely generated *A*-algebra *B*, the set $\text{Reg}(B) = \{P \in \text{Spec } B \mid B_P \text{ is an RLR}\}$ is an open subset of Spec *B*.

Remarks: •ℤ, all fields and all complete Noetherian local rings are excellent. • All Dedekind domains of characteristic zero are excellent.

• Every excellent ring is a Nagata ring by [Matsumura "Comm. Alg", Thm. 78, p. 257].

Properties of Christel's Example

Claim: Christel's Example A is a Nagata domain that is not excellent.

Proof: $\bullet(y - \sigma, z - \tau)\widehat{A}$ = height-two prime ideal of *A*. Fact: $(y - \sigma, z - \tau)\widehat{A} \cap A = (y - \sigma)(z - \tau)A$. $\therefore (y - \sigma)(z - \tau)A \in \text{Spec }A$. But $\widehat{A}_{(y-\sigma),z-\tau)A}\widehat{A}/(y - \sigma)(z - \tau)\widehat{A}_{(y-\sigma),z-\tau)A}$ is a non-regular formal fiber of *A*. ("formal"="fiber of the map to \widehat{A} ".) \therefore *A* is not excellent.

• Since $k \subseteq A \& k$ characteristic zero, A is a Nagata domain if $\forall P \in \text{Spec } A, \overline{A/P}$ is a finite A/P-module by

Theorem [Matsumura, "Comm. Rings", p. 262] Let *R* be an integrally closed Noetherian integral domain with field of fractions *K*. If L/K is a finite separable algebraic field extension, then the integral closure of *R* in *L* is a finite *R*-module. If *R* has characteristic zero, then the integral closure of *R* in a finite algebraic field extension is a finite *R*-module.

• Since the formal fibers of *A* are reduced, the integral closure of A/P is a finite A/P-module, by Theorem used for the Nagata example.

Sylvia Wiegand (work of W. Heinzer, C. Rotthaus, S. Wiegand) non-Noeth

d-coeff. Theorem: [HRW] Let $d \ge 2$, $R := k[x, y_1, \dots, y_d]_{(x, y_1, \dots, y_d)}$. Then $\exists B \mid R \subseteq B \subseteq R^* := k[y_1, \dots, y_d]_{(-)}[[x]] \subseteq \widehat{R} := k[[x, y_1, \dots, y_d]]$, and *B* has a prime ideal $Q := (y_1y_2, \dots, y_d)R^* \cap B$ such that:

• B = a non-Noetherian local UFD, maximal ideal $\mathfrak{m}_B = \mathfrak{m}_R B$, dim(B) = d + 2.

- 2 The \mathfrak{m}_B -adic completion $\widehat{B} = k[[x, y]], \quad \dim(\widehat{B}) = d + 1.$
- Solution 3
 Solution 4: Solution 1: Solution 4: Solutio

d-coeff. Theorem: [HRW] Let $d \ge 2$, $R := k[x, y_1, \dots, y_d]_{(x, y_1, \dots, y_d)}$. Then $\exists B \mid R \subseteq B \subseteq R^* := k[y_1, \dots, y_d]_{(-)}[[x]] \subseteq \widehat{R} := k[[x, y_1, \dots, y_d]]$, and *B* has a prime ideal $Q := (y_1y_2, \dots, y_d)R^* \cap B$ such that:

- B = a non-Noetherian local UFD, maximal ideal $\mathfrak{m}_B = \mathfrak{m}_B B$, dim(B) = d + 2.
- 2 The \mathfrak{m}_B -adic completion $\widehat{B} = k[[x, y]]$, dim $(\widehat{B}) = d + 1$.
- ③ B[1/x] = a Noetherian regular UFD; B/xB = an RLR, dim d; ∀ $P \in$ Spec $B, P \neq \mathfrak{m}_B \implies B_P =$ an RLR.
- $Q = \bigcup_{n=1}^{\infty} Q_n, \quad Q_n = (y_1, y_2, \dots, y_d, f_n)B_n; \quad Q \text{ not finitely} \\ \text{generated.} \quad \{Q\} = \{P \in \operatorname{Spec} B \mid \text{ht } P = d+1\}. \ (f_n = \text{later.})$

d-coeff. Theorem: [HRW] Let $d \ge 2$, $R := k[x, y_1, \dots, y_d]_{(x, y_1, \dots, y_d)}$. Then $\exists B \mid R \subseteq B \subseteq R^* := k[y_1, \dots, y_d]_{(-)}[[x]] \subseteq \widehat{R} := k[[x, y_1, \dots, y_d]]$, and *B* has a prime ideal $Q := (y_1y_2, \dots, y_d)R^* \cap B$ such that:

- B = a non-Noetherian local UFD, maximal ideal $\mathfrak{m}_B = \mathfrak{m}_R B$, dim(B) = d + 2.
- 2 The \mathfrak{m}_B -adic completion $\widehat{B} = k[[x, y]], \quad \dim(\widehat{B}) = d + 1.$
- ③ B[1/x] = a Noetherian regular UFD; B/xB = an RLR, dim *d*; ∀*P* ∈ Spec *B*, *P* ≠ $\mathfrak{m}_B \implies B_P =$ an RLR.
- $Q = \bigcup_{n=1}^{\infty} Q_n, \quad Q_n = (y_1, y_2, \dots, y_d, f_n)B_n; \quad Q \text{ not finitely} \\ \text{generated.} \quad \{Q\} = \{P \in \operatorname{Spec} B \mid \text{ht } P = d+1\}. \ (f_n = \text{later.})$
- C = a saturated chain in Spec B \implies length (C) = d + 1 or d + 2; ∃ such C with length (C) = d + 1, d + 2; \therefore B not catenary,

Spec *B*, for the 1-coeff example, $B \subset k[[x, y]]$

" $yz\tau$ " Example Theorem: $\exists B \mid k[x, y, z]_{(x,y,z)} \subseteq B \subseteq k[[x, y, z]]$ and:

1 B = 4-dim local UFD, max ideal $\mathfrak{m}_B = (x, y, z)B$, $\widehat{B} = k[[x, y, z]]$.

- ② B[1/x] = Noetherian regular UFD, dim(B/xB) = 2. If $P \in$ Spec B, B_P an RLR $\iff B_P$ is Noetherian $\iff (yz, x)R^* \cap B \nsubseteq P$. ∴ ht $P \le 2 \implies B_P$ is an RLR.
- Solution $B_{(x,y)B}$ and $B_{(x,z)B}$ are 3-dim non-Noetherian local UFDs.

$yz\tau$ Theorem, cont

yz τ Question: What ideals of *B* are finite generated? Partial answer:

- Every height-one prime ideal is principal.
- ② $Q_1 := (y, \{f_n\})B = yR^* \cap B,$ $Q_2 := (z, \{f_n\})B = zR^* \cap B,$ $Q_3 := (y, z, \{f_n\})B = (y, z)R^* \cap B$ are prime ideals, not finitely generated; ht Q_1 = ht Q_2 = 2, ht Q_3 = 3.
- Solution The prime ideals (x, y)B and (x, z)B have height three.
- If P is a height-two prime ideal of B that contains an element of the form y + g(z, x) or z + h(x, y), where 0 ≠ g(z, x) ∈ (x, z)k[x, z] and 0 ≠ h(x, y) ∈ (x, y)k[x, y], then P is generated by two elements.
- So If a is an ideal of *B* that contains x + yzg(y, z), for some polynomial $g(y, z) \in k[y, z]$, then a is finitely generated.
- ∃∞ many ht-3 non-finitely generated prime ideals, e.g. $Q_{i,\alpha} = (y \alpha x^i, z, \{f_n\})B$, where *i* ∈ ℕ and α ∈ *k*.

Part of Spec *B*, for the $yz\tau$ example, $B \subset k[[x, y, z]]$

THANKS!