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Overview and examples. The connection between simplicial complexes
and square-free monomial ideals can be found in any number of sources, for
example [18, 21, 39, 37]. A useful general reference from the topological
viewpoint is [4]. A nice book written from the rather specific point of view
(applications of the Borsuk-Ulam theorem of topology) is [23].

A thorough discussion of matroids from the standpoint of topological and
algebraic combinatorics may be found in [41, Chapter 7]. There is a smaller
amount of material in [37, Chapter III.3]; matroids are also mentioned in
[39] and more lightly in [18]. The standard reference and textbook on the
topic is [26].

Independence complexes appear in the graph theory literature, mostly
through questions about f -vector. Some selected papers are [13, 22].

The topology of the order complex of a poset is particularly important in
topological and algebraic combinatorics. Useful tools are surveyed in [4]. A
general overview of results in the field is in [40]. The result connecting the
probability of generating a vector space (group) with the topology of the
subgroup lattice was first observed by Hall [17]; it is explained clearly and
in modern notation in [10]. Möbius inversion in general is discussed in many
sources: an early one is [30], but you can also find this topic in [8, 38, 40].

The result that a finite group is solvable if and only if its subgroup lat-
tice is sequentially Cohen-Macaulay was essentially proved in [34]. In this
paper, Shareshian discusses only shellability. That the subgroup lattice of
a minimal simple group is not sCM follows since the possible h-triangles of
shellable and sCM complexes are the same [15], and since CM complexes are
strongly connected [4, Proposition 11.7]. The latter is used only for SL3(F3),
and an alternative approach for this group can be found in [28]. A direct
connection with commutative algebra would be especially interesting in this
direction, particularly if the reliance on the classification could be removed.
In the other direction (“solvable =⇒ sCM”), there are at least two later
proofs that solvable groups have shellable subgroup lattices [33, 42].

Hochster’s formula. Hochster’s formula comes out of work of Hochster,
Reisner, and Stanley in the 70s, including [29, 35, 36]. The proof sketch
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that we looked at in some detail is sketched lightly in [37], which is also an
excellent general reference. See also [19]. A standard reference for simplicial
cohomology is [24].

That depth and the Cohen-Macaulay property are topological invariants
was proved in [25]. This paper connects (co)homology of links in a simplicial
complex with local homology of topological spaces.

Collapses. A general overview on the power and limitations of collapses to
compute homotopy type is [14]. The method described to check if a simplicial
complex is a sphere is from one point of view a search for a shelling. From
another point of view, it is a search for a Brown-Chari (discrete Morse)
matching [9, 12] – see [2] for more on the method.

Shellable, Cohen-Macaulay, and sequentially Cohen-Macaulay com-
plexes. The term shelling was first introduced, so far as I can determine,
in [32] (although similar conditions had been considered earlier). The term
regained currency after the paper [11] showed every simplicial polytope to
be shellable; unfortunately, this paper did not reference [32], causing much
later confusion. Björner and Wachs wrote a series of papers developing
shellability as a general tool, including the extension to non-pure complexes
[3, 5, 6, 7]. A textbook treatment of shellability from the point of view of
polytope complexes may be found in [44, Chapter 8].

The first non-shellable ball (at least under that name) was constructed in
[31], using specialized techniques. An excellent and very readable description
of another non-shellable ball is on the blog “College Math Teaching” at [1].

Vertex-decomposability and k-decomposability were first defined in [27].
Vertex-decomposability was extended to the nonpure case in [7], while k-
decomposability was so extended in [20]. See also [43]. Complexes that are
shellable and not vertex-decomposable were already known to Provan and
Billera [27]. A flag complex (the independence complex of a graph) with the
same combination of properties was found in [16].

I did not have time to talk about the powerful techniques of EL-labelings
and CL-labelings, used to construct shellings of order complexes of posets.
These can be found in [3, 5, 6, 7].
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