REFERENCES AND COMMENTS ON WORKSHOP

RUSS WOODROOFE

Overview and examples. The connection between simplicial complexes and square-free monomial ideals can be found in any number of sources, for example [18, 21, 39, 37]. A useful general reference from the topological viewpoint is [4]. A nice book written from the rather specific point of view (applications of the Borsuk-Ulam theorem of topology) is [23].

A thorough discussion of matroids from the standpoint of topological and algebraic combinatorics may be found in [41, Chapter 7]. There is a smaller amount of material in [37, Chapter III.3]; matroids are also mentioned in [39] and more lightly in [18]. The standard reference and textbook on the topic is [26].

Independence complexes appear in the graph theory literature, mostly through questions about f-vector. Some selected papers are [13, 22].

The topology of the order complex of a poset is particularly important in topological and algebraic combinatorics. Useful tools are surveyed in [4]. A general overview of results in the field is in [40]. The result connecting the probability of generating a vector space (group) with the topology of the subgroup lattice was first observed by Hall [17]; it is explained clearly and in modern notation in [10]. Möbius inversion in general is discussed in many sources: an early one is [30], but you can also find this topic in [8, 38, 40].

The result that a finite group is solvable if and only if its subgroup lattice is sequentially Cohen-Macaulay was essentially proved in [34]. In this paper, Shareshian discusses only shellability. That the subgroup lattice of a minimal simple group is not sCM follows since the possible *h*-triangles of shellable and sCM complexes are the same [15], and since CM complexes are strongly connected [4, Proposition 11.7]. The latter is used only for $SL_3(\mathbb{F}_3)$, and an alternative approach for this group can be found in [28]. A direct connection with commutative algebra would be especially interesting in this direction, particularly if the reliance on the classification could be removed. In the other direction ("solvable \implies sCM"), there are at least two later proofs that solvable groups have shellable subgroup lattices [33, 42].

Hochster's formula. Hochster's formula comes out of work of Hochster, Reisner, and Stanley in the 70s, including [29, 35, 36]. The proof sketch that we looked at in some detail is sketched lightly in [37], which is also an excellent general reference. See also [19]. A standard reference for simplicial cohomology is [24].

That depth and the Cohen-Macaulay property are topological invariants was proved in [25]. This paper connects (co)homology of links in a simplicial complex with local homology of topological spaces.

Collapses. A general overview on the power and limitations of collapses to compute homotopy type is [14]. The method described to check if a simplicial complex is a sphere is from one point of view a search for a shelling. From another point of view, it is a search for a Brown-Chari (discrete Morse) matching [9, 12] - see [2] for more on the method.

Shellable, Cohen-Macaulay, and sequentially Cohen-Macaulay complexes. The term *shelling* was first introduced, so far as I can determine, in [32] (although similar conditions had been considered earlier). The term regained currency after the paper [11] showed every simplicial polytope to be shellable; unfortunately, this paper did not reference [32], causing much later confusion. Björner and Wachs wrote a series of papers developing shellability as a general tool, including the extension to non-pure complexes [3, 5, 6, 7]. A textbook treatment of shellability from the point of view of polytope complexes may be found in [44, Chapter 8].

The first non-shellable ball (at least under that name) was constructed in [31], using specialized techniques. An excellent and very readable description of another non-shellable ball is on the blog "College Math Teaching" at [1].

Vertex-decomposability and k-decomposability were first defined in [27]. Vertex-decomposability was extended to the nonpure case in [7], while k-decomposability was so extended in [20]. See also [43]. Complexes that are shellable and not vertex-decomposable were already known to Provan and Billera [27]. A flag complex (the independence complex of a graph) with the same combination of properties was found in [16].

I did not have time to talk about the powerful techniques of EL-labelings and CL-labelings, used to construct shellings of order complexes of posets. These can be found in [3, 5, 6, 7].

References

- 1. Anonymous, Mary Ellen Rudin tribute (1924-2013): Shelling a triangulated disk or ball., https://collegemathteaching.wordpress.com/2013/03/25/mary-ellen-rudin-tribute-1924-2013-shelling-a-triangulated-disk-or-ball/, Mar 2013.
- Bruno Benedetti and Frank H. Lutz, Random discrete Morse theory and a new library of triangulations, Exp. Math. 23 (2014), no. 1, 66–94. MR 3177457

- Anders Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), no. 1, 159–183. MR 81i:06001
- Topological methods, Handbook of combinatorics, Vol. 1, 2, Elsevier, Amsterdam, 1995, pp. 1819–1872. MR 1373690 (96m:52012)
- Anders Björner and Michelle L. Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 323–341. MR 84f:06004
- <u>_____</u>, Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1299–1327. MR 96i:06008
- _____, Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3945–3975. MR 98b:06008
- Miklós Bóna, A walk through combinatorics, third ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011, An introduction to enumeration and graph theory, With a foreword by Richard Stanley. MR 2849213
- Kenneth S. Brown, The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., vol. 23, Springer, New York, 1992, pp. 137– 163. MR MR1230632 (94g:20041)
- 10. _____, The coset poset and probabilistic zeta function of a finite group, J. Algebra **225** (2000), no. 2, 989–1012. MR 2000k:20082
- H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197–205 (1972). MR 48 #7286
- Manoj K. Chari, On discrete Morse functions and combinatorial decompositions, Discrete Math. 217 (2000), no. 1-3, 101–113, Formal power series and algebraic combinatorics (Vienna, 1997). MR 1766262 (2001g:52016)
- Maria Chudnovsky and Paul Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B 97 (2007), no. 3, 350–357. MR 2305888
- Marshall M. Cohen, A course in simple-homotopy theory, Springer-Verlag, New York, 1973, Graduate Texts in Mathematics, Vol. 10. MR 0362320 (50 #14762)
- Art M. Duval, Algebraic shifting and sequentially Cohen-Macaulay simplicial complexes, Electron. J. Combin. 3 (1996), no. 1, Research Paper 21, approx. 14 pp. (electronic). MR MR1399398 (98b:06009)
- Jonathan Earl, Kevin N. Vander Meulen, and Adam Van Tuyl, Independence complexes of well-covered circulant graphs, Exp. Math. 25 (2016), no. 4, 441–451. MR 3499708
- 17. Philip Hall, The Eulerian functions of a group, Quart. J. Math. 7 (1936), 134–151.
- Jürgen Herzog and Takayuki Hibi, Monomial ideals, Graduate Texts in Mathematics, vol. 260, Springer-Verlag London Ltd., London, 2011. MR 2724673 (2011k:13019)
- Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, *Twenty-four hours of local cohomology*, Graduate Studies in Mathematics, vol. 87, American Mathematical Society, Providence, RI, 2007. MR 2355715 (2009a:13025)
- Jakob Jonsson, Optimal decision trees on simplicial complexes, Electron. J. Combin. 12 (2005), Research Paper 3, 31 pp. (electronic). MR 2134166 (2006d:05186)
- 21. _____, Simplicial complexes of graphs, Lecture Notes in Mathematics, vol. 1928, Springer-Verlag, Berlin, 2008. MR MR2368284

- 22. Vadim E. Levit and Eugen Mandrescu, *The independence polynomial of a graph a survey*, Proceedings of the 1st International Conference on Algebraic Informatics, Aristotle Univ. Thessaloniki, Thessaloniki, 2005, pp. 233–254. MR 2186466 (2006k:05163)
- Jiří Matoušek, Using the Borsuk-Ulam theorem, Universitext, Springer-Verlag, Berlin, 2003, Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler. MR MR1988723 (2004i:55001)
- James R. Munkres, *Elements of algebraic topology*, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006 (85m:55001)
- 25. _____, Topological results in combinatorics, Michigan Math. J. **31** (1984), no. 1, 113–128. MR 736476 (85k:13022)
- James Oxley, *Matroid theory*, second ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford, 2011. MR 2849819
- J. Scott Provan and Louis J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5 (1980), no. 4, 576–594. MR MR593648 (82c:52010)
- Victor Reiner and Dumitru Ioan Stamate, Koszul incidence algebras, affine semigroups, and Stanley-Reisner ideals, Adv. Math. 224 (2010), no. 6, 2312–2345. MR 2652208
- Gerald Allen Reisner, Cohen-Macaulay quotients of polynomial rings, Advances in Math. 21 (1976), no. 1, 30–49. MR 0407036
- Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368 (1964). MR 0174487 (30 #4688)
- Mary Ellen Rudin, An unshellable triangulation of a tetrahedron, Bull. Amer. Math. Soc. 64 (1958), 90–91. MR 0097055 (20 #3535)
- D. E. Sanderson, Isotopy in 3-manifolds. I. Isotopic deformations of 2-cells and 3cells, Proc. Amer. Math. Soc. 8 (1957), 912–922. MR 0090052 (19,760d)
- Jay Schweig and Russ Woodroofe, A broad class of shellable lattices, Adv. Math. 313 (2017), 537–563. MR 3649231
- 34. John Shareshian, On the shellability of the order complex of the subgroup lattice of a finite group, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2689–2703. MR 1828468 (2002k:06006)
- Richard P. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Studies in Appl. Math. 54 (1975), no. 2, 135–142. MR 0458437
- <u>Cohen-Macaulay complexes</u>, Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), Reidel, Dordrecht, 1977, pp. 51–62. NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci., 31. MR 0572989 (58 #28010)
- <u>Combinatorics and commutative algebra</u>, second ed., Progress in Mathematics, vol. 41, Birkhäuser Boston Inc., Boston, MA, 1996. MR 1453579 (98h:05001)
- <u>Enumerative combinatorics. Volume 1</u>, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
- Rafael H. Villarreal, Monomial algebras, second ed., Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015. MR 3362802

- Michelle L. Wachs, Poset topology: Tools and applications, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 497– 615. MR MR2383132
- 41. Neil White (ed.), *Matroid applications*, Encyclopedia of Mathematics and its Applications, vol. 40, Cambridge University Press, Cambridge, 1992. MR 1165537
- 42. Russ Woodroofe, Vertex decomposable graphs and obstructions to shellability, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3235–3246. MR MR2515394
- 43. ____, Chordal and sequentially Cohen-Macaulay clutters, Electron. J. Combin. 18 (2011), no. 1, Paper 208, 20 pages.
- 44. Günter M. Ziegler, *Lectures on polytopes*, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 96a:52011

UNIVERSITY OF PRIMORSKA, FAMNIT, GLAGOLJAŠKA 8, 6000 KOPER, SLOVENIA *E-mail address*: russ.woodroofe@famnit.upr.si