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Function spaces on LCQGs

A pair (M, A) is called a Hopf-von Neumann algebra if

o M is a von Neumann algebra,
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o M is a von Neumann algebra,

o A: M — M®M is a non-degenerate x—homomorphism with the
property (A®i)o A = (i® A)oA.
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o A weight on a von Neumann algebra M is the map
@ : My — [0, 00] with the properties

ol +y) =9@) + o), pAx)=Ap(z), (z,y€ Mi, A>0).

o ¢ is said to be semifinite if p, = {x € My : p(x) < +o0} is dense
in M, with respect to the wo—topology (or equivalently,
g% = M, where n, = {x € M : p(z*x) < o0}).

o o is said to be faithful if for each z € M., p(z) # 0.

o ¢ is said to be normal if for each increasing bounded net (z;) in M

@(sup ;) = sup p(x;).
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A quadruple G = (M, A, p, ) is called a locally compact quantum group
in which

o (M,A) is a Hopf-von Neumann algebra,
o ¢ and 7 are left and right Haar weight, i.e. n.s.f weights with

p((w®i)A2)) =
(i ® w)A(x))

(De(z), ze€my,we M,

w
w(l)Y(z), =z € my,w e M,.




wlicative unitary

Theorem
There exists a unitary W € B(H, ® H,) such that

W*(Aola) ® Ae(8) = (A ® A)AB)@®1)), a,ben,

where A, is the GNS map induced by ¢ and H,, is the Hilbert space that
forms by GNS map. Moreover

WiaWi3Waz = WazWis.




Theorem
There exists a unitary V. € B(Hy, ® Hy,) such that

V(Au(a) @ Ay (b)) = (A @ Ay)(A(a)(1®D)), a,b € ny

where \y, is the GNS map induced by ¢ and H,, is the Hilbert space that
forms by GNS map. Moreover

‘/12 V13 V23 = V23 ‘/12 °




Function spaces on LCQGs

Ezample

A, L2(G) — L=®(G)RL*®(G) = L=(G x G)
Ay(f)(s,t) = f(st), feL>®(G),s,teq.

A, is a comultuplication on L>°(G) and G, = (L*=(G), Ay, Ya, a) is a
locally compact quantum group where ¢, and v, are the left and the
right Haar measures on G, respectively.

Moreover, each commutative locally compact quantum group G (i.e. the
underlying von Neumann algebra M is commutative) is of the form G,
for some locally compact group G.




Classic Case

For a locally compact group G, W and V are characterized by the
following rules.

W : L3(G) ® L*(G) = L*(G x G) — L*(G x G)
W(C)(Ta 5) = C(ﬁflS)a Ce LQ(G X G),?",S eqG




Classic Case

For a locally compact group G, W and V are characterized by the
following rules.
W : L*(G) ® L*(G) = L*(G x G) — L*(G x G)
W(¢)(r,s) =¢(r,r™ts), (€L*(GxG),rseG
V:L*(G) ® L*(G) = L*(G x G) — L*(G x G)
V(¢)(r,s) =C(rs,s), ¢€L*GxQG),rseqG.




Function spaces on LCQGs

Ezample

Let G be a locally compact group.

A, =A, : WN(G) = WN(G)BVN(G) = VN(G x G)
As(Ag) = Xy ® Ay

A is a comultiplication on vN(G). There exists a n.s.f. weight ¢ on
vN(G) which is right and left invariant. (VN(G), A, @s) is a locally
compact quantum group.

Moreover each cocommutative locally compact quantum group G (i.e.
ooA = A, in which ¢ is flip map) is of the form

G = G, = (WN(G), Ag, p5) for some locally compact group G.
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0o L*(G)=M

o L'(G) = M.,

o L2(G) = H, = Hy = Hy = H;

0 Co(G) ={(iw)W :we Ll(H(p)}H'||
o M(G) =Co(G)*

o M(Co(G)) = Cy(G).
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Fun Gs

of Function spaces through operators

ap(G) = {f € L*(G) : Ly : L'(G) — L>=(G) is compact},
wap(G) = {f € L=(G) : Ly : L*(G) — L>=(G) is weakly compact},
luc(G) = L=(GQ) x LY(G).

where Ly : L'(G) — L>(G) is defined by Ls(p) = f * p.
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where L, : M, — M is defined by L,(p) = z x p = (u ® id)A(x).



Function spaces on L(

ap(M,) ={x e M : L,: M, — M is compact},
wap(M,) ={x € M : L, : M, — M is weakly compact},

luc(M,) = (M % ML),

where L, : M, — M is defined by L,(p) = z x p = (u ® id)A(x).

o All above function spaces are operator system.
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Function sy n LCQGs

f function spaces on locally compact groups

©

ap(G): C*—algebra, translation invariant, introverted, amenable
wap(G): C*—algebra, translation invariant, introverted, amenable
luc(G): C*—algebra, translation invariant, left introverted

ap(G) C wap(G) C luc(G) C Cy(G)

wap(G) = luc(G) if and only if G is compact.

o luc(G) = L*=(G) if and only if G is discrete.

© © ©
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o P. Salmi (2010): If V is regular then,
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Recent Developments

o Runde (2010): Let G be a coamenable locally compact quantum
group such that Cy(G) has a bounded approximate identity in it's
center. Then luc(L'(G)) is a C*—algebra.

o Neufang (2012): If V is semiregular then luc(L!(G)) is a
C* —algebra.

o Runde (2012): Runde introduced completely almost periodic
functions on a Hopf-von Neumann algebra, denoted by cap(M,) and
proved that for an injective Hopf-von Neumann algebra
cap(M,) ={zx e M : A(z) e M @ M}.




Function spaces on LCQGs

Runde (2010): Let G be a coamenable locally compact quantum
group such that Cy(G) has a bounded approximate identity in it's
center. Then luc(L*(G)) is a C*—algebra.

Neufang (2012): If V is semiregular then luc(L'(G)) is a

C* —algebra.

Runde (2012): Runde introduced completely almost periodic
functions on a Hopf-von Neumann algebra, denoted by cap(M,) and
proved that for an injective Hopf-von Neumann algebra
cap(M,)={z e M : A(x) e M @ M}.

Runde (2012): If (M, A) is a subhomogeneous Hopf-von Neumann
algebra, then wap(M.,) is a C*—algebra.
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Recent Developments

o M. Daws (2016): {z € wap(M..) : z*z,zx* € wap(M,)} is the
biggest C*—algebra in wap(M,).

o M. Das and M. Daws (2016): Eberlin C*—algebra of locally
compact quantum group G, denoted by E(G), is amenable.
(Classically, E(G) is a subspace of wap(G).)

o H. R. Ebrahimi Vishki, M. Ramezanpour, M. Neufang, Z.-J. Ruan,
Zh. Hu
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Definition
o Let I be a cardinal. An element 2z € L>°(G) is called (I,1)—weakly
almost periodic if L&Y : Kr1(M.) — Kr1(M) is weakly compact.
(1, I)—weakly almost periodicity is defined simlarly. « is called
completely weakly almost periodic if it is (1, ])—weakly almost
periodic and (I, 1)—weakly almost periodic for all cardinal I.




tely weakly almost periodic

Definition
o Let I be a cardinal. An element 2z € L>°(G) is called (I,1)—weakly
almost periodic if L&Y : Kr1(M.) — Kr1(M) is weakly compact.
(1, I)—weakly almost periodicity is defined simlarly. « is called
completely weakly almost periodic if it is (1, ])—weakly almost
periodic and (I, 1)—weakly almost periodic for all cardinal I.

o We set cwap(M.,) to be the set of all completely almost periodic element
of M.




cwap(M.,.) is the biggest C*—algebra in wap(M,).




cwap(M.,.) is the biggest C*—algebra in wap(M,).

Let (M,A) be a commutative Hopf-von Neumann algebra. Then
cwap(M,) = wap(M,).
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o A right L'(G)-module X C L>°(G) is called left introverted if
vz € X forevery v € X* and z € X, where

(vxa,p) = (v, xp), (u€L(G)).
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Closed subspace X C Cy(G) is called
o left (resp. right) invariant if A(zx) € M(Cy(G) ® X) (resp.
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Definition
o A right L'(G)-module X C L>°(G) is called left introverted if
vz € X forevery v € X* and z € X, where
(vxw,p) = (v,zxp), (peL(G)).
o In this case one can construct a multipilcation on X* by
(vxv' x) = (v, x ).




Closed subspace X C Cy(G) is called
o left (resp. right) invariant if A(zx) € M(Cy(G) ® X) (resp.
A(z) € M(X @ Cy(G))).
o Quasi left (resp. right) invariant if A(z) € QM (Cy(G) ® X) (resp.
A(z) € QM (X ® Co(G))).

o A right L'(G)-module X C L>°(G) is called left introverted if
vz € X forevery v € X* and z € X, where
(vxw,p) = (v,zxp), (peL(G)).

o In this case one can construct a multipilcation on X* by
(vxv' x) = (v, x ).

o For a left L'(G)-module X C L>°(G) which is right introverted, one
can construct multiplication % on X* by (v« v/, z) = (v, x * v).
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Let G be a coamenable locally compact quantum group. The following
statements hold:

o ap(L'(G)) = {=: A( ) €
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Theorem
Let G be a coamenable locally compact quantum group such that either
V is regular or Cy(G) has a bounded approximate identity in it's center,
then the following hold.

o ap(L}(G)) = {z : A(z) €
M(Co(G) ® ap(L*(G))) N M(ap(L*(G)) ® Co(G))}
wap(L'(G)) = {z : A(z) €

©

M(Co(G) ® wap(L!(G))) N M(wap(L'(G)) ® Co(G))}
o luc(L(G)) = {z : A(z) € M(Co(G) ® Ci(G))}-
o luc(L'(G)) = {z : A(z) € M(Co(G) ® K(L*(G)))}-
o luc(LH(G)) = {z : A(z) € M(Cy(G) ® luc(LH(G)))}-




We say G has property (W.S) if for each idempotent states
v,w € wap(L'(G))* the equation v xw = w implies wx v = w.




enablity of wap(

We say G has property (W.S) if for each idempotent states
v,w € wap(L'(G))* the equation v xw = w implies wx v = w.

Let G has property (W S) then wap(L'(G)) is amenable.




Let G be a coamenable locally compact quantum group such that there
exists a € Z(Co(G)) with e(a) # 0. Then luc(L*(G)) is a C*—algebra.
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irregular. The following statements hold:
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Theorem

Let G be a locally compact quantum group and L'(G) be strongly Arens
irregular. The following statements hold:

Q G is compact if and only if wap(L*(G)) = luc(L*(G)).
Q G is discrete if and only if luc(L*(G)) = L>=(G).
@ G is finite if and only if wap(L'(G)) = L>=(G).




LY(G) is weakly Arens irregular if Z(L'(G)**) C LY(G)** - Co(G).




LY(G) is weakly Arens irregular if Z(L'(G)**) C LY(G)** - Co(G).

If luc(L!
wap(LY(

)) € wap(LY(G)), L' (G) is weakly Arens irregular and

(G
G)) is amenable, then G is compact.
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A brief history

Let M(G) = Co(G)* be the space of complex Radon measures on a
locally compact group G. We define the convolution of two measures
wu,v € M(G) as follows:

s o(F) = /G F(xy)dp(x)dv(y)

A state p € Co(G)* is called idempotent state if v u = p.

Example

Let G be a compact group. Then the Haar state of G is an
idempotent state.

Fatemeh Khosravi

A Kawada-Itd theorem for locally compact quantum groups



History

Kawada-It6 theorem

Theorem (Kawada-Ité, 1940)

Let G be a compact group. Then every idempotent state
w € M(G) arises as a Haar state of a closed subgroup.

Fatemeh Khosravi

A Kawada-Itd theorem for locally compact quantum groups



Kawada-It6 theorem

Theorem (Kawada-Ité, 1940)

Let G be a compact group. Then every idempotent state
w € M(G) arises as a Haar state of a closed subgroup.

Theorem (Generalized Kawada-1t6 theorem)

Let G be a locally compact group. Then every idempotent state
w € M(G) arises as a Haar state of a compact subgroup.

Fatemeh Khosravi

A Kawada-Itd theorem for locally compact quantum groups



Preliminaries

Locally compact quantum group

The theory of locally compact quantum group in a language of Op-
erator Algebra have been successfully introduced and studied by
J. Kustermans and S.Vaes in 2000. There are three different ap-
proaches to the theory of locally compact quantum groups:

von Neumann algebraic approach,
reduced C*-algebraic approach,
universal C*-algebraic approach.

But they are equivalent in the sense that they study a same object
which we will denote it by G. There are also a standard procedures
to pass from one to the other.
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Preliminaries

Locally compact quantum groups - Von Neumann
algebraic version

A von Neumann algebraic locally compact quantum group is a quadru-
ple G = (L*™°(G), Ag, vG, ¥g), where
m L>°(G) is a von Neumann algebra,
B Ag: L®(G) = L™(G)® L*>°(G), is an injective, unital,
*-homomorphism which satisfies the coassociativity condition,
i.e. (]1 & A(G,)AG = (AG X ]I)AG
m g and Y are normal semifinite faithful weights on L>°(G)
such that:

(id ® pg)Ag = lpg
(Ve ®id)Ag = lyg

g and Yg are called left and right Haar weights respectively.
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Preliminaries

Locally compact quantum groups- Reduced C*-algebraic
version

A reduced C*-algebraic locally compact quantum group is a quadru-
ple G = (Co(G), Ag, ¢G, ¥g), where Co(G) is a C*-algebra with a
coassociative map

Ag : Co(G) — M(Co(G) ® Co(G)),
such that
Co(G) ® Co(G) = (1 ® Co(G))Ag(Co(G))
= (Co(G) ® 1)Ag(Co(G)),

and g and g are left and right invariant faithful, proper, KMS-
weights on Co(G) respectively.
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Preliminaries

Locally compact quantum groups - Universal C*-algebraic
version

The universal version C§(G) of G is equipped with a comultiplication

such that
Co(G) ® G(G) = (1 ® C5(G))Ac(CH(G))

= (G(G) ® 1)Ag(Co(G)),
Left and right Haar weights on are not faithful. But admits a *-
homomorphism e :— C such that

(e ®1d)Ag = id = (id ® €)Ag
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Preliminaries

Locally compact quantum groups - Universal C*-algebraic
version

The universal version C§(G) of G is equipped with a comultiplication
such that ) ) ) )
Co(G) ® G(G) = (1 ® C5(G))Ac(CH(G))
= (G(G) ® 1)Ag(Co(G)),
Left and right Haar weights on are not faithful. But admits a *-
homomorphism e :— C such that
(e ®id)Ag = id = (id ® €)Ag
|

The comultiplication A¢ yields an algebra structure on Cg(G)* in
fact for u,v € Cg(G)*,

rvi= (@ v)AY
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Preliminaries

A locally compact quantum group G is a compact quantum group
if one of the following equivalent conditions is satisfied:

the Haar weights are finite,
Co(G) is unital,
C(G) is unital.
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Preliminaries Main Results

A locally compact quantum group G is a compact quantum group
if one of the following equivalent conditions is satisfied:

the Haar weights are finite,
Co(G) is unital,
C(G) is unital.

Definition
Let G be a locally compact quantum group. A state w € C5(G)* is
called an idempotent state if w * w = w.
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Preliminaries Main Results

A locally compact quantum group G is a compact quantum group
if one of the following equivalent conditions is satisfied:

the Haar weights are finite,
Co(G) is unital,
C(G) is unital.

Let G be a locally compact quantum group. A state w € C5(G)* is
called an idempotent state if w * w = w.

The Haar state of a compact quantum group G is an idempotent
state.
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Preliminaries

Definition

Let G and H be locally compact quantum groups. Then H is said
to be a closed quantum subgroup of G in the sense of Woronowicz
if there exists a surjective x-homomorphism 7 : Cj(G) — Cg(H)
which commutes the comultiplications, i.e.

(T®@m)oAg = Agom.
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Definition

Let G and H be locally compact quantum groups. Then H is said
to be a closed quantum subgroup of G in the sense of Woronowicz
if there exists a surjective x-homomorphism 7 : Cj(G) — Cg(H)
which commutes the comultiplications, i.e.

(T®@m)oAg = Agom.

Let H be a (closed) compact quantum subgroup of G. Then hyy is
an idempotent state on G.
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Preliminaries Main Results

Let G and H be locally compact quantum groups. Then H is said
to be a closed quantum subgroup of G in the sense of Woronowicz
if there exists a surjective x-homomorphism 7 : Cj(G) — Cg(H)
which commutes the comultiplications, i.e.

(T®@m)oAg = Agom.

Let H be a (closed) compact quantum subgroup of G. Then hyy is
an idempotent state on G.

Can we characterize idempotent states on locally compact quantum
groups with Haar states of compact quantum subgroups?
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Preliminaries Main Results

Let G and H be locally compact quantum groups. Then H is said
to be a closed quantum subgroup of G in the sense of Woronowicz
if there exists a surjective x-homomorphism 7 : Cj(G) — Cg(H)
which commutes the comultiplications, i.e.

(T®@m)oAg = Agom.

Let H be a (closed) compact quantum subgroup of G. Then hyy is
an idempotent state on G.

Can we characterize idempotent states on locally compact quantum
groups with Haar states of compact quantum subgroups? No
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Preliminaries Main Results

Counterexample

Example (Pal, 1996)

Let G = (A, A) be the 8-dimensional Kac-Paljutkin finite quantum
group, where A=C @ C o C @ C o My(C).

Fatemeh Khosravi

A Kawada-Itd theorem for locally compact quantum groups



Preliminaries Main Results

Counterexample

Example (Pal, 1996)

Let G = (A, A) be the 8-dimensional Kac-Paljutkin finite quantum
group, where A=C®Ca®C @ Ca My(C). Let

O5 O
ek=51k@52k6953k@54k69[ e Sk} , k=1,---,8,
07k Ok
where § denotes the Kronecker delta. Then {e1, e, ,eg} form a
basis for A.
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Preliminaries Main Results

Counterexample

Example (Pal, 1996)

Let G = (A, A) be the 8-dimensional Kac-Paljutkin finite quantum
group, where A=C®Ca®C @ Ca My(C). Let

é )
ek=51k@52k6953k@54k69[ e Sk} , k=1,---,8,
07k Ok
where 0 denotes the Kronecker delta. Then {e;, e, -+, eg} form a

basis for A.Let px be the functional px(>_ ajei) = ay, then
w = %(Pl + pa) + %pﬁ is an idempotent state on A.
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Preliminaries Main Results

Counterexample

Example (Pal, 1996)

Let G = (A, A) be the 8-dimensional Kac-Paljutkin finite quantum
group, where A=C®Ca®C @ Ca My(C). Let

é )
ek=51k@52k6953k@54k69[ e Sk} , k=1,---,8,
07k Ok
where 0 denotes the Kronecker delta. Then {e;, e, -+, eg} form a

basis for A.Let px be the functional px(>_ ajei) = ay, then
w = %(Pl + pa) + %pe is an idempotent state on A. Since the null
space of w is not an ideal,

J‘U :{X S A‘W(X*X) = 0} = <e2a €3, 65,e7>,
J5 ={x € Alw(xx*) = 0} = (e2, €3, €5, €3).
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Preliminaries

Haar idempotents

Definition
Let w be an idempotent state on C3(G). The w is called Haar

idempotent if there exists a compact quantum subgroup H of G
with an associated map 7 : C§(G) — Cg(H), such that w = hgom.
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Preliminaries Main Results

Haar idempotents

Definition
Let w be an idempotent state on C5(G). The w is called Haar

idempotent if there exists a compact quantum subgroup H of G
with an associated map 7 : C§(G) — Cg(H), such that w = hgom.

Theorem (Salmi-Skalski, 2012)

Let w be an idempotent state on Ci(G). Then the following are
equivalent:

® w is Haar idempotent,
m The set J, = {x € C§(G) |w(x*x) = 0} is an ideal.
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Preliminaries Main Results

Compact quantum hypergroup

Definition (Chapovsky-Vainerman, 1999)

A quadruple (A, A, ¢, R) is a hypergroup structure on a unital
C*-algebra A if
A:A— A ®min Ais a unital, x-preserving, positive,
coassociative map,

€ : A — Cis a linear homomorphism,
(d®e)oA=(e®id)o A =id,

R : A— Ais an anti-linear x-automorphism with R? =id,

such that
AoR=00(R®R)oA.
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Preliminaries

The x-algebraic structure on the dual space of the C*-algebra A of
a hypergroup structure is given by

§-n(a) = (£ @n)oA(a)
¢H(a) == £(R(a)).

and (A*,-, 1) is a Banach x-algebra.
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Preliminaries

For a hypergroup structure (A, A, ¢, R), a state p € A* is called a
Haar state if

(p®id) o A = (ild® p)o A = 1ap.
An element a € A is called positive definite, if for all £ € A*,

¢-&a)>0.
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Preliminaries

For a hypergroup structure (A, A, ¢, R), a state p € A* is called a
Haar state if

(p®id) o A = (ild® p)o A = 1ap.
An element a € A is called positive definite, if for all £ € A*,

¢-&a)>0.

Theorem (Chapovsky-Vainerman, 1999)

Let (A, A, ¢, R) be a hypergroup structure on a C*-algebra A.
Suppose that the linear space spanned by the positive definite
elements is dense in A. Then there exists a unique Haar state v on
A.
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Preliminaries Main Results

Compact quantum hypergroup

Definition (Chapovsky-Vainerman, 1999)

Let (A, A, ¢, R) be a hypergroup structure. Then
G = (A A e, R, 7) is called a compact quantum hypergroup if
A is a completely positive map and the linear span of positive
definite elements is dense in A,
(T¢)ter is a continuous one-parameter group of
automorphisms of A such that:
m there exist dense *-subalgebras Ay C A and /Yo C A® A such
that the one-parameter groups (7¢)ter, (7 ® id)scr and
(id ® 7¢)ter can be extended to complex one-parameter groups

(72)zec, (2 ® id)zecwand (id ® 72)zec of automorphisms of
the algebras Ay and Ap, respectively;
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Preliminaries Main Results

Definition-continued

m R(Ag) C Ay and A(Ay) C Ao;
m the following relations hold on A for all z € C,

AOTZ:(TZ®TZ)OA7
hr, = h;

m there exists zy € C such that the Haar measure h satisfies the
following strong invariance condition, for all a, b € Ay,

(id ® h)((1® a)A(b)) =
(id ® h) (((TZO o R®id) o A(a))(1® b));

the Haar measure h is faithful on Ag.
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Preliminaries

Definition

Let G be a locally compact quantum group. A compact quantum
hypergroup G = (A, A, €, R, 7¢) is called a compact quantum
subhypergroup of G, if there exists a surjective, completely positive
map 7 : C§(G) — A which commutes the coproduct.
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Definition

Let G be a locally compact quantum group. A compact quantum
hypergroup G = (A, A, €, R, 7¢) is called a compact quantum
subhypergroup of G, if there exists a surjective, completely positive
map 7 : C§(G) — A which commutes the coproduct.

Let G be a compact quantum subhypergroup of G. Then the Haar
state hg is an idempotent state on G.
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Preliminaries Main Results

Let G be a locally compact quantum group. A compact quantum
hypergroup G = (A, A, €, R, 7¢) is called a compact quantum
subhypergroup of G, if there exists a surjective, completely positive
map 7 : Cg(G) — A which commutes the coproduct.

Let G be a compact quantum subhypergroup of G. Then the Haar
state hg is an idempotent state on G.

Conjecture (Franz-Skalski, 2009)

All idempotent states on locally compact quantum group G arise
(in a canonical way) as Haar states on compact quantum
subhypergroups.
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Preliminaries Main Results

Let G be a locally compact quantum group. A compact quantum
hypergroup G = (A, A, €, R, 7¢) is called a compact quantum
subhypergroup of G, if there exists a surjective, completely positive
map 7 : Cg(G) — A which commutes the coproduct.

Let G be a compact quantum subhypergroup of G. Then the Haar
state hg is an idempotent state on G.

Theorem (Franz-Skalski, 2009)

Let A be a finite quantum group and let w € A*, be an idempotent
state. Then w arises as a Haar state of a finite quantum
subhypergroup of A (in a canonical way).
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Main Results

Operator system

Definition

An operator system is a (norm-closed) unital subspace S of a
unital C*-algebra A which is self-adjoint, that is, x* € S if and
only if x € S.
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Main Results

Operator system

Definition

An operator system is a (norm-closed) unital subspace S of a
unital C*-algebra A which is self-adjoint, that is, x* € S if and
only if x € S.

A state on an operator system S is a completely positive linear map
s: S — C, such that s(1) = 1.

Given two operator systems S C Aand S’ C A’, one can define their
minimal tensor product as the completion of the algebraic tensor
product S® S’ € A® A’ under the following norm

C* —mins teS®S.

[t llmin := [|t]
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Main Results

Open projections in C*-algebras

A projection p € A** is called open if there exists a net {a,} C A
such that 0 < a,, 1 p in the weak*-toplology of A**.
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Main Results

Open projections in C*-algebras

Definition
A projection p € A** is called open if there exists a net {a,} C A
such that 0 < a,, 1 p in the weak*-toplology of A**.

A projection p € A** is said to be closed if its complement 1 — p €
A** is an open projection.
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Preliminaries Main Results

Open projections in C*-algebras

Definition
A projection p € A** is called open if there exists a net {a,} C A
such that 0 < a,, 1 p in the weak*-toplology of A**.

A projection p € A** is said to be closed if its complement 1 — p €
A** is an open projection.

Theorem (Akemann-Pedersen-Tomiyama, 1973)

Let A be a C*-algebra and p a closed projection in A**. Let
J={ac Alap =0} and define ¢ : A** — A** by ®(a) = pap.
Then ANker® = J+ J* and pAp is isometrically isomorphic to
the quotient space A/J + J*.
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Preliminaries Main Results

Compact quantum hypersystem

Definition (Amini-Kh.)

A triple (S, As, Rs) is called a hypersystem structure if
S is an operator system;

A:S—S ®min S is a linear, unital, completely positive map
which is co-associative, i.e., (ild® Ag)oAs = (As®id) o Ag;

Rs : S — S is a unital, anti-linear, completely positive map
such that O'(RS ® Rs) oAgs = Aso Rs and RZ =id.
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Preliminaries Main Results

Compact quantum hypersystem

Definition (Amini-Kh.)

A triple (S, As, Rs) is called a hypersystem structure if
S is an operator system;

A:S—S ®min S is a linear, unital, completely positive map
which is co-associative, i.e., (ild® Ag)oAs = (As®id) o Ag;

Rs : S — S is a unital, anti-linear, completely positive map
such that O'(RS ® Rs) oAgs = Aso Rs and RZ =id.

Let S* denotes the set of all (completely) bounded linear functionals
on S, Then §* is a Banach x-algebra.
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Main Results

Theorem (Amini-Kh.)

Let (S,As, Rs) be a hypersystem structure. If the linear space
spanned by the positive definite elements is dense in S, then there
exists a self-adjoint functional on S, which is both left and right
invariant.
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Main Results

Theorem (Amini-Kh.)

Let (S,As, Rs) be a hypersystem structure. If the linear space
spanned by the positive definite elements is dense in S, then there
exists a self-adjoint functional on S, which is both left and right
invariant.

Definition (Amini-Kh.)

A hypersystem structure (A, A, R) is called a compact quantum
hypersystem if it admits a faithful Haar state.
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Preliminaries Main Results

Definition (Amini-Kh.)

Let G be a locally compact quantum group and (S, As, Rs, hs) be
a compact quantum hypersystem. Then (S, As, Rs, hs) is called a
compact quantum subhypersystem of G, if there exists a surjective
completely positive map 7s : C§(G) — S such that

A507r5:(7T5®7T5)OAG.

Example

Let (S,As, Rs, hs) be a compact quantum subhypersystem of G,
with the associated map =g, then hs o 75 is an idempotent state
on G.
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Preliminaries Main Results

Definition (Amini-Kh.)

Let G be a locally compact quantum group and (S, As, Rs, hs) be
a compact quantum hypersystem. Then (S, As, Rs, hs) is called a
compact quantum subhypersystem of G, if there exists a surjective
completely positive map 7s : C§(G) — S such that

A507r5:(7T5®7T5)OAG.

Let (S,As, Rs, hs) be a compact quantum subhypersystem of G,
with the associated map =g, then hs o 75 is an idempotent state
on G.

Does every idempotent state on G arise as a Haar idemptent state
on a compact quantum subhypersystem (in a canonical way)?
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Main Results

Theorem (Amini-Kh.)

Let w be an idempotent state on Cg(G). Then there exists a

compact quantum subhypersystem (S, As, Rs, hs) such that
W = h5 OTsS.
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Preliminaries Main Results

Theorem (Amini-Kh.)

Let w be an idempotent state on Cg(G). Then there exists a
compact quantum subhypersystem (S, As, Rs, hs) such that

w = hs os. Moreover let (S', As/, Rs/, hs/) be another compact
quantum subhypersystem of G such that w = hg/ o ws:, then there
exists a unique map

7:S— S,

such that mg/ = 7w o 7s.
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Preliminaries Main Results

Sketch of the proof

Consider the left ideal J, = {x € C5(G) | w(x*x) = 0},
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Preliminaries Main Results

Sketch of the proof
Consider the left ideal J, = {x € C5(G) | w(x*x) = 0},
m There exists an open projection p € Cg(G)** such that

Jo = CY(G)*"pN C(G) = C4(G)p N CY(G).
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Preliminaries Main Results

Sketch of the proof
Consider the left ideal J, = {x € C5(G) | w(x*x) = 0},
m There exists an open projection p € Cg(G)** such that

Jo = CY(G)*"pN C(G) = C4(G)p N CY(G).

m g=1—pis a closed projection in C5(G)** and

C4(G)
Jo+ Iz

= qG(G)g.
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Preliminaries Main Results

Sketch of the proof
Consider the left ideal J, = {x € C5(G) | w(x*x) = 0},
m There exists an open projection p € Cg(G)** such that

Jo = CY(G)*"pN C(G) = C4(G)p N CY(G).

m g=1—pis a closed projection in C5(G)** and

C4(G)
Jo+ Iz

= qG(G)g.

m g€ qCi(G)g and qCy(G)q is an operator system.
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Preliminaries Main Results

Sketch of the proof

m The map

Ay qC(G)g — gC5(G)g Bmin 9 Co(G)g,
gaqg — (g ® q)Ag(a)(q ® q),

is a well-defined, unital, coassociative, completely positive
map.
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Main Results

Sketch of the proof

m The map

A, qC5(G)g = 9C5(G)g @min 9C(G)g,
qaq — (q ® q)Ag(a)(q ® q),
is a well-defined, unital, coassociative, completely positive
map.
m The map
R.:qCy(G)g — qC5(G)q,
qaq — qRg(a)q,

is a well-defined, unital, anti-linear, completely positive map

such that (R, ® R,) o A, = Ay, 0o R, and R? = id.
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Main Results

Sketch of the proof

m The following map is a faithfull Haar state on q C5(G)gq,

h, — C,
gaq — w(a).
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Main Results

Sketch of the proof

m The following map is a faithfull Haar state on q C5(G)gq,

h, — C,
gaq — w(a).

m w arises as a Haar state of g C§(G)q in a canonical way.
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Preliminaries Main Results

Sketch of the proof

m The following map is a faithfull Haar state on q C5(G)gq,

h, — C,
gaq — w(a).

m w arises as a Haar state of g C§(G)q in a canonical way.

Corollary

Let w be an idempotent state on a locally compact quantum
group. Then the following conditions are equivalent:

m J, is an ideal,
® g is a central closed projection in Cg(G)**,

B w arises as the Haar state of the compact quantum group
(C6(G)a, Aw)
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Preliminaries Main Results

Example

Let G = (A, A) be the 8-dimentional Kac-Paljutkin finite quantum
group, where A=C@Ca®CaCa My(C). Let

1) 1)
ek:51k@52k@53k@54k@|:6‘:z 5§£:| , k=1,--..,8.

Then the idempotent state w = %(m + pa) + %pﬁ is not the haar
state of any quantum subgroup G. The null space of w is not an
ideal (*-preserving).

/ :{X € A‘W(X*X) = 0} = <62,63, €5, e7>7
I* ={x € Alw(xx*) = 0} = (e, €3, €5, €3).
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Preliminaries Main Results

Example

Define the projection g = e; ® e ® e5 € A. It can be observed
that as Banach spaces

~

= gAgq.

I+ I*

In this case gAq is a unital C*-algebra. Since q is not central, the
co-multiplication
A : gAq — gAq ®min 9Aq,

A(gaq) = (9 ® q)A(a)(g® q)

is not a homomorphism but it is completely positive. Now g is the
support projection of w and w arises as the Haar state of gAq in a
canonical way.
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Introduction Classical Case

Motivation

The concept of amenability for a locally compact group G can be
described in many different equivalent ways. Two of the most well-known
characterizations are the following:

@ there is a left invariant mean on L*>°(G);

@ any affine G-action has a fixed point.
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Motivation

The concept of amenability for a locally compact group G can be
described in many different equivalent ways. Two of the most well-known
characterizations are the following:

@ there is a left invariant mean on L*>°(G);

@ any affine G-action has a fixed point.

In 1978, Zimmer introduced the notion of amenable actions as a natural
generalization of fixed point property.

He gave a criterion that an ergodic action be amenable in terms of the von
Neumann algebra associated to it by the Murray—von Neumann
construction.
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Introduction Classical Case

Motivation

Delaroche transported the notion of amenable action into operator
algebra terms:

@ von Neumann algebra setting, 1979 and 1982;
o C*-algebra setting, 1987.

Definition (Delaroche, 1979)

The action a: G ~ N of a locally compact group G on a von Neumann
algebra N is called if there exists an equivariant conditional
expectation

P:(l(G) oM, t@a)— (13 M,a),

where 7 denotes the left translation action of G on ¢>°(G).
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Introduction Classical Case

Delaroche extended Zimmer's criterion to the general setting:

Theorem (Delaroche, 1979)
Let o : G ~ N be an action of a locally compact group G on a
von Neumann algebra N. TFAE:
@ « is amenable;
o there is a conditional expectation from B(L2(G)) ® N onto the
crossed product G x, N. )
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Introduction Classical Case

Delaroche extended Zimmer's criterion to the general setting:

Theorem (Delaroche, 1979)

Let o : G ~ N be an action of a locally compact group G on a
von Neumann algebra N. TFAE:

@ « is amenable;

o there is a conditional expectation from B(L2(G)) ® N onto the
crossed product G x, N.

Using the automorphism
To: ) (0 ®x) EL(GC)BM = > (g @ g (xg)) €L(G)BM
geiG geG

to get the following equivalent definition of amenable actions:
The action o : G ~ N is called if there exists an equivariant
conditional expectation

P:(*(G)eM,r®id) = (a(M), T ® id),
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Introduction Non-commutative Case

Definition (M., 2018)

Let « : G ~ N be an action of a discrete quantum group G on a von
Neumann algebra N. Then « is called if there exists a
conditional expectation E, : {*°(G) ® N — «(N) such that

(id ® E)(A ®id) = (A @ id)E,.

Facts:

@ Amenability of trivial action tr : G ~ C is equivalent to amenability
of quantum group G;

@ every discrete quantum group acts amenably on itself.

M.S.M. Moakhar Amenable Actions of Quantum Groups January 7, 2019 5/16



Introduction Braided Tensor Products

von Neumann algebra Braided Tensor Products

For any discrete quantum group G, there is an action 7 : G~ (@) of
dual quantum group G on ¢*°(G) given by

Y(x) = W (1@ x)W, x e X(G),

where W is the left fundamental unitary of G.
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Introduction Braided Tensor Products

von Neumann algebra Braided Tensor Products

For any discrete quantum group G, there is an action 7 : G~ (@) of
dual quantum group G on ¢*°(G) given by

v(x) = W (1@ x)W, x e >(G),
where W is the left fundamental unitary of G. Observe that
(ad(W) ® id)(id ® v)A(x) = (¢ ® id)(id ® A)y(x), x € £>°(G),

where W is the left fundamental unitary of G and o is the flip map.
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Introduction Braided Tensor Products

von Neumann algebra Braided Tensor Products

For any discrete quantum group G, there is an action 7 : G~ (@) of
dual quantum group G on ¢*°(G) given by

v(x) = W (1@ x)W, x e >(G),
where W is the left fundamental unitary of G. Observe that
(ad(W) ® id)(id ® v)A(x) = (¢ ® id)(id ® A)y(x), x € £>°(G),

where W is the left fundamental unitary of G and o is the flip map.
It imlies that

weak* Weak*
span{7(£>°(G))ya(N)y3} = span{a(N)137(£(G))12}
and it is a von Neumann sub-algebra of B(¢2(G))®¢>=(G)® N, which is
called (von Neumann algebra) and is denoted by

M.S.M. Moakhar Amenable Actions of Quantum Groups January 7, 2019 6 /16



Introduction Braided Tensor Products

von Neumann algebra Braided Tensor Products

There is an action AN a : G ~ (*°(G)X N of G on the von Neumann
algebra ¢*°(G)X N such that

(A X a)(7(3)12a(b)13) = ((id ® W)A(a)) 123 ((id ® O‘)O‘(b))lm'
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Introduction Braided Tensor Products

von Neumann algebra Braided Tensor Products

There is an action AN a : G ~ (*°(G)X N of G on the von Neumann
algebra ¢*°(G)X N such that

(A X a)(7(3)12a(b)13) = ((id ® W)A(a)) 123 ((id ® O‘)O‘(b))lm'

Lemma (M., 2018)

Let «: G ~ N be an action of a discrete quantum group G on a von
Neumann algebra N. There exists an equivarinat *-isomorphism

To: ((°(G)BN,ARa) = ((°(C)B N, A ® id)

such that T,(1Xa) = a(a) forallae N and T,(xX 1) =x®1 for all
x € 1°(G).
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Introduction Braided Tensor Products

Theorem (M., 2018)

Let a : G ~ N be an action of a discrete quantum group G on a von
Neumann algebra N. Then there is an equivariant isomorphism ® from
(¢°(G)® N) x ama G, AKX a) onto (B(3(G))® N, AKX a) such that ®
maps (1 X N) x axa G onto N x, G.

M.S.M. Moakhar
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A Characterization of Amenability

Theorem (M., 2018)

Let @ : G ~ N be an action of a discrete quantum group G on a von
Neumann algebra N. TFAE:

@ The quantum group G is amenable.

@ The action « is amenable and there exists an invariant state on N.
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Main Results Discrete Quantum Group Actions

A Characterization of Amenability

Theorem (M., 2018)

Let @ : G ~ N be an action of a discrete quantum group G on a von
Neumann algebra N. TFAE:

@ The quantum group G is amenable.
@ The action « is amenable and there exists an invariant state on .

lzumi Proved that the tracial Haar state ¢ of the dual quantum group G
is invariant with respect to the canonical action A! . It follows that:

lLeo(@)

Corollary (M., 2018)

Let G be a discrete Kac algebra. Then G is amenable if and only if the
canonical action AY 1 G ~ L®(G) is amenable.

Lo 6
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Main Results Discrete Quantum Group Actions

Non-commutative Poisson Boundaries

Let G be a discrete quantum group and u € £1(G) be a state. In this case
®,(x) = (1 ®id)A(x) is a Markov operator, i.e. unital, normal and
completely positive map, on £*°(G). We can consider

Hy = {x € >(G) : &,(x) = x}

of all g-harmonic operators.
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Main Results Discrete Quantum Group Actions

Non-commutative Poisson Boundaries

Let G be a discrete quantum group and u € £1(G) be a state. In this case
®,(x) = (1 ®id)A(x) is a Markov operator, i.e. unital, normal and
completely positive map, on £*°(G). We can consider

Hy = {x € >(G) : &,(x) = x}

of all y-harmonic operators. There is a conditional expectation from
£>°(G) onto H,,. Then the corresponding Choi-Effros product induces the
von Neumann algebraic structure on #,,. This von Neumann algebra is
called with respect to p.

Kalantar, Neufang and Ruan proved that the restriction of A to H,
induces a left action A, of G on the von Neumann algebra H,,.
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Main Results Discrete Quantum Group Actions

Non-commutative Poisson Boundaries

Let G be a discrete quantum group and u € £1(G) be a state. In this case
®,(x) = (1 ®id)A(x) is a Markov operator, i.e. unital, normal and
completely positive map, on £*°(G). We can consider

Hy = {x € >(G) : &,(x) = x}

of all y-harmonic operators. There is a conditional expectation from
£>°(G) onto H,,. Then the corresponding Choi-Effros product induces the
von Neumann algebraic structure on #,,. This von Neumann algebra is
called with respect to p.

Kalantar, Neufang and Ruan proved that the restriction of A to H,
induces a left action A, of G on the von Neumann algebra H,,.

Theorem (M., 2018)

Let G be a discrete quantum group and let ;1 € /1(G) be a state. The left
action A, of G on the Poisson boundary H, is amenable.
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Non-commutative Analogue of Zimmer's criterion
Theorem (M., 2018)

Let o : G ~ N be an action of a discrete quantum group G on a von
Neumann algebra N. TFAE:

1. The action « is amenable.

2. There is an equivariant conditional expectation

E: ((°(C)BN)x pgaG, AR a) = (1B N)x agaG, A K a).

3. There is an equivariant conditional expectation

E: (B(fAG)®N,A® ®id) — (N x, G, a).
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Main Results Discrete Quantum Group Actions

Non-commutative Analogue of Zimmer's criterion

Theorem (M., 2018)

Let o : G ~ N be an action of a discrete quantum group G on a von
Neumann algebra N. TFAE:

1. The action « is amenable.

2. There is an equivariant conditional expectation
E: ((°(C)BN)x pgaG, AR a) = (1B N)x agaG, A K a).
3. There is an equivariant conditional expectation

E: (B(fAG)®N,A® ®id) — (N x, G, a).

In the case of the trivial action, the equivalence between (1) and (3)
provides the characterization of amenability of a quantum group G in
terms of injectivity of L°(G) in the category of T (£2(G))-modules

investigated by Crann and Neufang,.
M.S.M. Moakhar
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Main Results Discrete Quantum Group Actions

Let 8 : G ~ K be an action of a discrete quantum group G on a von
Neumann algebra K. We say that K is if for every unital
completely isometric equivariant map ¢ : (M, 1) — (N, a2) and every
unital completely positive equivariant map V : (M, 1) — (K, 3) there is a
unital completely positive equivariant map V¥ : (N, a3) — (K, 3) such that
Vor=V,

Corollary (M., 2018)

Let a : G ~ N be an action of a discrete quantum group G on a von
Neumann algebra N. TFAE:

1. N is injective and « is amenable.

2. The crossed product N x, G is (@—injective.
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Main Results Discrete Kac Algebra Actions

Discrete Kac Algebra Actions

Theorem (M., 2018)

Let a : G ~ N be an action of a discrete Kac algebra G on a von
Neumann algebra N. The following are equivalent:

1. The action « is amenable.

2. There is a conditional expectation from B(¢?(G))® N onto N x, G.

v

Corollary (M., 2018)

Let @ : G ~ N be an action of a discrete Kac algebra G on a von
Neumann algebra N. TFAE:

1. N is injective and « is amenable.

2. The crossed product N x, G is injective.
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