Function spaces on LCQGs

RAMIN FAAL FERDOWSI UNIVERSITY OF MASHHAD

(January, 2019)

• Locally Compact Quantum Group

- Locally Compact Quantum Group
- Function Spaces on Locally Compact Groups

- Locally Compact Quantum Group
- Function Spaces on Locally Compact Groups
- Function Spaces on LCQGs and Hopf-von Neumann algebras

- Locally Compact Quantum Group
- Function Spaces on Locally Compact Groups
- Function Spaces on LCQGs and Hopf-von Neumann algebras

- Locally Compact Quantum Group
- Function Spaces on Locally Compact Groups
- Function Spaces on LCQGs and Hopf-von Neumann algebras

A pair (M,Δ) is called a Hopf-von Neumann algebra if

M is a von Neumann algebra,

A pair (M, Δ) is called a Hopf-von Neumann algebra if

- M is a von Neumann algebra,
- $\Delta: M \to M \overline{\otimes} M$ is a non-degenerate *-homomorphism with the property $(\Delta \otimes i) \circ \Delta = (i \otimes \Delta) \circ \Delta$.

• A weight on a von Neumann algebra M is the map $\varphi: M_+ \to [0, \infty]$ with the properties

$$\varphi(x+y) = \varphi(x) + \varphi(y), \quad \varphi(\lambda x) = \lambda \varphi(x), \quad (x, y \in M_+, \ \lambda \ge 0).$$

• A weight on a von Neumann algebra M is the map $\varphi: M_+ \to [0, \infty]$ with the properties

$$\varphi(x+y) = \varphi(x) + \varphi(y), \quad \varphi(\lambda x) = \lambda \varphi(x), \quad (x, y \in M_+, \ \lambda \ge 0).$$

• φ is said to be semifinite if $p_{\varphi}=\{x\in M_{+}: \varphi(x)<+\infty\}$ is dense in M_{+} with respect to the wo-topology (or equivalently, $\overline{n_{\varphi}}^{wo}=M$, where $n_{\varphi}=\{x\in M: \varphi(x^{*}x)<\infty\}$).

• A weight on a von Neumann algebra M is the map $\varphi: M_+ \to [0, \infty]$ with the properties

$$\varphi(x+y) = \varphi(x) + \varphi(y), \quad \varphi(\lambda x) = \lambda \varphi(x), \quad (x, y \in M_+, \ \lambda \ge 0).$$

- φ is said to be semifinite if $p_{\varphi} = \{x \in M_+ : \varphi(x) < +\infty\}$ is dense in M_+ with respect to the wo-topology (or equivalently, $\overline{n_{\varphi}}^{wo} = M$, where $n_{\varphi} = \{x \in M : \varphi(x^*x) < \infty\}$).
- φ is said to be faithful if for each $x \in M_+$, $\varphi(x) \neq 0$.

• A weight on a von Neumann algebra M is the map $\varphi: M_+ \to [0, \infty]$ with the properties

$$\varphi(x+y) = \varphi(x) + \varphi(y), \quad \varphi(\lambda x) = \lambda \varphi(x), \quad (x, y \in M_+, \ \lambda \ge 0).$$

- φ is said to be semifinite if $p_{\varphi} = \{x \in M_+ : \varphi(x) < +\infty\}$ is dense in M_+ with respect to the wo-topology (or equivalently, $\overline{n_{\varphi}}^{wo} = M$, where $n_{\varphi} = \{x \in M : \varphi(x^*x) < \infty\}$).
- φ is said to be faithful if for each $x \in M_+$, $\varphi(x) \neq 0$.
- ullet φ is said to be normal if for each increasing bounded net (x_i) in M_+

$$\varphi(\sup x_i) = \sup \varphi(x_i).$$

A quadruple $\mathbb{G}=(M,\Delta,\varphi,\psi)$ is called a locally compact quantum group in which

• (M, Δ) is a Hopf-von Neumann algebra,

A quadruple $\mathbb{G}=(M,\Delta,\varphi,\psi)$ is called a locally compact quantum group in which

- \bullet (M, Δ) is a Hopf-von Neumann algebra,
- ullet φ and ψ are left and right Haar weight, i.e. n.s.f weights with

$$\varphi((\omega \otimes i)\Delta(x)) = \omega(1)\varphi(x), \quad x \in m_{\varphi}, \omega \in M_*$$
$$\psi((i \otimes \omega)\Delta(x)) = \omega(1)\psi(x), \quad x \in m_{\psi}, \omega \in M_*.$$

Multipilicative unitary

Theorem

There exists a unitary $W \in B(H_{\varphi} \otimes H_{\varphi})$ such that

$$W^*(\lambda_{\varphi}(a) \otimes \lambda_{\varphi}(b)) = (\lambda_{\varphi} \otimes \lambda_{\varphi})(\Delta(b)(a \otimes 1)), \quad a, b \in n_{\varphi}$$

where λ_{φ} is the GNS map induced by φ and H_{φ} is the Hilbert space that forms by GNS map. Moreover

$$W_{12}W_{13}W_{23} = W_{23}W_{12}.$$

Theorem

There exists a unitary $V \in B(H_{\psi} \otimes H_{\psi})$ such that

$$V(\lambda_{\psi}(a) \otimes \lambda_{\psi}(b)) = (\lambda_{\psi} \otimes \lambda_{\psi})(\Delta(a)(1 \otimes b)), \quad a, b \in n_{\psi}$$

where λ_{ψ} is the GNS map induced by ψ and H_{ψ} is the Hilbert space that forms by GNS map. Moreover

$$V_{12}V_{13}V_{23} = V_{23}V_{12}.$$

Example

$$\Delta_a: L^{\infty}(G) \to L^{\infty}(G) \overline{\otimes} L^{\infty}(G) = L^{\infty}(G \times G)$$

$$\Delta_a(f)(s,t) = f(st), \quad f \in L^{\infty}(G), s, t \in G.$$

 Δ_a is a comultuplication on $L^\infty(G)$ and $\mathbb{G}_a=(L^\infty(G),\Delta_a,\varphi_a,\psi_a)$ is a locally compact quantum group where φ_a and ψ_a are the left and the right Haar measures on G, respectively.

Moreover, each commutative locally compact quantum group \mathbb{G} (i.e. the underlying von Neumann algebra M is commutative) is of the form \mathbb{G}_a for some locally compact group G.

Classic Case

For a locally compact group $G,\,W$ and V are characterized by the following rules.

$$W: L^2(G) \otimes_2 L^2(G) = L^2(G \times G) \to L^2(G \times G)$$
$$W(\zeta)(r,s) = \zeta(r,r^{-1}s), \quad \zeta \in L^2(G \times G), r,s \in G$$

Classic Case

For a locally compact group $G,\,W$ and V are characterized by the following rules.

$$W: L^{2}(G) \otimes_{2} L^{2}(G) = L^{2}(G \times G) \to L^{2}(G \times G)$$

$$W(\zeta)(r,s) = \zeta(r,r^{-1}s), \quad \zeta \in L^{2}(G \times G), r,s \in G$$

$$V: L^{2}(G) \otimes_{2} L^{2}(G) = L^{2}(G \times G) \to L^{2}(G \times G)$$

$$V(\zeta)(r,s) = \zeta(rs,s), \quad \zeta \in L^{2}(G \times G), r,s \in G.$$

Example

Let G be a locally compact group.

$$\begin{split} \widehat{\Delta_a} = & \Delta_s : \mathsf{vN}(G) \to \mathsf{vN}(G) \overline{\otimes} \mathsf{vN}(G) = \ \mathsf{vN}(G \times G) \\ & \Delta_s(\lambda_g) = \lambda_g \otimes \lambda_g. \end{split}$$

 Δ_s is a comultiplication on vN(G). There exists a n.s.f. weight φ_s on vN(G) which is right and left invariant. $(\text{vN}(G), \Delta_s, \varphi_s)$ is a locally compact quantum group.

Moreover each cocommutative locally compact quantum group $\mathbb G$ (i.e. $\sigma\circ\Delta=\Delta$, in which σ is flip map) is of the form $\mathbb G=\mathbb G_s=(\mathrm{vN}(G),\Delta_s,\varphi_s)$ for some locally compact group G.

•
$$L^{\infty}(\mathbb{G}) = M$$

•
$$L^{\infty}(\mathbb{G}) = M$$

•
$$L^1(\mathbb{G}) = M_*$$

•
$$L^{\infty}(\mathbb{G}) = M$$

•
$$L^1(\mathbb{G}) = M_*$$

$$L^2(\mathbb{G}) = H_{\varphi} = H_{\psi} = H_{\widehat{\varphi}} = H_{\widehat{\varphi}}$$

•
$$L^{\infty}(\mathbb{G}) = M$$

•
$$L^1(\mathbb{G}) = M_*$$

$$L^2(\mathbb{G}) = H_{\varphi} = H_{\psi} = H_{\widehat{\varphi}} = H_{\widehat{\varphi}}$$

$$C_0(\mathbb{G}) = \overline{\{(i \otimes \omega)W : \omega \in L^1(H_{\varphi})\}}^{\|\cdot\|}$$

•
$$L^{\infty}(\mathbb{G}) = M$$

•
$$L^1(\mathbb{G}) = M_*$$

•
$$L^2(\mathbb{G}) = H_{\varphi} = H_{\psi} = H_{\widehat{\varphi}} = H_{\widehat{\varphi}}$$

•
$$C_0(\mathbb{G}) = \overline{\{(i \otimes \omega)W : \omega \in L^1(H_{\varphi})\}}^{\|\cdot\|}$$

•
$$M(\mathbb{G}) = C_0(\mathbb{G})^*$$

•
$$L^{\infty}(\mathbb{G}) = M$$

•
$$L^1(\mathbb{G}) = M_*$$

•
$$L^2(\mathbb{G}) = H_{\varphi} = H_{\psi} = H_{\widehat{\varphi}} = H_{\widehat{\varphi}}$$

•
$$C_0(\mathbb{G}) = \overline{\{(i \otimes \omega)W : \omega \in L^1(H_{\varphi})\}}^{\|\cdot\|}$$

•
$$M(\mathbb{G}) = C_0(\mathbb{G})^*$$

•
$$M(C_0(\mathbb{G})) = C_b(\mathbb{G}).$$

Function spaces on locally compact groups

Definition

$$ap(G) = \{ f \in C_b(G) : \overline{L_G f} \subseteq C_b(G) \text{ is norm compact} \},$$

Function spaces on locally compact groups

Definition

$$ap(G) = \{ f \in C_b(G) : \overline{L_G f} \subseteq C_b(G) \text{ is norm compact} \},$$

$$wap(G) = \{ f \in C_b(G) : \overline{L_G f}^w \subseteq C_b(G) \text{ is weakly compact} \},$$

Function spaces on locally compact groups

Definition

$$ap(G) = \{ f \in C_b(G) : \overline{L_G f} \subseteq C_b(G) \text{ is norm compact} \},$$

$$wap(G) = \{ f \in C_b(G) : \overline{L_G f}^w \subseteq C_b(G) \text{ is weakly compact} \},$$

$$luc(G) = \{ f \in C_b(G) : x \in G \mapsto L_x f \in C_b(G) \text{ is } \| \cdot \| - \text{continuous} \}.$$

$$ap(G) = \{ f \in L^{\infty}(G) : L_f : L^1(G) \to L^{\infty}(G) \text{ is compact} \},$$

```
\begin{split} ap(G) &= \{f \in L^\infty(G): L_f: L^1(G) \to L^\infty(G) \text{ is compact}\}, \\ wap(G) &= \{f \in L^\infty(G): L_f: L^1(G) \to L^\infty(G) \text{ is weakly compact}\}, \end{split}
```

```
\begin{split} ap(G) &= \{f \in L^\infty(G): L_f: L^1(G) \to L^\infty(G) \text{ is compact}\}, \\ wap(G) &= \{f \in L^\infty(G): \ L_f: L^1(G) \to L^\infty(G) \text{ is weakly compact}\}, \\ luc(G) &= L^\infty(G) \star L^1(G). \end{split}
```

```
\begin{split} ap(G) &= \{f \in L^\infty(G): L_f: L^1(G) \to L^\infty(G) \text{ is compact}\}, \\ wap(G) &= \{f \in L^\infty(G): \ L_f: L^1(G) \to L^\infty(G) \text{ is weakly compact}\}, \\ luc(G) &= L^\infty(G) \star L^1(G). \end{split}
```

where $L_f: L^1(G) \to L^{\infty}(G)$ is defined by $L_f(\mu) = f \star \mu$.

Function spaces on Hopf-von Neumann algebras

$$ap(M_*) = \{x \in M : L_x : M_* \to M \text{ is compact}\},$$

Function spaces on Hopf-von Neumann algebras

$$ap(M_*) = \{x \in M : L_x : M_* \to M \text{ is compact}\},$$

$$wap(M_*) = \{x \in M: L_x: M_* \to M \text{ is weakly compact}\},\$$

Function spaces on Hopf-von Neumann algebras

$$ap(M_*) = \{x \in M : L_x : M_* \to M \text{ is compact}\},$$

$$wap(M_*) = \{x \in M: \ L_x: M_* \to M \ \text{ is weakly compact}\},$$

$$luc(M_*) = \overline{\langle M \star M_* \rangle}.$$

where $L_x: M_* \to M$ is defined by $L_x(\mu) = x \star \mu = (\mu \otimes id)\Delta(x)$.

Function spaces on Hopf-von Neumann algebras

$$ap(M_*)=\{x\in M:\ L_x:M_*\to M\ \text{ is compact}\},$$

$$wap(M_*)=\{x\in M:\ L_x:M_*\to M\ \text{ is weakly compact}\},$$

$$luc(M_*)=\overline{\langle M\star M_*\rangle}.$$

where $L_x: M_* \to M$ is defined by $L_x(\mu) = x \star \mu = (\mu \otimes id)\Delta(x)$.

• All above function spaces are operator system.

• ap(G): C^* -algebra, translation invariant, introverted, amenable

- ap(G): C^* -algebra, translation invariant, introverted, amenable
- wap(G): C^* -algebra, translation invariant, introverted, amenable

- ap(G): C^* -algebra, translation invariant, introverted, amenable
- wap(G): C^* -algebra, translation invariant, introverted, amenable
- luc(G): C^* -algebra, translation invariant, left introverted

- ap(G): C^* -algebra, translation invariant, introverted, amenable
- wap(G): C^* -algebra, translation invariant, introverted, amenable
- luc(G): C^* -algebra, translation invariant, left introverted
- $ap(G) \subseteq wap(G) \subseteq luc(G) \subseteq C_b(G)$

- ap(G): C^* -algebra, translation invariant, introverted, amenable
- wap(G): C^* -algebra, translation invariant, introverted, amenable
- luc(G): C^* -algebra, translation invariant, left introverted
- $ap(G) \subseteq wap(G) \subseteq luc(G) \subseteq C_b(G)$
- wap(G) = luc(G) if and only if G is compact.

- ap(G): C^* -algebra, translation invariant, introverted, amenable
- wap(G): C^* -algebra, translation invariant, introverted, amenable
- luc(G): C^* -algebra, translation invariant, left introverted
- $ap(G) \subseteq wap(G) \subseteq luc(G) \subseteq C_b(G)$
- wap(G) = luc(G) if and only if G is compact.
- $luc(G) = L^{\infty}(G)$ if and only if G is discrete.

Recent Developments

 \bullet M. Daws (2010): ap(M(G)) and wap(M(G)) are $C^*-{\sf algebras}.$

$Recent\ Developments$

- M. Daws (2010): ap(M(G)) and wap(M(G)) are C^* -algebras.
- M. Daws (2010): Let (M,Δ) be a commutative Hopf-von Neumann algebra. Then $ap(M_*)$ and $wap(M_*)$ are C^* -algebras.

$Recent\ Developments$

- M. Daws (2010): ap(M(G)) and wap(M(G)) are C^* -algebras.
- M. Daws (2010): Let (M,Δ) be a commutative Hopf-von Neumann algebra. Then $ap(M_*)$ and $wap(M_*)$ are C^* -algebras.
- P. Salmi (2010): If V is regular then, $luc(L^1(\mathbb{G})) = \{x \in C_b(\mathbb{G}) : \Delta(x) \in M(C_0(\mathbb{G}) \otimes C_b(\mathbb{G}))\}$ and so $luc(L^1(\mathbb{G}))$ is a C^* -algebra.

Recent Developments

- M. Daws (2010): ap(M(G)) and wap(M(G)) are C^* -algebras.
- M. Daws (2010): Let (M,Δ) be a commutative Hopf-von Neumann algebra. Then $ap(M_*)$ and $wap(M_*)$ are C^* -algebras.
- P. Salmi (2010): If V is regular then, $luc(L^1(\mathbb{G})) = \{x \in C_b(\mathbb{G}) : \Delta(x) \in M(C_0(\mathbb{G}) \otimes C_b(\mathbb{G}))\}$ and so $luc(L^1(\mathbb{G}))$ is a C^* -algebra.
- Runde (2010): Let \mathbb{G} be a coamenable locally compact quantum group. Then $luc(L^1(\mathbb{G})) = \{x : \Delta(x) \in QM(C_0(\mathbb{G}) \otimes C_b(\mathbb{G}))\}.$

$Recent\ Developments$

• Runde (2010): Let $\mathbb G$ be a coamenable locally compact quantum group such that $C_0(\mathbb G)$ has a bounded approximate identity in it's center. Then $luc(L^1(\mathbb G))$ is a C^* -algebra.

$Recent\ Developments$

- Runde (2010): Let \mathbb{G} be a coamenable locally compact quantum group such that $C_0(\mathbb{G})$ has a bounded approximate identity in it's center. Then $luc(L^1(\mathbb{G}))$ is a C^* -algebra.
- Neufang (2012): If V is semiregular then $luc(L^1(\mathbb{G}))$ is a C^* -algebra.

Recent Developments

- Runde (2010): Let $\mathbb G$ be a coamenable locally compact quantum group such that $C_0(\mathbb G)$ has a bounded approximate identity in it's center. Then $luc(L^1(\mathbb G))$ is a C^* -algebra.
- Neufang (2012): If V is semiregular then $luc(L^1(\mathbb{G}))$ is a C^*- algebra.
- Runde (2012): Runde introduced completely almost periodic functions on a Hopf-von Neumann algebra, denoted by $cap(M_*)$ and proved that for an injective Hopf-von Neumann algebra $cap(M_*) = \{x \in M : \Delta(x) \in M \otimes M\}.$

Recent Developments

- Runde (2010): Let \mathbb{G} be a coamenable locally compact quantum group such that $C_0(\mathbb{G})$ has a bounded approximate identity in it's center. Then $luc(L^1(\mathbb{G}))$ is a C^* -algebra.
- Neufang (2012): If V is semiregular then $luc(L^1(\mathbb{G}))$ is a C^*- algebra.
- Runde (2012): Runde introduced completely almost periodic functions on a Hopf-von Neumann algebra, denoted by $cap(M_*)$ and proved that for an injective Hopf-von Neumann algebra $cap(M_*) = \{x \in M : \Delta(x) \in M \otimes M\}.$
- Runde (2012): If (M, Δ) is a subhomogeneous Hopf-von Neumann algebra, then $wap(M_*)$ is a C^* -algebra.

$Recent\ Developments$

• M. Daws (2016): $\{x \in wap(M_*) : x^*x, xx^* \in wap(M_*)\}$ is the biggest C^* -algebra in $wap(M_*)$.

$Recent\ Developments$

• M. Daws (2016): $\{x \in wap(M_*) : x^*x, xx^* \in wap(M_*)\}$ is the biggest C^* -algebra in $wap(M_*)$.

Recent Developments

- M. Daws (2016): $\{x \in wap(M_*) : x^*x, xx^* \in wap(M_*)\}$ is the biggest C^* -algebra in $wap(M_*)$.
- M. Das and M. Daws (2016): Eberlin C^* -algebra of locally compact quantum group \mathbb{G} , denoted by $E(\mathbb{G})$, is amenable. (Classically, E(G) is a subspace of wap(G).)

Recent Developments

- M. Daws (2016): $\{x \in wap(M_*) : x^*x, xx^* \in wap(M_*)\}$ is the biggest C^* -algebra in $wap(M_*)$.
- M. Das and M. Daws (2016): Eberlin C^* -algebra of locally compact quantum group \mathbb{G} , denoted by $E(\mathbb{G})$, is amenable. (Classically, E(G) is a subspace of wap(G).)
- H. R. Ebrahimi Vishki, M. Ramezanpour, M. Neufang, Z.-J. Ruan, 7h. Hu

Completely weakly almost periodic

Definition

• Let I be a cardinal. An element $x \in L^{\infty}(\mathbb{G})$ is called (I,1)—weakly almost periodic if $L^{(I,1)}_x: K_{I,1}(M_*) \to K_{I,1}(M)$ is weakly compact. (1,I)—weakly almost periodicity is defined similarly. x is called completely weakly almost periodic if it is (1,I)—weakly almost periodic and (I,1)—weakly almost periodic for all cardinal I.

Completely weakly almost periodic

Definition

- Let I be a cardinal. An element $x \in L^{\infty}(\mathbb{G})$ is called (I,1)—weakly almost periodic if $L^{(I,1)}_x: K_{I,1}(M_*) \to K_{I,1}(M)$ is weakly compact. (1,I)—weakly almost periodicity is defined simlarly. x is called completely weakly almost periodic if it is (1,I)—weakly almost periodic and (I,1)—weakly almost periodic for all cardinal I.
- We set $cwap(M_*)$ to be the set of all completely almost periodic element of M.

 $cwap(M_*)$ is the biggest C^* -algebra in $wap(M_*)$.

 $cwap(M_*)$ is the biggest C^* -algebra in $wap(M_*)$.

Corollary

Let (M, Δ) be a commutative Hopf-von Neumann algebra. Then $cwap(M_*) = wap(M_*)$.

Closed subspace $X \subseteq C_b(\mathbb{G})$ is called

• left (resp. right) invariant if $\Delta(x) \in M(C_0(\mathbb{G}) \otimes X)$ (resp. $\Delta(x) \in M(X \otimes C_0(\mathbb{G}))$).

Closed subspace $X \subseteq C_b(\mathbb{G})$ is called

- left (resp. right) invariant if $\Delta(x) \in M(C_0(\mathbb{G}) \otimes X)$ (resp. $\Delta(x) \in M(X \otimes C_0(\mathbb{G}))$).
- Quasi left (resp. right) invariant if $\Delta(x) \in QM(C_0(\mathbb{G}) \otimes X)$ (resp. $\Delta(x) \in QM(X \otimes C_0(\mathbb{G}))$).

Closed subspace $X \subseteq C_b(\mathbb{G})$ is called

- left (resp. right) invariant if $\Delta(x) \in M(C_0(\mathbb{G}) \otimes X)$ (resp. $\Delta(x) \in M(X \otimes C_0(\mathbb{G}))$).
- Quasi left (resp. right) invariant if $\Delta(x) \in QM(C_0(\mathbb{G}) \otimes X)$ (resp. $\Delta(x) \in QM(X \otimes C_0(\mathbb{G}))$).

Definition

• A right $L^1(\mathbb{G})$ -module $X\subseteq L^\infty(\mathbb{G})$ is called left introverted if $\nu\star x\in X$ for every $\nu\in X^*$ and $x\in X$, where $\langle \nu\star x,\mu\rangle=\langle \nu,x\star\mu\rangle,\;(\mu\in L^1(\mathbb{G})).$

Closed subspace $X \subseteq C_b(\mathbb{G})$ is called

- left (resp. right) invariant if $\Delta(x) \in M(C_0(\mathbb{G}) \otimes X)$ (resp. $\Delta(x) \in M(X \otimes C_0(\mathbb{G}))$).
- Quasi left (resp. right) invariant if $\Delta(x) \in QM(C_0(\mathbb{G}) \otimes X)$ (resp. $\Delta(x) \in QM(X \otimes C_0(\mathbb{G}))$).

Definition

- A right $L^1(\mathbb{G})$ -module $X\subseteq L^\infty(\mathbb{G})$ is called left introverted if $\nu\star x\in X$ for every $\nu\in X^*$ and $x\in X$, where $\langle \nu\star x,\mu\rangle=\langle \nu,x\star\mu\rangle,\;(\mu\in L^1(\mathbb{G})).$
- In this case one can construct a multipilcation on X^* by $\langle \nu \star \nu', x \rangle = \langle \nu, \nu' \star x \rangle$.

Closed subspace $X \subseteq C_b(\mathbb{G})$ is called

- left (resp. right) invariant if $\Delta(x) \in M(C_0(\mathbb{G}) \otimes X)$ (resp. $\Delta(x) \in M(X \otimes C_0(\mathbb{G}))$).
- Quasi left (resp. right) invariant if $\Delta(x) \in QM(C_0(\mathbb{G}) \otimes X)$ (resp. $\Delta(x) \in QM(X \otimes C_0(\mathbb{G}))$).

Definition

- A right $L^1(\mathbb{G})$ -module $X\subseteq L^\infty(\mathbb{G})$ is called left introverted if $\nu\star x\in X$ for every $\nu\in X^*$ and $x\in X$, where $\langle \nu\star x,\mu\rangle=\langle \nu,x\star\mu\rangle,\;(\mu\in L^1(\mathbb{G})).$
- In this case one can construct a multiplication on X^* by $\langle \nu \star \nu', x \rangle = \langle \nu, \nu' \star x \rangle$.
- For a left $L^1(\mathbb{G})$ -module $X\subseteq L^\infty(\mathbb{G})$ which is right introverted, one can construct multiplication * on X^* by $\langle \nu*\nu',x\rangle=\langle \nu',x*\nu\rangle$.

Let $\mathbb G$ be a coamenable locally compact quantum group. The following statements hold:

•
$$ap(L^1(\mathbb{G})) = \{x : \Delta(x) \in QM(C_0(\mathbb{G}) \otimes ap(L^1(\mathbb{G}))) \cap QM(ap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

Let $\mathbb G$ be a coamenable locally compact quantum group. The following statements hold:

```
• ap(L^1(\mathbb{G})) = \{x : \Delta(x) \in QM(C_0(\mathbb{G}) \otimes ap(L^1(\mathbb{G}))) \cap QM(ap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}
```

•
$$wap(L^1(\mathbb{G})) = \{x : \Delta(x) \in QM(C_0(\mathbb{G}) \otimes wap(L^1(\mathbb{G}))) \cap QM(wap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

Let $\mathbb G$ be a coamenable locally compact quantum group. The following statements hold:

- $ap(L^1(\mathbb{G})) = \{x : \Delta(x) \in QM(C_0(\mathbb{G}) \otimes ap(L^1(\mathbb{G}))) \cap QM(ap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$
- $wap(L^1(\mathbb{G})) = \{x : \Delta(x) \in QM(C_0(\mathbb{G}) \otimes wap(L^1(\mathbb{G}))) \cap QM(wap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$
- $luc(L^1(\mathbb{G})) = \{x : \Delta(x) \in QM(C_0(\mathbb{G}) \otimes C_b(G))\}.$

•
$$ap(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes ap(L^1(\mathbb{G}))) \cap M(ap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

•
$$ap(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes ap(L^1(\mathbb{G}))) \cap M(ap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

•
$$wap(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes wap(L^1(\mathbb{G}))) \cap M(wap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

•
$$ap(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes ap(L^1(\mathbb{G}))) \cap M(ap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

•
$$wap(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes wap(L^1(\mathbb{G}))) \cap M(wap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

•
$$luc(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes C_b(G))\}.$$

•
$$ap(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes ap(L^1(\mathbb{G}))) \cap M(ap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

•
$$wap(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes wap(L^1(\mathbb{G}))) \cap M(wap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

•
$$luc(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes C_b(G))\}.$$

•
$$luc(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes K(L^2(G)))\}.$$

Let \mathbb{G} be a coamenable locally compact quantum group such that either V is regular or $C_0(\mathbb{G})$ has a bounded approximate identity in it's center, then the following hold.

•
$$ap(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes ap(L^1(\mathbb{G}))) \cap M(ap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

•
$$wap(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes wap(L^1(\mathbb{G}))) \cap M(wap(L^1(\mathbb{G})) \otimes C_0(\mathbb{G}))\}$$

•
$$luc(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes C_b(G))\}.$$

•
$$luc(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes K(L^2(G)))\}.$$

•
$$luc(L^1(\mathbb{G})) = \{x : \Delta(x) \in M(C_0(\mathbb{G}) \otimes luc(L^1(G)))\}.$$

Amenablity of $wap(L^1(\mathbb{G}))$

Definition

We say $\mathbb G$ has property (WS) if for each idempotent states $\nu,\omega\in wap(L^1(\mathbb G))^*$ the equation $\nu\star\omega=\omega$ implies $\omega\star\nu=\omega$.

Amenablity of $wap(L^1(\mathbb{G}))$

Definition

We say $\mathbb G$ has property (WS) if for each idempotent states $\nu, \omega \in wap(L^1(\mathbb G))^*$ the equation $\nu \star \omega = \omega$ implies $\omega \star \nu = \omega$.

Theorem

Let \mathbb{G} has property (WS) then $wap(L^1(\mathbb{G}))$ is amenable.

Let \mathbb{G} be a coamenable locally compact quantum group such that there exists $a \in Z(C_0(\mathbb{G}))$ with $\epsilon(a) \neq 0$. Then $luc(L^1(\mathbb{G}))$ is a C^* -algebra.

Let $\mathbb G$ be a locally compact quantum group and $L^1(\mathbb G)$ be strongly Arens irregular. The following statements hold:

lacksquare lacksquare is compact if and only if $wap(L^1(\mathbb{G})) = luc(L^1(\mathbb{G}))$.

Let $\mathbb G$ be a locally compact quantum group and $L^1(\mathbb G)$ be strongly Arens irregular. The following statements hold:

- lacksquare lacksquare is compact if and only if $wap(L^1(\mathbb{G})) = luc(L^1(\mathbb{G}))$.
- \bigcirc \mathbb{G} is discrete if and only if $luc(L^1(\mathbb{G})) = L^{\infty}(\mathbb{G})$.

Let $\mathbb G$ be a locally compact quantum group and $L^1(\mathbb G)$ be strongly Arens irregular. The following statements hold:

- lacksquare lacksquare is compact if and only if $wap(L^1(\mathbb{G})) = luc(L^1(\mathbb{G}))$.
- igotimes $\Bbb G$ is discrete if and only if $luc(L^1(\Bbb G))=L^\infty(\Bbb G)$.
- lacklosep lacklosep is finite if and only if $wap(L^1(\Bbb G))=L^\infty(\Bbb G)$.

Definition

 $L^1(\mathbb{G})$ is weakly Arens irregular if $Z(L^1(\mathbb{G})^{**}) \subseteq L^1(\mathbb{G})^{**} \cdot C_0(\mathbb{G})$.

Definition

 $L^1(\mathbb{G}) \text{ is weakly Arens irregular if } Z(L^1(\mathbb{G})^{**}) \subseteq L^1(\mathbb{G})^{**} \cdot C_0(\mathbb{G}).$

Theorem

If $luc(L^1(\mathbb{G})) \subseteq wap(L^1(\mathbb{G}))$, $L^1(\mathbb{G})$ is weakly Arens irregular and $wap(L^1(\mathbb{G}))$ is amenable, then \mathbb{G} is compact.

ThAnk yOu for youR atTenTiOn

THANK YOU FOR YOUR ATTENTION

A Kawada-Itô theorem for locally compact quantum groups

Fatemeh Khosravi

Institute for Research in Fundamental Sciences (IPM)

The 6ht Workshop on Operator Algebras and their Applications January 6, 2019

A brief history

Let $M(G) \cong C_0(G)^*$ be the space of complex Radon measures on a locally compact group G. We define the convolution of two measures $\mu, \nu \in M(G)$ as follows:

$$\mu * \nu(f) = \int_{G} f(xy) d\mu(x) d\nu(y)$$

A state $\mu \in C_0(G)^*$ is called idempotent state if $\mu * \mu = \mu$.

Example

Let G be a compact group. Then the Haar state of G is an idempotent state.

Kawada-Itô theorem

Theorem (Kawada-Itô, 1940)

Let G be a compact group. Then every idempotent state $\omega \in M(G)$ arises as a Haar state of a closed subgroup.

Kawada-Itô theorem

Theorem (Kawada-Itô, 1940)

Let G be a compact group. Then every idempotent state $\omega \in M(G)$ arises as a Haar state of a closed subgroup.

Theorem (Generalized Kawada-Itô theorem)

Let G be a locally compact group. Then every idempotent state $\omega \in M(G)$ arises as a Haar state of a compact subgroup.

Locally compact quantum group

The theory of locally compact quantum group in a language of Operator Algebra have been successfully introduced and studied by J. Kustermans and S.Vaes in 2000. There are three different approaches to the theory of locally compact quantum groups:

- 1 von Neumann algebraic approach,
- **2** reduced C*-algebraic approach,
- **3** universal C*-algebraic approach.

But they are equivalent in the sense that they study a same object which we will denote it by \mathbb{G} . There are also a standard procedures to pass from one to the other.

Locally compact quantum groups - Von Neumann algebraic version

A von Neumann algebraic locally compact quantum group is a quadruple $\mathbb{G} = (L^{\infty}(\mathbb{G}), \Delta_{\mathbb{G}}, \varphi_{\mathbb{G}}, \psi_{\mathbb{G}})$, where

- $L^{\infty}(\mathbb{G})$ is a von Neumann algebra,
- $\Delta_{\mathbb{G}}$: $L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$, is an injective, unital, *-homomorphism which satisfies the coassociativity condition, i.e. $(\mathbb{1} \otimes \Delta_{\mathbb{G}})\Delta_{\mathbb{G}} = (\Delta_{\mathbb{G}} \otimes \mathbb{1})\Delta_{\mathbb{G}}$
- $\varphi_{\mathbb{G}}$ and $\psi_{\mathbb{G}}$ are normal semifinite faithful weights on $L^{\infty}(\mathbb{G})$ such that:

$$egin{aligned} (\mathrm{id}\otimesarphi_\mathbb{G})\Delta_\mathbb{G} &= \mathbb{1}arphi_\mathbb{G} \ (\psi_\mathbb{G}\otimes\mathrm{id})\Delta_\mathbb{G} &= \mathbb{1}\psi_\mathbb{G} \end{aligned}$$

 $arphi_{\mathbb{G}}$ and $\psi_{\mathbb{G}}$ are called left and right Haar weights respectively.

Locally compact quantum groups- Reduced C^* -algebraic version

A reduced C^* -algebraic locally compact quantum group is a quadruple $\mathbb{G}=(\mathsf{C}_0(\mathbb{G}),\Delta_\mathbb{G},\varphi_\mathbb{G},\psi_\mathbb{G})$, where $\mathsf{C}_0(\mathbb{G})$ is a C^* -algebra with a coassociative map

$$\Delta_{\mathbb{G}}:\mathsf{C}_0(\mathbb{G}) o\mathsf{M}(\mathsf{C}_0(\mathbb{G})\otimes\mathsf{C}_0(\mathbb{G})),$$

such that

$$\begin{split} \mathsf{C}_0(\mathbb{G}) \otimes \mathsf{C}_0(\mathbb{G}) &= (\mathbb{1} \otimes \mathsf{C}_0(\mathbb{G})) \Delta_{\mathbb{G}}(\mathsf{C}_0(\mathbb{G})) \\ &= (\mathsf{C}_0(\mathbb{G}) \otimes \mathbb{1}) \Delta_{\mathbb{G}}(\mathsf{C}_0(\mathbb{G})), \end{split}$$

and $\varphi_{\mathbb{G}}$ and $\psi_{\mathbb{G}}$ are left and right invariant faithful, proper, KMS-weights on $C_0(\mathbb{G})$ respectively.

Locally compact quantum groups - Universal C*-algebraic version

The universal version $C_0^u(\mathbb{G})$ of \mathbb{G} is equipped with a comultiplication such that

$$egin{aligned} \mathsf{C}^{\it u}_0(\mathbb{G})\otimes\mathsf{C}^{\it u}_0(\mathbb{G})&=(\mathbb{1}\otimes\mathsf{C}^{\it u}_0(\mathbb{G}))\Delta_{\mathbb{G}}(\mathsf{C}^{\it u}_0(\mathbb{G}))\ &=(\mathsf{C}^{\it u}_0(\mathbb{G})\otimes\mathbb{1})\Delta^{\it u}_{\mathbb{G}}(\mathsf{C}_0(\mathbb{G})), \end{aligned}$$

Left and right Haar weights on are not faithful. But admits a *-homomorphism $\epsilon:\to\mathbb{C}$ such that

$$(\epsilon \otimes \mathrm{id})\Delta^u_{\mathbb{G}} = \mathrm{id} = (\mathrm{id} \otimes \epsilon)\Delta^u_{\mathbb{G}}$$

Locally compact quantum groups - Universal C*-algebraic version

The universal version $C_0^u(\mathbb{G})$ of \mathbb{G} is equipped with a comultiplication such that

$$\begin{split} \mathsf{C}_0^{\textit{u}}(\mathbb{G}) \otimes \mathsf{C}_0^{\textit{u}}(\mathbb{G}) &= (\mathbb{1} \otimes \mathsf{C}_0^{\textit{u}}(\mathbb{G})) \Delta_{\mathbb{G}}(\mathsf{C}_0^{\textit{u}}(\mathbb{G})) \\ &= (\mathsf{C}_0^{\textit{u}}(\mathbb{G}) \otimes \mathbb{1}) \Delta_{\mathbb{G}}^{\textit{u}}(\mathsf{C}_0(\mathbb{G})), \end{split}$$

Left and right Haar weights on are not faithful. But admits a *-homomorphism $\epsilon:\to\mathbb{C}$ such that

$$(\epsilon \otimes \mathrm{id})\Delta^u_\mathbb{G} = \mathrm{id} = (\mathrm{id} \otimes \epsilon)\Delta^u_\mathbb{G}$$

The comultiplication $\Delta^u_{\mathbb{G}}$ yields an algebra structure on $C^u_0(\mathbb{G})^*$ in fact for $\mu, \nu \in C^u_0(\mathbb{G})^*$,

$$\mu * \nu := (\mu \otimes \nu) \Delta^{u}_{\mathbb{G}}$$

200

A locally compact quantum group $\mathbb G$ is a compact quantum group if one of the following equivalent conditions is satisfied:

- 1 the Haar weights are finite,
- $\mathbf{C}_0(\mathbb{G})$ is unital,
- $\mathsf{C}^{\mathit{u}}_0(\mathbb{G})$ is unital.

 $\mathsf{Theorem}$

A locally compact quantum group \mathbb{G} is a compact quantum group if one of the following equivalent conditions is satisfied:

- 1 the Haar weights are finite,
- $C_0(\mathbb{G})$ is unital,
- $C_0^u(\mathbb{G})$ is unital.

Definition

Let \mathbb{G} be a locally compact quantum group. A state $\omega \in C_0^u(\mathbb{G})^*$ is called an idempotent state if $\omega * \omega = \omega$.

. . .

 $\mathsf{Theorem}$

A locally compact quantum group $\mathbb G$ is a compact quantum group if one of the following equivalent conditions is satisfied:

- 1 the Haar weights are finite,
- $\mathbf{C}_0(\mathbb{G})$ is unital,
- $\mathbf{C}_0^u(\mathbb{G})$ is unital.

Definition

Let \mathbb{G} be a locally compact quantum group. A state $\omega \in C_0^u(\mathbb{G})^*$ is called an idempotent state if $\omega * \omega = \omega$.

Example

The Haar state of a compact quantum group \mathbb{G} is an idempotent state.

Definition

Let $\mathbb G$ and $\mathbb H$ be locally compact quantum groups. Then $\mathbb H$ is said to be a closed quantum subgroup of $\mathbb G$ in the sense of Woronowicz if there exists a surjective *-homomorphism $\pi:C_0^u(\mathbb G)\to C_0^u(\mathbb H)$ which commutes the comultiplications, i.e.

$$(\pi \otimes \pi) \circ \Delta_{\mathbb{G}} = \Delta_{\mathbb{H}} \circ \pi.$$

Definition

Let \mathbb{G} and \mathbb{H} be locally compact quantum groups. Then \mathbb{H} is said to be a closed quantum subgroup of G in the sense of Woronowicz if there exists a surjective *-homomorphism $\pi: C_0^u(\mathbb{G}) \to C_0^u(\mathbb{H})$ which commutes the comultiplications, i.e.

$$(\pi \otimes \pi) \circ \Delta_{\mathbb{G}} = \Delta_{\mathbb{H}} \circ \pi.$$

Example

Let \mathbb{H} be a (closed) compact quantum subgroup of \mathbb{G} . Then $\mathbf{h}_{\mathbb{H}}$ is an idempotent state on \mathbb{G} .

Definition

Let $\mathbb G$ and $\mathbb H$ be locally compact quantum groups. Then $\mathbb H$ is said to be a closed quantum subgroup of $\mathbb G$ in the sense of Woronowicz if there exists a surjective *-homomorphism $\pi: C_0^u(\mathbb G) \to C_0^u(\mathbb H)$ which commutes the comultiplications, i.e.

$$(\pi \otimes \pi) \circ \Delta_{\mathbb{G}} = \Delta_{\mathbb{H}} \circ \pi.$$

Example

Let $\mathbb H$ be a (closed) compact quantum subgroup of $\mathbb G$. Then $h_{\mathbb H}$ is an idempotent state on $\mathbb G$.

Question

Can we characterize idempotent states on locally compact quantum groups with Haar states of compact quantum subgroups?

Definition

Let $\mathbb G$ and $\mathbb H$ be locally compact quantum groups. Then $\mathbb H$ is said to be a closed quantum subgroup of $\mathbb G$ in the sense of Woronowicz if there exists a surjective *-homomorphism $\pi: C_0^u(\mathbb G) \to C_0^u(\mathbb H)$ which commutes the comultiplications, i.e.

$$(\pi \otimes \pi) \circ \Delta_{\mathbb{G}} = \Delta_{\mathbb{H}} \circ \pi.$$

Example

Let $\mathbb H$ be a (closed) compact quantum subgroup of $\mathbb G$. Then $h_{\mathbb H}$ is an idempotent state on $\mathbb G$.

Question

Can we characterize idempotent states on locally compact quantum groups with Haar states of compact quantum subgroups? No

Counterexample

Example (Pal, 1996)

Let $\mathbb{G} = (A, \Delta)$ be the 8-dimensional Kac-Paljutkin finite quantum group, where $A = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus M_2(\mathbb{C})$.

Counterexample

Example (Pal, 1996)

Let $\mathbb{G}=(A,\Delta)$ be the 8-dimensional Kac-Paljutkin finite quantum group, where $A=\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{M}_2(\mathbb{C})$. Let

$$e_k = \delta_{1k} \oplus \delta_{2k} \oplus \delta_{3k} \oplus \delta_{4k} \oplus \begin{bmatrix} \delta_{5k} & \delta_{8k} \\ \delta_{7k} & \delta_{6k} \end{bmatrix}$$
, $k = 1, \dots, 8$,

where δ denotes the Kronecker delta. Then $\{e_1, e_2, \cdots, e_8\}$ form a basis for A.

740

Counterexample

Example (Pal, 1996)

Let $\mathbb{G}=(A,\Delta)$ be the 8-dimensional Kac-Paljutkin finite quantum group, where $A=\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus M_2(\mathbb{C})$. Let

$$e_k = \delta_{1k} \oplus \delta_{2k} \oplus \delta_{3k} \oplus \delta_{4k} \oplus \begin{bmatrix} \delta_{5k} & \delta_{8k} \\ \delta_{7k} & \delta_{6k} \end{bmatrix}$$
, $k = 1, \dots, 8$,

where δ denotes the Kronecker delta. Then $\{e_1,e_2,\cdots,e_8\}$ form a basis for A.Let ρ_k be the functional $\rho_k(\sum \alpha_i e_i) = \alpha_k$, then $\omega = \frac{1}{4}(\rho_1 + \rho_4) + \frac{1}{2}\rho_6$ is an idempotent state on A.

م) بر رم

Counterexample

Example (Pal, 1996)

Let $\mathbb{G}=(A,\Delta)$ be the 8-dimensional Kac-Paljutkin finite quantum group, where $A=\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{M}_2(\mathbb{C})$. Let

$$e_k = \delta_{1k} \oplus \delta_{2k} \oplus \delta_{3k} \oplus \delta_{4k} \oplus \begin{bmatrix} \delta_{5k} & \delta_{8k} \\ \delta_{7k} & \delta_{6k} \end{bmatrix}$$
, $k = 1, \dots, 8$,

where δ denotes the Kronecker delta. Then $\{e_1,e_2,\cdots,e_8\}$ form a basis for A.Let ρ_k be the functional $\rho_k(\sum \alpha_i e_i) = \alpha_k$, then $\omega = \frac{1}{4}(\rho_1 + \rho_4) + \frac{1}{2}\rho_6$ is an idempotent state on A. Since the null space of ω is not an ideal,

$$J_{\omega} = \{ x \in A \, | \, \omega(x^*x) = 0 \} = \langle e_2, e_3, e_5, e_7 \rangle, J_{\omega}^* = \{ x \in A \, | \, \omega(xx^*) = 0 \} = \langle e_2, e_3, e_5, e_8 \rangle.$$

Haar idempotents

Definition

Let ω be an idempotent state on $C_0^u(\mathbb{G})$. The ω is called Haar idempotent if there exists a compact quantum subgroup \mathbb{H} of \mathbb{G} with an associated map $\pi: C_0^u(\mathbb{G}) \to C_0^u(\mathbb{H})$, such that $\omega = \mathbf{h}_{\mathbb{H}} \circ \pi$.

Haar idempotents

Definition

Let ω be an idempotent state on $C_0^u(\mathbb{G})$. The ω is called Haar idempotent if there exists a compact quantum subgroup \mathbb{H} of \mathbb{G} with an associated map $\pi: C_0^u(\mathbb{G}) \to C_0^u(\mathbb{H})$, such that $\omega = \mathbf{h}_{\mathbb{H}} \circ \pi$.

Theorem (Salmi-Skalski, 2012)

Let ω be an idempotent state on $C_0^u(\mathbb{G})$. Then the following are equivalent:

- $lue{\omega}$ is Haar idempotent,
- The set $J_{\omega} = \{x \in \mathsf{C}^{\mathit{u}}_0(\mathbb{G}) \, | \, \omega(x^*x) = 0\}$ is an ideal.

Compact quantum hypergroup

Definition (Chapovsky-Vainerman, 1999)

A quadruple (A, Δ, ϵ, R) is a hypergroup structure on a unital C*-algebra A if

- **1** $\Delta: A \to A \otimes_{\min} A$ is a unital, *-preserving, positive, coassociative map,
- **2** $\epsilon: A \to C$ is a linear homomorphism,

$$(\mathrm{id} \otimes \epsilon) \circ \Delta = (\epsilon \otimes \mathrm{id}) \circ \Delta = \mathrm{id},$$

 ${\bf B}$ $R:A\to A$ is an anti-linear *-automorphism with $R^2=\mathrm{id}$, such that

$$\Delta \circ R = \boldsymbol{\sigma} \circ (R \otimes R) \circ \Delta.$$

The *-algebraic structure on the dual space of the C^* -algebra A of a hypergroup structure is given by

$$\xi \cdot \eta(a) := (\xi \otimes \eta) \circ \Delta(a)$$

 $\xi^{\sharp}(a) := \overline{\xi(R(a))}.$

and (A^*, \cdot, \sharp) is a Banach *-algebra.

For a hypergroup structure (A, Δ, ϵ, R) , a state $\varphi \in A^*$ is called a *Haar state* if

$$(\varphi \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \varphi) \circ \Delta = 1_{\mathsf{A}} \varphi.$$

An element $a \in A$ is called positive definite, if for all $\xi \in A^*$,

$$\xi \cdot \xi^{\sharp}(a) \geq 0.$$

For a hypergroup structure (A, Δ, ϵ, R) , a state $\varphi \in A^*$ is called a *Haar state* if

$$(\varphi \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \varphi) \circ \Delta = 1_{\mathcal{A}} \varphi.$$

An element $a \in A$ is called positive definite, if for all $\xi \in A^*$,

$$\xi \cdot \xi^{\sharp}(a) \geq 0.$$

Theorem (Chapovsky-Vainerman, 1999)

Let (A, Δ, ϵ, R) be a hypergroup structure on a C^* -algebra A. Suppose that the linear space spanned by the positive definite elements is dense in A. Then there exists a unique Haar state ν on A.

Compact quantum hypergroup

Definition (Chapovsky-Vainerman, 1999)

Let (A, Δ, ϵ, R) be a hypergroup structure. Then $\mathcal{G} = (A, \Delta, \epsilon, R, \tau_t)$ is called a compact quantum hypergroup if

- **1** Δ is a completely positive map and the linear span of positive definite elements is dense in A,
- 2 $(\tau_t)_{t\in\mathbb{R}}$ is a continuous one-parameter group of automorphisms of A such that:
 - there exist dense *-subalgebras $A_0 \subset A$ and $\tilde{A}_0 \subset A \otimes A$ such that the one-parameter groups $(\tau_t)_{t \in \mathbb{R}}$, $(\tau_t \otimes \mathrm{id})_{t \in \mathbb{R}}$ and $(\mathrm{id} \otimes \tau_t)_{t \in \mathbb{R}}$ can be extended to complex one-parameter groups $(\tau_z)_{z \in \mathbb{C}}$, $(\tau_z \otimes \mathrm{id})_{z \in \mathbb{C}}$ and $(\mathrm{id} \otimes \tau_z)_{z \in \mathbb{C}}$ of automorphisms of the algebras A_0 and \tilde{A}_0 , respectively;

Definition-continued

- - the following relations hold on A_0 for all $z \in \mathbb{C}$,

$$\Delta \circ \tau_z = (\tau_z \otimes \tau_z) \circ \Delta,$$

 $\boldsymbol{h}\tau_z = \boldsymbol{h};$

• there exists $z_0 \in \mathbb{C}$ such that the Haar measure h satisfies the following strong invariance condition, for all $a, b \in A_0$,

$$(\mathrm{id}\otimes \pmb{h})\big((1\otimes \pmb{a})\Delta(\pmb{b})\big)=$$

 $(\mathrm{id}\otimes \pmb{h})\Big(\big((\tau_{z_0}\circ R\otimes\mathrm{id})\circ\Delta(\pmb{a})\big)(1\otimes \pmb{b})\Big);$

3 the Haar measure h is faithful on A_0 .

Definition

Let $\mathbb G$ be a locally compact quantum group. A compact quantum hypergroup $\mathcal G=(A,\Delta,\epsilon,R,\tau_t)$ is called a compact quantum subhypergroup of $\mathbb G$, if there exists a surjective, completely positive map $\pi: C_0^u(\mathbb G) \to A$ which commutes the coproduct.

Definition

Let $\mathbb G$ be a locally compact quantum group. A compact quantum hypergroup $\mathcal G=(A,\Delta,\epsilon,R,\tau_t)$ is called a compact quantum subhypergroup of $\mathbb G$, if there exists a surjective, completely positive map $\pi: C_0^u(\mathbb G) \to A$ which commutes the coproduct.

Example

Let $\mathcal G$ be a compact quantum subhypergroup of $\mathbb G$. Then the Haar state $\pmb{h}_{\mathcal G}$ is an idempotent state on $\mathbb G$.

Definition

Let $\mathbb G$ be a locally compact quantum group. A compact quantum hypergroup $\mathcal G=(A,\Delta,\epsilon,R,\tau_t)$ is called a compact quantum subhypergroup of $\mathbb G$, if there exists a surjective, completely positive map $\pi: C_0^u(\mathbb G) \to A$ which commutes the coproduct.

Example

Let $\mathcal G$ be a compact quantum subhypergroup of $\mathbb G$. Then the Haar state $\pmb h_{\mathcal G}$ is an idempotent state on $\mathbb G$.

Conjecture (Franz-Skalski, 2009)

All idempotent states on locally compact quantum group \mathbb{G} arise (in a canonical way) as Haar states on compact quantum subhypergroups.

History Preliminaries Main Results References

Definition

Let $\mathbb G$ be a locally compact quantum group. A compact quantum hypergroup $\mathcal G=(A,\Delta,\epsilon,R,\tau_t)$ is called a compact quantum subhypergroup of $\mathbb G$, if there exists a surjective, completely positive map $\pi: C_0^u(\mathbb G) \to A$ which commutes the coproduct.

Example

Let $\mathcal G$ be a compact quantum subhypergroup of $\mathbb G$. Then the Haar state $\pmb h_{\mathcal G}$ is an idempotent state on $\mathbb G$.

Theorem (Franz-Skalski, 2009)

Let A be a finite quantum group and let $\omega \in A^*$, be an idempotent state. Then ω arises as a Haar state of a finite quantum subhypergroup of A (in a canonical way).

Operator system

Definition

An operator system is a (norm-closed) unital subspace S of a unital C^* -algebra A which is self-adjoint, that is, $x^* \in S$ if and only if $x \in S$.

Operator system

Definition

An operator system is a (norm-closed) unital subspace S of a unital C^* -algebra A which is self-adjoint, that is, $x^* \in S$ if and only if $x \in S$.

A state on an operator system S is a completely positive linear map $s:S\to\mathbb{C}$, such that s(1)=1.

Given two operator systems $S \subset A$ and $S' \subset A'$, one can define their minimal tensor product as the completion of the algebraic tensor product $S \otimes S' \subset A \otimes A'$ under the following norm

$$||t||_{\min} := ||t||_{\mathrm{C}^*-\min}, \qquad t \in S \otimes S'.$$

Open projections in C*-algebras

Definition

A projection $p \in A^{**}$ is called open if there exists a net $\{a_{\alpha}\} \subset A$ such that $0 \le a_{\alpha} \uparrow p$ in the weak*-toplology of A^{**} .

Open projections in C*-algebras

Definition

A projection $p \in A^{**}$ is called open if there exists a net $\{a_{\alpha}\} \subset A$ such that $0 \le a_{\alpha} \uparrow p$ in the weak*-toplology of A^{**} .

A projection $p \in A^{**}$ is said to be closed if its complement $1 - p \in A^{**}$ is an open projection.

Open projections in C*-algebras

Definition

A projection $p \in A^{**}$ is called open if there exists a net $\{a_{\alpha}\} \subset A$ such that $0 \le a_{\alpha} \uparrow p$ in the weak*-toplology of A^{**} .

A projection $p \in A^{**}$ is said to be closed if its complement $1 - p \in A^{**}$ is an open projection.

Theorem (Akemann-Pedersen-Tomiyama, 1973)

Let A be a C*-algebra and p a closed projection in A^{**} . Let $J = \{a \in A \mid ap = 0\}$ and define $\Phi : A^{**} \to A^{**}$ by $\Phi(a) = pap$. Then $A \cap \ker \Phi = J + J^*$ and pAp is isometrically isomorphic to the quotient space $A/J + J^*$.

Compact quantum hypersystem

Definition (Amini-Kh.)

A triple (S, Δ_S, R_S) is called a hypersystem structure if

- \mathbf{I} S is an operator system;
- 2 $\Delta: S \to S \otimes_{\min} S$ is a linear, unital, completely positive map which is co-associative, i.e., $(\mathrm{id} \otimes \Delta_S) \circ \Delta_S = (\Delta_S \otimes \mathrm{id}) \circ \Delta_S$;
- 3 $R_S: S \to S$ is a unital, anti-linear, completely positive map such that $\sigma(R_S \otimes R_S) \circ \Delta_S = \Delta_S \circ R_S$ and $R_S^2 = \mathrm{id}$.

History Preliminaries Main Results References

Compact quantum hypersystem

Definition (Amini-Kh.)

A triple (S, Δ_S, R_S) is called a hypersystem structure if

- \mathbf{I} S is an operator system;
- 2 $\Delta: S \to S \otimes_{\min} S$ is a linear, unital, completely positive map which is co-associative, i.e., $(\mathrm{id} \otimes \Delta_S) \circ \Delta_S = (\Delta_S \otimes \mathrm{id}) \circ \Delta_S$;
- 3 $R_S: S \to S$ is a unital, anti-linear, completely positive map such that $\sigma(R_S \otimes R_S) \circ \Delta_S = \Delta_S \circ R_S$ and $R_S^2 = \mathrm{id}$.

Let S^* denotes the set of all (completely) bounded linear functionals on S, Then S^* is a Banach *-algebra.

Theorem (Amini-Kh.)

Let (S, Δ_S, R_S) be a hypersystem structure. If the linear space spanned by the positive definite elements is dense in S, then there exists a self-adjoint functional on S, which is both left and right invariant.

Theorem (Amini-Kh.)

Let (S, Δ_S, R_S) be a hypersystem structure. If the linear space spanned by the positive definite elements is dense in S, then there exists a self-adjoint functional on S, which is both left and right invariant.

Definition (Amini-Kh.)

A hypersystem structure (A, Δ, R) is called a compact quantum hypersystem if it admits a faithful Haar state.

Definition (Amini-Kh.)

Let \mathbb{G} be a locally compact quantum group and $(S, \Delta_S, R_S, \mathbf{h}_S)$ be a compact quantum hypersystem. Then $(S, \Delta_S, R_S, \mathbf{h}_S)$ is called a compact quantum subhypersystem of \mathbb{G} , if there exists a surjective completely positive map $\pi_S : C_0^u(\mathbb{G}) \to S$ such that

$$\Delta_{\mathcal{S}} \circ \pi_{\mathcal{S}} = (\pi_{\mathcal{S}} \otimes \pi_{\mathcal{S}}) \circ \Delta_{\mathbb{G}}.$$

Example

Let $(S, \Delta_S, R_S, \mathbf{h}_S)$ be a compact quantum subhypersystem of \mathbb{G} , with the associated map π_S , then $\mathbf{h}_S \circ \pi_S$ is an idempotent state on \mathbb{G} .

History Preliminaries Main Results References

Definition (Amini-Kh.)

Let \mathbb{G} be a locally compact quantum group and $(S, \Delta_S, R_S, \mathbf{h}_S)$ be a compact quantum hypersystem. Then $(S, \Delta_S, R_S, \mathbf{h}_S)$ is called a compact quantum subhypersystem of \mathbb{G} , if there exists a surjective completely positive map $\pi_S : C_0^u(\mathbb{G}) \to S$ such that

$$\Delta_{\mathcal{S}} \circ \pi_{\mathcal{S}} = (\pi_{\mathcal{S}} \otimes \pi_{\mathcal{S}}) \circ \Delta_{\mathbb{G}}.$$

Example

Let $(S, \Delta_S, R_S, \mathbf{h}_S)$ be a compact quantum subhypersystem of \mathbb{G} , with the associated map π_S , then $\mathbf{h}_S \circ \pi_S$ is an idempotent state on \mathbb{G} .

Question.

Does every idempotent state on \mathbb{G} arise as a Haar idemptent state on a compact quantum subhypersystem (in a canonical way)?

Theorem (Amini-Kh.)

Let ω be an idempotent state on $C_0^u(\mathbb{G})$. Then there exists a compact quantum subhypersystem $(S, \Delta_S, R_S, \mathbf{h}_S)$ such that $\omega = \mathbf{h}_S \circ \pi_S$.

Theorem (Amini-Kh.)

Let ω be an idempotent state on $C_0^u(\mathbb{G})$. Then there exists a compact quantum subhypersystem $(S, \Delta_S, R_S, \mathbf{h}_S)$ such that $\omega = \mathbf{h}_S \circ \pi_S$. Moreover let $(S', \Delta_{S'}, R_{S'}, \mathbf{h}_{S'})$ be another compact quantum subhypersystem of \mathbb{G} such that $\omega = \mathbf{h}_{S'} \circ \pi_{S'}$, then there exists a unique map

$$\pi: S \to S'$$

such that $\pi_{S'} = \pi \circ \pi_{S}$.

Consider the left ideal $J_{\omega} = \{x \in C_0^u(\mathbb{G}) \mid \omega(x^*x) = 0\},\$

Consider the left ideal $J_{\omega} = \{x \in C_0^u(\mathbb{G}) \mid \omega(x^*x) = 0\},$

■ There exists an open projection $p \in C_0^u(\mathbb{G})^{**}$ such that

$$J_{\omega}=\mathsf{C}_0^u(\mathbb{G})^{**}p\cap\mathsf{C}_0^u(\mathbb{G})=\mathsf{C}_0^u(\mathbb{G})p\cap\mathsf{C}_0^u(\mathbb{G}).$$

Consider the left ideal $J_{\omega} = \{x \in C_0^u(\mathbb{G}) \mid \omega(x^*x) = 0\},$

■ There exists an open projection $p \in C_0^u(\mathbb{G})^{**}$ such that

$$J_{\omega}=\mathsf{C}_0^u(\mathbb{G})^{**}p\cap\mathsf{C}_0^u(\mathbb{G})=\mathsf{C}_0^u(\mathbb{G})p\cap\mathsf{C}_0^u(\mathbb{G}).$$

ullet q=1-p is a closed projection in $\mathsf{C}^u_0(\mathbb{G})^{**}$ and

$$rac{\mathsf{C}^u_0(\mathbb{G})}{J_\omega+J_\omega^*}\cong q\,\mathsf{C}^u_0(\mathbb{G})q.$$

Consider the left ideal $J_{\omega} = \{x \in C_0^u(\mathbb{G}) \mid \omega(x^*x) = 0\},$

■ There exists an open projection $p \in C_0^u(\mathbb{G})^{**}$ such that

$$J_{\omega}=\mathsf{C}_0^u(\mathbb{G})^{**}p\cap\mathsf{C}_0^u(\mathbb{G})=\mathsf{C}_0^u(\mathbb{G})p\cap\mathsf{C}_0^u(\mathbb{G}).$$

ullet q=1-p is a closed projection in $\mathsf{C}^u_0(\mathbb{G})^{**}$ and

$$\frac{\mathsf{C}^u_0(\mathbb{G})}{J_\omega+J_\omega^*}\cong q\,\mathsf{C}^u_0(\mathbb{G})q.$$

■ $q \in q C_0^u(\mathbb{G})q$ and $q C_0^u(\mathbb{G})q$ is an operator system.

■ The map

$$egin{aligned} \Delta_\omega : q\,\mathsf{C}^{ extsf{u}}_0(\mathbb{G})q &
ightarrow q\,\mathsf{C}^{ extsf{u}}_0(\mathbb{G})q \otimes_{\mathsf{min}} \,\, q\,\mathsf{C}^{ extsf{u}}_0(\mathbb{G})q, \ qaq &\mapsto (q\otimes q)\Delta^u_\mathbb{G}(a)(q\otimes q), \end{aligned}$$

is a well-defined, unital, coassociative, completely positive map.

■ The map

$$egin{aligned} \Delta_\omega : q\,\mathsf{C}^u_0(\mathbb{G})q &
ightarrow q\,\mathsf{C}^u_0(\mathbb{G})q \otimes_{\mathsf{min}} \,\, q\,\mathsf{C}^u_0(\mathbb{G})q, \ qaq &\mapsto (q\otimes q)\Delta^u_\mathbb{G}(a)(q\otimes q), \end{aligned}$$

is a well-defined, unital, coassociative, completely positive map.

■ The map

$$R_{\omega}: q \, \mathsf{C}^{u}_{0}(\mathbb{G})q o q \, \mathsf{C}^{u}_{0}(\mathbb{G})q, \ qaq \mapsto qR^{u}_{\mathbb{G}}(a)q,$$

is a well-defined, unital, anti-linear, completely positive map such that $\sigma(R_{\omega} \otimes R_{\omega}) \circ \Delta_{\omega} = \Delta_{\omega} \circ R_{\omega}$ and $R_{\omega}^2 = \mathrm{id}$.

■ The following map is a faithfull Haar state on $q \, \mathsf{C}^u_0(\mathbb{G}) q$,

$$oldsymbol{h}_{\omega}
ightarrow\mathbb{C},$$
 $oldsymbol{q} a oldsymbol{q}\mapsto\omega(oldsymbol{a}).$

■ The following map is a faithfull Haar state on $q \, \mathsf{C}^u_0(\mathbb{G}) q$,

$$oldsymbol{h}_{\omega}
ightarrow\mathbb{C},$$
 $oldsymbol{q} a oldsymbol{q}\mapsto\omega(oldsymbol{a}).$

lacktriangledown ω arises as a Haar state of $q \, \mathsf{C}^{\mathit{u}}_0(\mathbb{G}) q$ in a canonical way.

fistory Preliminaries Main Results References

Sketch of the proof

■ The following map is a faithfull Haar state on $q C_0^u(\mathbb{G})q$,

$$oldsymbol{h}_{\omega}
ightarrow\mathbb{C},$$
 $qaq\mapsto\omega(a).$

ullet ω arises as a Haar state of $q \, \mathsf{C}^u_0(\mathbb{G}) q$ in a canonical way.

Corollary

Let ω be an idempotent state on a locally compact quantum group. Then the following conditions are equivalent:

- J_{ω} is an ideal,
- q is a central closed projection in $C_0^u(\mathbb{G})^{**}$,
- ullet ω arises as the Haar state of the compact quantum group $(\mathsf{C}^{\it u}_0(\mathbb{G})q,\Delta_\omega)$

Example

Let $\mathbb{G}=(A,\Delta)$ be the 8-dimentional Kac-Paljutkin finite quantum group, where $A=\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{M}_2(\mathbb{C})$. Let

$$e_k = \delta_{1k} \oplus \delta_{2k} \oplus \delta_{3k} \oplus \delta_{4k} \oplus \begin{bmatrix} \delta_{5k} & \delta_{8k} \\ \delta_{7k} & \delta_{6k} \end{bmatrix}$$
, $k = 1, \dots, 8$.

Then the idempotent state $\omega = \frac{1}{4}(\rho_1 + \rho_4) + \frac{1}{2}\rho_6$ is not the haar state of any quantum subgroup \mathbb{G} . The null space of ω is not an ideal (*-preserving).

$$I = \{x \in A \mid \omega(x^*x) = 0\} = \langle e_2, e_3, e_5, e_7 \rangle, I^* = \{x \in A \mid \omega(xx^*) = 0\} = \langle e_2, e_3, e_5, e_8 \rangle.$$

Example

Define the projection $q=e_1\oplus e_4\oplus e_6\in A$. It can be observed that as Banach spaces

$$\frac{A}{I+I^*}\cong qAq.$$

In this case qAq is a unital C^* -algebra. Since q is not central, the co-multiplication

$$egin{aligned} ilde{\Delta}: qAq &
ightarrow qAq \,\otimes_{\mathsf{min}} \,\, qAq, \ ilde{\Delta}(qaq) &= (q \otimes q) \Delta(a)(q \otimes q) \end{aligned}$$

is not a homomorphism but it is completely positive. Now q is the support projection of ω and ω arises as the Haar state of qAq in a canonical way.

References

U. Franz, and A. Skalski: On idempotent states on quantum groups, *Journal of Algebra* **322** (2009), 1774–1802

References

U. Franz, and A. Skalski: On idempotent states on quantum groups, *Journal of Algebra* **322** (2009), 1774–1802

C. A. Akemann, G. K. Pedersen, and J. Tomiyama: Multipliers of C^* -algebras. *J. of Funct. Anal.* **132** (1973), 277–301.

References

U. Franz, and A. Skalski: On idempotent states on quantum groups, *Journal of Algebra* **322** (2009), 1774–1802

C. A. Akemann, G. K. Pedersen, and J. Tomiyama: Multipliers of C*-algebras. *J. of Funct. Anal.* **132** (1973), 277–301.

Y.A. Chapovsky, and L.I. Vainerman: Compact quantum hypergroups. *J. of Operator Theorey* **41** (1999), 261–289.

History Preliminaries Main Results **References**

References

U. Franz, and A. Skalski: On idempotent states on quantum groups, *Journal of Algebra* **322** (2009), 1774–1802

C. A. Akemann, G. K. Pedersen, and J. Tomiyama: Multipliers of C^* -algebras. *J. of Funct. Anal.* **132** (1973), 277–301.

Y.A. Chapovsky, and L.I. Vainerman: Compact quantum hypergroups. *J. of Operator Theorey* **41** (1999), 261–289.

A. Pal: A counterexample on idempotent states on a compact quantum group. Lett. Math. Phys. **37** (1996), 75–77.

History Preliminaries Main Results **References**

References

U. Franz, and A. Skalski: On idempotent states on quantum groups, *Journal of Algebra* **322** (2009), 1774–1802

C. A. Akemann, G. K. Pedersen, and J. Tomiyama: Multipliers of C*-algebras. *J. of Funct. Anal.* **132** (1973), 277–301.

Y.A. Chapovsky, and L.I. Vainerman: Compact quantum hypergroups. *J. of Operator Theorey* **41** (1999), 261–289.

A. Pal: A counterexample on idempotent states on a compact quantum group. *Lett. Math. Phys.* **37** (1996), 75–77.

P. Salmi, and A. Skalski: Idempotent states on locally compact quantum groups. *Quarterly Journal of Mathematics* **63** (2012), 1009–1032.

Amenable Actions of Discrete Quantum Groups on von Neumann Algebras

Mohammad Sadegh Mojahedi Moakhar

m.mojahedi@modares.ac.ir

Institute for Research in Fundamental Sciences (IPM)

January 7, 2019

Motivation

The concept of amenability for a locally compact group G can be described in many different equivalent ways. Two of the most well-known characterizations are the following:

- there is a left invariant mean on $L^{\infty}(G)$;
- any affine G-action has a fixed point.

Motivation

The concept of amenability for a locally compact group G can be described in many different equivalent ways. Two of the most well-known characterizations are the following:

- there is a left invariant mean on $L^{\infty}(G)$;
- any affine G-action has a fixed point.

In 1978, **Zimmer** introduced the notion of amenable actions as a natural generalization of fixed point property.

He gave a criterion that an ergodic action be amenable in terms of the von Neumann algebra associated to it by the Murray–von Neumann construction.

Motivation

Delaroche transported the notion of amenable action into operator algebra terms:

- von Neumann algebra setting, 1979 and 1982;
- C*-algebra setting, 1987.

Definition (Delaroche, 1979)

The action $\alpha:G\curvearrowright N$ of a locally compact group G on a von Neumann algebra N is called amenable if there exists an equivariant conditional expectation

$$P: (\ell^{\infty}(G) \overline{\otimes} M, \tau \otimes \alpha) \to (\mathbf{1} \overline{\otimes} M, \alpha),$$

where τ denotes the left translation action of G on $\ell^{\infty}(G)$.

Delaroche extended Zimmer's criterion to the general setting:

Theorem (Delaroche, 1979)

Let $\alpha: G \cap N$ be an action of a locally compact group G on a von Neumann algebra N. TFAE:

- \bullet α is amenable:
- there is a conditional expectation from $B(L_2(G)) \overline{\otimes} N$ onto the crossed product $G \ltimes_{\alpha} N$.

Delaroche extended Zimmer's criterion to the general setting:

Theorem (Delaroche, 1979)

Let $\alpha: G \curvearrowright N$ be an action of a locally compact group G on a von Neumann algebra N. TFAE:

- ullet α is amenable;
- there is a conditional expectation from $B(L_2(G)) \overline{\otimes} N$ onto the crossed product $G \ltimes_{\alpha} N$.

Using the automorphism

$$T_{\alpha}: \sum_{g \in G} (\delta_g \otimes x_g) \in \ell^{\infty}(G) \,\overline{\otimes}\, M \mapsto \sum_{g \in G} (\delta_g \otimes \alpha_g^{-1}(x_g)) \in \ell^{\infty}(G) \,\overline{\otimes}\, M$$

to get the following equivalent definition of amenable actions:

The action $\alpha: G \curvearrowright N$ is called amenable if there exists an equivariant conditional expectation

$$P: (\ell^{\infty}(G) \overline{\otimes} M, \tau \otimes \mathrm{id}) \to (\alpha(M), \tau \otimes \mathrm{id}),$$

Definition (M., 2018)

Let $\alpha:\mathbb{G}\curvearrowright \mathcal{N}$ be an action of a discrete quantum group \mathbb{G} on a von Neumann algebra \mathcal{N} . Then α is called amenable if there exists a conditional expectation $E_\alpha:\ell^\infty(\mathbb{G})\ \overline{\otimes}\ \mathcal{N}\to\alpha(\mathcal{N})$ such that

$$(\mathrm{id}\otimes E_{\alpha})(\Delta\otimes\mathrm{id})=(\Delta\otimes\mathrm{id})E_{\alpha}.$$

Facts:

- Amenability of trivial action $tr: \mathbb{G} \curvearrowright \mathbb{C}$ is equivalent to amenability of quantum group \mathbb{G} ;
- every discrete quantum group acts amenably on itself.

For any discrete quantum group \mathbb{G} , there is an action $\gamma: \hat{\mathbb{G}} \curvearrowright \ell^{\infty}(\mathbb{G})$ of dual quantum group $\hat{\mathbb{G}}$ on $\ell^{\infty}(\mathbb{G})$ given by

$$\gamma(x) = \hat{W}^*(1 \otimes x)\hat{W}, \quad x \in \ell^{\infty}(\mathbb{G}),$$

where \hat{W} is the left fundamental unitary of $\hat{\mathbb{G}}$.

For any discrete quantum group \mathbb{G} , there is an action $\gamma: \hat{\mathbb{G}} \curvearrowright \ell^{\infty}(\mathbb{G})$ of dual quantum group $\hat{\mathbb{G}}$ on $\ell^{\infty}(\mathbb{G})$ given by

$$\gamma(x) = \hat{W}^*(1 \otimes x)\hat{W}, \quad x \in \ell^{\infty}(\mathbb{G}),$$

where \hat{W} is the left fundamental unitary of $\hat{\mathbb{G}}$. Observe that

$$(\operatorname{ad}(W) \otimes \operatorname{id})(\operatorname{id} \otimes \gamma)\Delta(x) = (\sigma \otimes \operatorname{id})(\operatorname{id} \otimes \Delta)\gamma(x), \ x \in \ell^{\infty}(\mathbb{G}),$$

where W is the left fundamental unitary of \mathbb{G} and σ is the flip map.

For any discrete quantum group \mathbb{G} , there is an action $\gamma: \hat{\mathbb{G}} \curvearrowright \ell^{\infty}(\mathbb{G})$ of dual quantum group $\hat{\mathbb{G}}$ on $\ell^{\infty}(\mathbb{G})$ given by

$$\gamma(x) = \hat{W}^*(1 \otimes x)\hat{W}, \quad x \in \ell^{\infty}(\mathbb{G}),$$

where \hat{W} is the left fundamental unitary of $\hat{\mathbb{G}}$. Observe that

$$(\operatorname{ad}(W) \otimes \operatorname{id})(\operatorname{id} \otimes \gamma)\Delta(x) = (\sigma \otimes \operatorname{id})(\operatorname{id} \otimes \Delta)\gamma(x), \ x \in \ell^{\infty}(\mathbb{G}),$$

where W is the left fundamental unitary of $\mathbb G$ and σ is the flip map. It imlies that

$$\overline{\operatorname{span}\{\gamma(\ell^\infty(\mathbb{G}))_{12}\alpha(\textit{N})_{13}\}}^{\;\operatorname{weak}^{\textstyle *}} = \overline{\operatorname{span}\{\alpha(\textit{N})_{13}\gamma(\ell^\infty(\mathbb{G}))_{12}\}}^{\;\operatorname{weak}^{\textstyle *}},$$

and it is a von Neumann sub-algebra of $B(\ell^2(\mathbb{G})) \otimes \ell^{\infty}(\mathbb{G}) \otimes N$, which is called (von Neumann algebra) braided tensor product and is denoted by $\ell^{\infty}(\mathbb{G}) \boxtimes N$.

There is an action $\Delta \boxtimes \alpha : \mathbb{G} \curvearrowright \ell^{\infty}(\mathbb{G}) \overline{\boxtimes} N$ of \mathbb{G} on the von Neumann algebra $\ell^{\infty}(\mathbb{G}) \overline{\boxtimes} N$ such that

$$(\Delta\boxtimes\alpha)(\gamma(a)_{12}\alpha(b)_{13})=\big((\mathrm{id}\otimes\gamma)\Delta(a)\big)_{123}\big((\mathrm{id}\otimes\alpha)\alpha(b)\big)_{124}.$$

There is an action $\Delta \boxtimes \alpha : \mathbb{G} \curvearrowright \ell^{\infty}(\mathbb{G}) \overline{\boxtimes} N$ of \mathbb{G} on the von Neumann algebra $\ell^{\infty}(\mathbb{G}) \overline{\boxtimes} N$ such that

$$(\Delta\boxtimes\alpha)(\gamma(a)_{12}\alpha(b)_{13})=\big((\mathrm{id}\otimes\gamma)\Delta(a)\big)_{123}\big((\mathrm{id}\otimes\alpha)\alpha(b)\big)_{124}.$$

Lemma (M., 2018)

Let $\alpha:\mathbb{G}\curvearrowright N$ be an action of a discrete quantum group \mathbb{G} on a von Neumann algebra N. There exists an equivarinat *-isomorphism

$$\mathcal{T}_{\alpha}: (\ell^{\infty}(\mathbb{G}) \,\overline{\boxtimes} \, N, \Delta \boxtimes \alpha) \to (\ell^{\infty}(\mathbb{G}) \,\overline{\otimes} \, N, \Delta \otimes \mathrm{id})$$

such that $T_{\alpha}(1 \boxtimes a) = \alpha(a)$ for all $a \in N$ and $T_{\alpha}(x \boxtimes 1) = x \otimes 1$ for all $x \in \ell^{\infty}(\mathbb{G})$.

Theorem (M., 2018)

Let $\alpha:\mathbb{G}\curvearrowright N$ be an action of a discrete quantum group \mathbb{G} on a von Neumann algebra N. Then there is an equivariant isomorphism Φ from $((\ell^{\infty}(\mathbb{G})\boxtimes N)\ltimes_{\Delta\boxtimes\alpha}\mathbb{G},\widehat{\Delta\boxtimes\alpha})$ onto $(B(\ell^{2}(\mathbb{G}))\boxtimes N,\widehat{\Delta\boxtimes\alpha})$ such that Φ maps $(\mathbf{1}\boxtimes N)\ltimes_{\Delta\boxtimes\alpha}\mathbb{G}$ onto $N\ltimes_{\alpha}\mathbb{G}$.

A Characterization of Amenability

Theorem (M., 2018)

Let $\alpha: \mathbb{G} \curvearrowright N$ be an action of a discrete quantum group \mathbb{G} on a von Neumann algebra N. TFAE:

- ullet The quantum group ${\mathbb G}$ is amenable.
- The action α is amenable and there exists an invariant state on N.

A Characterization of Amenability

Theorem (M., 2018)

Let $\alpha:\mathbb{G}\curvearrowright N$ be an action of a discrete quantum group \mathbb{G} on a von Neumann algebra N. TFAE:

- ullet The quantum group ${\mathbb G}$ is amenable.
- The action α is amenable and there exists an invariant state on N.

Izumi Proved that the tracial Haar state $\hat{\varphi}$ of the dual quantum group $\hat{\mathbb{G}}$ is invariant with respect to the canonical action $\Delta_{|_{L^{\infty}(\hat{\mathbb{G}})}}^{\ell}$. It follows that:

Corollary (M., 2018)

Let $\mathbb G$ be a discrete Kac algebra. Then $\mathbb G$ is amenable if and only if the canonical action $\Delta^\ell_{|_{L^\infty(\hat{\mathbb G})}}:\mathbb G \curvearrowright L^\infty(\hat{\mathbb G})$ is amenable.

Non-commutative Poisson Boundaries

Let $\mathbb G$ be a discrete quantum group and $\mu \in \ell^1(\mathbb G)$ be a state. In this case $\Phi_\mu(x) = (\mu \otimes \operatorname{id})\Delta(x)$ is a Markov operator, i.e. unital, normal and completely positive map, on $\ell^\infty(\mathbb G)$. We can consider

$$\mathcal{H}_{\mu} = \{ x \in \ell^{\infty}(\mathbb{G}) : \Phi_{\mu}(x) = x \}$$

of all μ -harmonic operators.

Non-commutative Poisson Boundaries

Let $\mathbb G$ be a discrete quantum group and $\mu \in \ell^1(\mathbb G)$ be a state. In this case $\Phi_\mu(x) = (\mu \otimes \operatorname{id})\Delta(x)$ is a Markov operator, i.e. unital, normal and completely positive map, on $\ell^\infty(\mathbb G)$. We can consider

$$\mathcal{H}_{\mu} = \{ x \in \ell^{\infty}(\mathbb{G}) : \Phi_{\mu}(x) = x \}$$

of all μ -harmonic operators. There is a conditional expectation from $\ell^{\infty}(\mathbb{G})$ onto \mathcal{H}_{μ} . Then the corresponding Choi–Effros product induces the von Neumann algebraic structure on \mathcal{H}_{μ} . This von Neumann algebra is called non-commutative Poisson boundary with respect to μ .

Kalantar, Neufang and **Ruan** proved that the restriction of Δ to \mathcal{H}_{μ} induces a left action Δ_{μ} of \mathbb{G} on the von Neumann algebra \mathcal{H}_{μ} .

Non-commutative Poisson Boundaries

Let $\mathbb G$ be a discrete quantum group and $\mu \in \ell^1(\mathbb G)$ be a state. In this case $\Phi_\mu(x) = (\mu \otimes \operatorname{id})\Delta(x)$ is a Markov operator, i.e. unital, normal and completely positive map, on $\ell^\infty(\mathbb G)$. We can consider

$$\mathcal{H}_{\mu} = \{ x \in \ell^{\infty}(\mathbb{G}) : \Phi_{\mu}(x) = x \}$$

of all μ -harmonic operators. There is a conditional expectation from $\ell^{\infty}(\mathbb{G})$ onto \mathcal{H}_{μ} . Then the corresponding Choi–Effros product induces the von Neumann algebraic structure on \mathcal{H}_{μ} . This von Neumann algebra is called non-commutative Poisson boundary with respect to μ .

Kalantar, Neufang and **Ruan** proved that the restriction of Δ to \mathcal{H}_{μ} induces a left action Δ_{μ} of \mathbb{G} on the von Neumann algebra \mathcal{H}_{μ} .

Theorem (M., 2018)

Let \mathbb{G} be a discrete quantum group and let $\mu \in \ell^1(\mathbb{G})$ be a state. The left action Δ_{μ} of \mathbb{G} on the Poisson boundary \mathcal{H}_{μ} is amenable.

Non-commutative Analogue of Zimmer's criterion

Theorem (M., 2018)

Let $\alpha:\mathbb{G}\curvearrowright N$ be an action of a discrete quantum group \mathbb{G} on a von Neumann algebra N. TFAE:

- 1. The action α is amenable.
- 2. There is an equivariant conditional expectation

$$E: ((\ell^{\infty}(\mathbb{G}) \boxtimes N) \ltimes_{\Delta \boxtimes \alpha} \mathbb{G}, \widehat{\Delta \boxtimes \alpha}) \to ((\mathbf{1} \boxtimes N) \ltimes_{\Delta \boxtimes \alpha} \mathbb{G}, \widehat{\Delta \boxtimes \alpha}).$$

3. There is an equivariant conditional expectation

$$E: (B(\ell^2(\mathbb{G})) \overline{\otimes} N, \hat{\Delta}^{\mathsf{op}} \otimes \mathrm{id}) \to (N \ltimes_{\alpha} \mathbb{G}, \hat{\alpha}).$$

Non-commutative Analogue of Zimmer's criterion

Theorem (M., 2018)

Let $\alpha: \mathbb{G} \curvearrowright N$ be an action of a discrete quantum group \mathbb{G} on a von Neumann algebra N. TFAE:

- 1. The action α is amenable.
- 2. There is an equivariant conditional expectation

$$E: ((\ell^{\infty}(\mathbb{G}) \boxtimes N) \ltimes_{\Delta \boxtimes \alpha} \mathbb{G}, \widehat{\Delta \boxtimes \alpha}) \to ((\mathbf{1} \boxtimes N) \ltimes_{\Delta \boxtimes \alpha} \mathbb{G}, \widehat{\Delta \boxtimes \alpha}).$$

3. There is an equivariant conditional expectation

$$E: (B(\ell^2(\mathbb{G})) \overline{\otimes} N, \hat{\Delta}^{op} \otimes id) \to (N \ltimes_{\alpha} \mathbb{G}, \hat{\alpha}).$$

In the case of the trivial action, the equivalence between (1) and (3) provides the characterization of amenability of a quantum group $\mathbb G$ in terms of injectivity of $L^\infty(\hat{\mathbb G})$ in the category of $\mathcal T(\ell^2(\mathbb G))$ -modules investigated by **Crann** and **Neufang**.

Let $\beta:\mathbb{G}\curvearrowright K$ be an action of a discrete quantum group \mathbb{G} on a von Neumann algebra K. We say that K is \mathbb{G} -injective if for every unital completely isometric equivariant map $\iota:(M,\alpha_1)\to(N,\alpha_2)$ and every unital completely positive equivariant map $\Psi:(M,\alpha_1)\to(K,\beta)$ there is a unital completely positive equivariant map $\overline{\Psi}:(N,\alpha_2)\to(K,\beta)$ such that $\overline{\Psi}\circ\iota=\Psi$.

Corollary (M., 2018)

Let $\alpha:\mathbb{G}\curvearrowright N$ be an action of a discrete quantum group \mathbb{G} on a von Neumann algebra N. TFAE:

- 1. \emph{N} is injective and α is amenable.
- 2. The crossed product $N \ltimes_{\alpha} \mathbb{G}$ is $\hat{\mathbb{G}}$ -injective.

Discrete Kac Algebra Actions

Theorem (M., 2018)

Let $\alpha : \mathbb{G} \curvearrowright N$ be an action of a discrete Kac algebra \mathbb{G} on a von Neumann algebra N. The following are equivalent:

- 1. The action α is amenable.
- 2. There is a conditional expectation from $B(\ell^2(\mathbb{G})) \overline{\otimes} N$ onto $N \ltimes_{\alpha} \mathbb{G}$.

Corollary (M., 2018)

Let $\alpha: \mathbb{G} \curvearrowright N$ be an action of a discrete Kac algebra \mathbb{G} on a von Neumann algebra N. TFAE:

- 1. *N* is injective and α is amenable.
- 2. The crossed product $N \ltimes_{\alpha} \mathbb{G}$ is injective.

C. Anantharaman-Delaroche, *Action moyennable d'un groupe localement compact sur une algèbre de von Neumann*, Math. Scand. **45** (1979), 289–304.

C. Anantharaman-Delaroche, *Action moyennable d'un groupe localement compact sur une algèbre de von Neumann*, Math. Scand. **45** (1979), 289–304.

C. Anantharaman-Delaroche, *Systèmes dynamiques non commutatifies et moyennabilité*, Math. Ann. **279** (1987), 297–315.

- C. Anantharaman-Delaroche, Systèmes dynamiques non commutatifies et moyennabilité, Math. Ann. **279** (1987), 297–315.
- J. Crann and M. Neufang, *Amenability and covariant injectivity of locally compact quantum groups*, Trans. Amer. Math. Soc. **368** (2016), no. 1, 495–513.

- C. Anantharaman-Delaroche, Action moyennable d'un groupe localement compact sur une algèbre de von Neumann, Math. Scand. **45** (1979), 289–304.
- C. Anantharaman-Delaroche, Systèmes dynamiques non commutatifies et moyennabilité, Math. Ann. **279** (1987), 297–315.
- J. Crann and M. Neufang, *Amenability and covariant injectivity of locally compact quantum groups*, Trans. Amer. Math. Soc. **368** (2016), no. 1, 495–513.
- M. Kalantar, M. Neufang and Z.-J. Ruan, *Realization of quantum group Poisson boundaries as crossed products*, Bull. London Math. Soc **46** (2014), 1267–1275.

M. S. M. Moakhar, *Amenable actions of discrete quantum group on von Neumann algebras*, 25 pages, arXiv:1803.04828.

M. S. M. Moakhar, Amenable actions of discrete quantum group on von Neumann algebras, 25 pages, arXiv:1803.04828.

R. J. Zimmer, *Hyperfinite factors and amenable ergodic group actions*, Inven. Math. **41** (1977), 23–31.

- M. S. M. Moakhar, Amenable actions of discrete quantum group on von Neumann algebras, 25 pages, arXiv:1803.04828.
- R. J. Zimmer, *Hyperfinite factors and amenable ergodic group actions*, Inven. Math. **41** (1977), 23–31.
- R. J. Zimmer, On the von Neumann algebras of an ergodic group action, Proc. Amer. Math. Soc. **66** (1977), no. 2, 289–293.

- M. S. M. Moakhar, Amenable actions of discrete quantum group on von Neumann algebras, 25 pages, arXiv:1803.04828.
- R. J. Zimmer, *Hyperfinite factors and amenable ergodic group actions*, Inven. Math. **41** (1977), 23–31.
- R. J. Zimmer, On the von Neumann algebras of an ergodic group action, Proc. Amer. Math. Soc. **66** (1977), no. 2, 289–293.
- R. J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal. **27** (1978), 350–372.

Thank you for your attention!

