
Ruin probability
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Abstract

We discuss studying ruin probability by Levy processes, and in particular the problem of approximat-
ing them through compound sum of exponentials leads us to some interesting mathematical problems.
Complex analysis and Weiner-Hopf factorization turn out to be useful tools.
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On the importance of data mining methods in actuarial science

Shima Ara1,
Saman Insurance Company, Tehran, Iran

Abstract

Nowadays, by rapid advancements in technology, the actuaries often encounter large amount of ob-
servations from various insurance fields. Modeling and analyzing such big data raise several challenges in
the application. In recent years, data mining methods attracted many interest in various fields, as well
as insurance. Actuaries should be ready to combine their traditional knowledge with the data mining
approach to deal with the new world of big data. In this talk, we will review the impact of these methods
in actuarial science and present findings of employing such methods on life and nonlife insurance in Saman
insurance company.
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Mortality modeling of skin cancer patients with actuarial applications

Amin Hassan Zadeh1

Shahid Beheshti University, Tehran, Iran

Raoufeh Asghari

Shahid Beheshti University, Tehran, Iran

Abstract

In this article, the Markovian aging process is used to model mortality of patients with skin cancer.
The time till death is assumed to have a phase-type distribution (which is defined in a Markov chain
environment) with interpretable parameters. The underlying continuous-time Markov chain has one
absorbing state (death) and nx +1 (x is the age when the patient is diagnosed with cancer) transient
states. Each transient state represents a physiological age, and aging is transitions from one physiological
age to the next one until the process reaches to its end. The transition can occur from any other state to
the absorbing state. For patients with skin cancer in the United States, we estimate unknown parameters
related to the aging process that can be useful for comparing the physiological age processes of patients
with cancer and healthy people. For different age intervals, we estimate physiological age parameters for
both males and females. The index of conditional expected physiological age of the patients with skin
cancer at given ages are calculated and compared with the US total population. By using the bootstrap
techniques, confidence bands and confidence intervals are constructed for the estimated survival curves
and aging process parameters, respectively. The fitting results have been used for pricing the substandard
annuities.

Keywords:

Aging process; mortality modeling; phase-type distribution; skin cancer; substandard annuities, boot-
strap.
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Abstract 
 

The purpose of this study was to present a pattern through which insurance companies are enabled to classify the risk level of 

their customer and to predict the possibility of future claims. We have analyzed an insurance claim dataset provided by an 

Iranian insurance company with a sample size of 6000. According to the structure of the dataset, a supervised learning 

algorithm was used to describe the underlying relationships between variables. The proposed algorithm, decision tree, was 

implemented using Python programming language. Based on the results, age, vehicle type and marital status were the main 

three factors contributing in prediction of claims.     
 
 

Keywords: Decision Tree, Supervised Learning, Machine Learning, Classification, TPL.  
  
 
 
 

 

1 Introduction 
 
Motor third party liability insurance (TPL) is a type of policy financially protecting third parties against both 
physical damage and bodily injury caused by car accidents. Under third party insurance Act , TPL is a compulsory 
insurance product in Iran. This is a sound reason for insurers to make an attempt to have their customers' risks 
assessed as accurately as possible. Furthermore, Iran insurance industry is going to experience the transition from 
auto-based TPL to the driver-based one [1]. Currently premiums are calculated solely according to auto features. 
By driver-based policies we mean the situation in which both drivers' and autos' characteristics would affect 
premium rates. 
 
The new regulations are going into effect by the end of 2021. Therefore, insurance companies need to review their 
risk assessment methods and make necessary amendments. In fact, in near future drivers’ traits will also play a 
crucial role in TLP ratemaking. Hence in this article we worked with a dataset of features describing both drivers 
and vehicles. Basically we built a model to classify customers based on their risk factors divided into demographic 
information and some significant properties of cars ([2], [3], [4], [5]).  
 
Decision tree is one of the common supervised learning algorithms used for both classification and regression. The 
method can be applied across a broad range of disciplines ([6], [7], [8], [9], [10], [11] ). Due to the nature of 
insurance industry, risk classification, decision tree has received considerable attention within this field ([12], [13], 

 
1 speaker 

 

14



 

                                        Farbod Khanizadeh, Mohammadreza Asghari Oskoei, Azadeh Bahador  

 

 

[14], [15] ). The focus of this article was to develop a tree classifier to help insurers predict their high and low risk 
policyholders ([16], [17], [18]).    
 
Having gathered the data set, four steps were followed to build up the model: 
 

1. Data preprocessing (replacing missing values, encoding categorical variables, split data into 
training and test set) 

2. Build the tree classifier  
3. Cross-validation  and model evaluation 
4. Avoid over-fitting (pre-pruning) 
5. Model visualization  

 
Regarding step two, we used the "Gini Index" as a measure of node impurity. Basically in building the binary tree, 
Gini index is the splitting  criterion at each node  and would determine the importance of each feature. Gini index is 
defined as:   
 

Gini= 1- ∑(Pi) 
2 

 
Where Pi corresponds to the probability of each class. The next section would present key findings and outcomes of 

the research. Note that the learning algorithm was evaluated on a dataset containing information regarding TLP 

claims. In the given dataset there were 6000 observations for 5 features namely; policy holder age, type of vehicle, 

marital status, gender and the dependent variable claim with two levels (Yes/No).  

 

  

2 Main results 
 
To obtain a reliable model we evaluated the accuracy of our classifier over both training and test sets. This was 

conducted through specifying the optimum value of a hyper parameter maximum depth of the tree. With the help of 

k-fold cross validation (for k=10) we tried thirty values for the depth and following figure was derived: 

  

 

  

As shown in the figure, accuracy reaches lower score as we increase the maximum depth of tree. The 

highest accuracy belongs to the first five values. Therefore, we pick the highest depth corresponds to the 

best accuracy score (i.e. max_depth=5). 

 

According to the above figure we have prevented a model from over-fitting via pre-pruning method. In 

fact the hyper parameter max_depth is used to set the maximum depth of our classifier. The following 

diagram depicts the decision tree of height 5:     
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The model consists of 19 leaves which are terminal nodes and our tree starts with the most important features of the 
data set, the policyholder age. Furthermore the root consists of 4200 samples obtained based on the ratio between a 
training and validation sets (i.e. 70:30). As one can see the model is easy to interpret and enjoys high accuracy.   
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Deep Neural Networks with Long Short–Term Memory for Human
Mortality Modeling

Jose Garrido1

Department of Mathematics and Statistics, Concordia University, Montreal, Canada

Abstract

Accurate modeling and forecasting of human mortality rates is important in actuarial science, to price
life insurance products, pension plan evaluations, and in finance, to price derivative products used to hedge
longevity risk. Data shows that mortality rates have been decreasing at all ages over time, especially in the
last century. Predicting the extent of future longevity improvement represents a difficult and important
problem for the life insurance industry and for sponsors of pension plans and social security programs.

The most popular methodology to forecast future mortality improvement was proposed by Lee and
Carter (1992, JASA). It consists of a two-steps process, shown to suffer from identifiability issues, both in
the Lee-Carter Model and its subsequent extensions, mostly due to the inherent two-steps model setup.
We propose a very distinct, data-driven approach using a class of Deep Neural Networks to model and
forecast human mortality. The main component in the neural networks is a long short-term memory
(NNLS-TM) layer, which was introduced by Hochreiter and Schmidhuber (1997, NC), to fix vanishing
gradients in simple recurrent neural networks. The model can be constructed for short-term as well as
for long-term forecasting, respectively.

We model the dependence mortality improvement observed simultaneously in different countries. Cur-
rent mortality improvement models are fitted to single country sub-populations separately, even if im-
provement trends are similar in different countries. The multi-population problem presents serious com-
putational challenges that we tackle with NNLS-TMs, fitted to learn from single country populations
included in the Human Mortality Database (https://www.mortality.org/).

(This is joint work with Ran Xu, Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool
University, Suzhou, China)
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Risk Identification with ERM approach in an Insurance Company: Taavon 

Insurance Company Case Study 
 

Maryam Salmasi1 
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Abstract 
Any choices we make in the pursuit of objectives has its risks and all companies must  manage their 

risks to r each long te rm success. In this short and descriptive industrial applied article, we review the 
suitable risk management approach for an Iranian insurance company and its experiences in identif ying 
different risks at different levels which are strategic, business and process and review some examples. 
We also follow the definition and different frameworks to implement an Enterprise Ris k Management 
(ERM), the importance of it, and a shor t review of the regulation about risk management in the Iranian 
insurance industry. 

 
Keywords: Risk Identification, Enterprise Risk Management, Insurance 

  
 
 
 
 
Introduction 
Any cho ice we m ake in th e pursuit o f o bjectives h as its ris ks. From  d ay to d ay op erational decis ions to the 
fundamental trade-offs, dealing with risk is a part of decision-making. As COSO says, good risk management and 
internal contr ol a re necessary f or long term  success of a ll organizations [3 ]. In this article we rev iew the 
importance, definition and different approach to implement an Enterprise Risk Management (ERM) with focus on 
Taavon Insurance Company experience on implementing a customized ERM approach. 
Taavon insurance co. has established since 2013 with the primary aim of joining the cooperative sector in the field 
of banking an d i nsurance and  al so access t o mon etary a nd financial markets of the cou ntry. After o btaining the 
principal agreement of the Central I nsurance of Iran and the Ministry  of Cooperatives, has becom e the first 
cooperative-public-corporation company. T oday, after implementing n umbers o f improvement projects related  to 
customer satisfaction such as ISO9001 in qu ality management, ISO10002 in complaint handling and ISO10004 in 
customer satisfaction assessment, the company is following a growing trend from 2019. This company  want  to be 
excellence at providing distinct and innovative insurance services for its customer. Moreover, the vision is to be the 
first choice of customers, sales network and professionals. With this introduction, the article will review the risk 
management role in this company. 
 
1.1 Definitions 
 
Risk is the effect of uncertainty on objectives which can have different aspects and categories, and can be applied 
at different levels [1]. 
Risk management is to coordinate activities to direct and control an organization with regard to risk [1]. 
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Risk source is an element which alone or in combination has the potential to give rise to risk [1]. 
Event is an occurrence or change of a particular set of circumstances. An event can have one or more occurrences, 
and can have several causes and several consequences. Furthermore, it is notable that an event can be a risk source 
[1]. 
Consequence is the outcome of an event affecting objectives [1]. 
Risk is usually expressed in terms of risk sources, potential events, their consequences and their likelihood [1]. 
Enterprise Risk Managem ent (ERM) is the process or discipline by which organizations in all industries assess , 
control, exploit, finance, and monitor risks from all sources for the pur pose of increa sing the or ganization’s short 
and long term value to its stakeholders [2]. 

 

1.2 The Importance of Risk Management 
 
The p urpose of risk  management is  the creatio n an d protection of va lue. I t improves pe rformance, encourages 
innovation and supports the achievem ent of o bjectives [1]. It is r easonable to expect that the f orces like more 
complicated r isks, external pre ssure and changes neve r stop in a company envir onment. Accordingly , risk 
management practices will become more and m ore sop histicated. As capabilities continue to improve, 
organizations will increasingly adopt ERM [2]. Risks can be found on different levels, actions and decisions of a 
company including an insurance company. 
Several texts  have dis cussed concepts  su ch as “strateg ic ris k m anagement”, “integrated ris k m anagement” and 
“holistic risk management”. These concepts are similar to, even synonymous with, ERM in that they all emphasize 
a comprehensive view of risk and risk management, and the view that risk management can be a value-creating, in 
addition to a risk-mitigating, process [2]. 
An insurance company is inherently established to manage the risk of its customers but the question is whether it 
is aware of its own risks and manages them well o r no; and how an insurance company as a firm should do that 
well enough. 
As it is mentioned Taavon Insurance Co. as an insurance company inherently is expert in managing the risk of its 
customers. This background provides a good platform for implementing an ERM.  
But in order to implement a new sy stem, all com panies need to choose the appropr iate approach, plan and train 
well enough, develop the culture and formulate relevant procedures within themselves. So here's a look at what 
Taavon has done so far. 
The need to attention to corpor ate governance and risk  management in Ir anian insurance com panies is new.  
Central Insurance of Iran as the highest regulatory body of insurance in Iran has just announced requirements for 
corporate governance including risk management to insurance companies in 2017. Central Insurance noticed rules 
include necessity to establish risk committee under the supervision of the board of directors and risk management 
department in all insurance co mpanies as it m entioned in  reg ulations No .90. In surance companies sho uld also 
assess their capital ad equacy within 4 different risks o f: 1. underwriting risk (R1), 2. market risk (R2), 3. credit 
risk (R3), and 4. liquidity risk (R4) as it mentioned in solvency regulation No 69. The formula of solvency rate is 
as follows (1) and (2), which is better to be upper than 100%. 

  2 2 2 2
1 2 3 4Required Capital (RC) = ,R R R R                                                   (1) 

 
Current CapitalSolvency Rate = 100.

RC
                                                         (2) 

 
In last ass essment Taavon  has reach ed 138%. This rate puts  this co mpany in t he first level o f solvency, which 
means has a well control on its financial risks. 
As y ou m ay concern, ca lculating the solvency  and capital adequacy is not en ough to stablish an ER M in an 
insurance com pany. So the main question is w hat kind  o f m odel is approp riate for Taavon Insurance co . 
considering the internal and external affecting activities factors. 
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1.3 Enterprise Risk Management Frameworks 
 
There are numbers of ERM frameworks such as CAS, COSO, ISO31000, Standard and Poor’s (S&P), New York 
Stock Exchange (NYSE), and Sarbanes-Oxley Act and etc, each of which describes an approach for identifying, 
analyzing, and responding to risks which are facin g the enterprise and its objectives. Some important frameworks 
which Taavon Insurance Co. has co nsidered are: 1) C asualty Actuarial Society  framework (CAS); 2) Committee 
of Sponsoring Organizations of the Treadway Commission ERM framework (COSO ERM 2017), it is notable that 
COSO which is published in 2004 has major differences with the new version which is published in 2017; and 3) 
ISO31000: 2018. 
With a benchmark on “Coldhard Steel” ERM Framework, Casualty Actuarial  So ciety Enterprise R isk 
Management Committee has offered a four categories framework for risk management on 2003. With reference to 
that framework, in general, enterprises are exposed to risks that can be categorized into the following four types. 
The precise slottin g o f in dividual risk factors un der each  of these fo ur categ ories is less im portant th an the 
recognition that ERM covers all categories and all material risk factors that can in fluence the organization’s value 
[2]. The framework also introduces a process to manage risks. 
 Hazard Risks include risks from: 

o fire and other property damage, 
o windstorm and other natural perils, 
o theft and other crime, personal injury, 
o business interruption, 
o disease and disability (including work-related injuries and diseases), and 
o liability claims. 

  Financial Risks include risks from: 
o price (e.g. asset value, interest rate, foreign exchange, commodity), 
o liquidity (e.g. cash flow, call risk, opportunity cost), 
o credit (e.g. default, downgrade), 
o inflation/purchasing power, and 
o hedging/ basis risk. 

  Operational Risks include risks from: 
o business operations (e.g., human resources, product development, capacity, efficiency, product/service 

failure, channel management, supply chain management, business cyclicality), 
o empowerment (e.g., leadership, change readiness), 
o information technology (e.g., relevance, availability), and 
o information/ business reporting  (e.g ., b udgeting and p lanning, acco unting in formation, pen sion fund, 

investment evaluation, taxation). 
  Strategic Risks include risks from: 

o  reputational damage (e.g., trademark/brand erosion, fraud, unfavorable publicity) 
o  competition, 
o  customer wants, 
o  demographic and social/ cultural trends, 
o  technological innovation, 
o  capital availability, and 
o  regulatory and political trends. 

New COSO Framework focused on five components and 20 key  principles within each of the f ive components. 
The five components are: 
 Governance and Culture, 
 Strategy and Objective Settings, 
 Performance, 
 Review and Revision, 
 Information, Communication and Reporting. 

The previous version of COSO which was introduce in 2004 had four objectives categories which are comparable 
to CAS framework: 
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 Strategy - high-level goals, aligned with and supporting the organization's mission, 
 Operations - effective and efficient use of resources, 
 Financial Reporting - reliability of operational and financial reporting, 
 Compliance - compliance with applicable laws and regulations. 

ISO 31000:2018, Risk management – Guidelines, provides principles, framework and a process for managing risk. 
It can be used by any organization regardless of its size, activity or sector. This guideline does not provide a clear 
classification of risks but has provided a simple and understandable framework for risk management. 

 
1.4 Taavon Insurance Experience  
 
Taavon In surance co. has started the im plementation of a custom ized ERM  approach in 20 19. So me of the 
important decision factors for Taavon to select and design its own ERM model are comprehensiveness, precision, 
easiness of implementation and providing clear risk categories. Because of maturity enterprise risk m anagement 
level and being new, the last two factors had weighted more. 
Because of the following reasons in Table 1 Taavon took the CAS approach to classify the business level risks and 
also chose the ISO31000 approach to implement the framework.  

 

Approach Comprehensiveness Precision Easiness Risk Categories 

CAS *** * ** + 
COSO 2004 ** * * + 
COSO 2017 *** * * - 
ISO 31000 * * *** - 

Table 1: Taavon Framework Choosing Factors 
 
The insurance company should define the scope of its risk management activities. As the risk management process 
may be applied at different levels (e.g. strategic, operational, program, project, or other activities), it is important 
to be clear about the scope under consideration, the relevant objectives to be considered and their alignment with 
organizational objectives [1]. 
The main go als of T aavon ris k m anagement sy stem is to increase solv ency level, im proving claim s ratio an d 
increasing customer satisfactio n besid e co ntinuation o f the b usiness activ ity protecting sh areholder righ ts. By 
modeling all the frameworks, Taavon decided to develop a tree level risk management framework. It has chosen to 
define the scope of its risk management in three levels of strategic, business, and process.  
 Strategic Level Risks: Occurrence of these risks, make huge and fundamental changes in the activities of the 

company such as suspension of activity or losing a significant share of profits or even dissolution. At least once 
a year, they are identified and dealt with by the Strategic Planning Committee 

 Business Level Risks: If these risk s occur, interfere with the executio n o f o perations of a department or 
departments or s et of sy stems. For dev eloping th ese level of  risk analy sis, Taavon use s CAS categor ies 
framework. Bu siness lev el risks are identified at least once a y ear by inte rviewing risk owners, then are 
analyzed, assessed and decided on their exposure by risk committee. 

 Process Level Risk s: If these kin d o f risks occur, th ey m ay inter fere with the execution of  one process.  
They are identified, managed, and updated by the owner of each process. 

With this approach Taavon has planned and fulfilled some goals such as: formed an organizational department  for 
risk management; formed the risk committee; formulated and approved the policy statement for risk management; 
formulated and approved the risk management process and procedure; held interviews with risk owners to identify 
business level risks; id entified all process level risk ; determined the risk representative for each departm ent; 
reporting differen t risk factors; and m any other actio ns which  are all of which have been in strumental in 
developing a risk management culture and day to day managing actions.  
As it m entioned befo re T aavon process to m anage ris ks is based on  ISO31000 which makes it a seven steps 
process as follows in figure 1. 
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Figure 1: Taavon Risk Management Process 

  
Outcomes 
In this article the results are focused on the second step of the process which is “Risk Identification” in three levels 
of strategic, business and process. 
The purpose of risk identification is  to find , recogn ize and de scribe risks t hat mig ht pr event an  or ganization 
achieving its objectives. The organization should identify risks, whether or not their sources are un der its control. 
Consideration should be given that there may be more than one type of outcome, which may result in a variety  of 
tangible or intangible consequences [1]. In this step relevant, appropriate and up-to-date information is important in 
identifying risks. The organization can use a range of techniques for identifying uncertainties that may affect one or 
more objectives.  
As it is defined in this company different committee or different authorities are respo nsible to identify risk due to 
its level. Strategic level risk s are identified by the Strategic Planning Com mittee once a year; business level risks 
are defined by Chief Risk Officer (CRO) with reference to the interview results with risk owners and are confirmed 
by Risk Committee and it may be categ orized as hazard ri sk, financial risk , operational risk, strategic decision 
making risks; and process level risks are identified by the process owner and confirmed by CRO. 
Furthermore, it is very im portant to note that to identify any risk or its chang es, go od and  suitable sources of 
information are necessary. Here are three different examples of Taavon risk identifications and its used data sources 
in table 2 to 4. Also note that as it was mentioned in risk definition, we usually expressed “risk” in terms of 1) risk 
sources, 2) potential events, and 3) their consequences; which are clarified at identification step. 
 
 

In
fo

rm
at

io
n

 Risk Level  Strategic 

Input Information 

Central Insurance negative score report 
interview with CEO and board of directors 
media reports 
others companies case study 

Related Objective continuation of the business activity 

R
is

k
 

Risk sources 
failure to comply with regulations 
not paying attention to the Central Insurance hints

Potential events/ Risk  suspension of activity 

Consequences 
brand infamy 
losing customers 
bankruptcy 

Table 2: Taavon Identified Strategic Risk Sample 
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Risk Level  Business 
CAS category Operational Risks 

Input Information 

staff satisfaction annual report 
interview with all managers 
previous experiences 
results of key performance indicators such as comparison of average salaries 

Related Objective 
sales increase 
appropriate staff loyalty 

R
is

k
 

Risk sources  unsatisfied staffs 
Potential events/ Risk  loosing key persons 

Consequences 
loosing knowledge 
increase staffing costs 
losing customers and sales decline 

Table 3: Taavon Identified Business Risk Sample 
 
 

In
fo

rm
at

io
n

 Risk Level  Process 
Process Name Health Insurance Process 

Input Information 

customer satisfaction report 
process analysis 
results of process indicators such as duration of claim processing 
internal quality audit report

Related Objective speed of service delivery 

R
is

k
 Risk sources 

lack of control on service delivery duration 
incomplete data recording in the software system 
lack of cooperation from loss assessor 
process defects  
unsatisfied staffs

Potential events/ Risk  increasing duration of claim processing

Consequences 
unsatisfied customer  
losing customers and sales decline 

Table 2: Taavon Identified Process Risk Sample 
 
However, the concept of risk management has been introduced to the world based on  the principles of ins urance 
and banking, in th e Iran ian in surance industry, enterprise risk management is a ne w conc ept. Ther efore, 
beside Iranian insurance companies must work to improve and deepen their laws an d regulations, they should try  
implementing these concepts through innovation and by applying latest models to their organizations. 
In this brief review, we review the customized model of ERM and the critical phase of risk identification in Taavon 
Insurance Co. 
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Abstract 
 

Risk is an inevitable part of the world that can be found in different forms around us. We may be able to 
control the negative effect of some risks. But, insurance is an appropriate method that can be used for treating 
many different types of risks. 

Insurance pricing is a pivot in insurance industry as it is associated to all stakeholders. Insured, insurers and 
other stakeholders of the insurance industry follow up insurance pricing carefully. However, in most cases, the 
insurers implement insurance pricing. The price of insurance is normally a function of the cost of production. 
Unlike of many products, the costs of insurance products are not fixed and depend on a range of factors.  

In this paper, I have investigated the mechanisms by which these factors associate with insurance pricing. 
Then, I tried to identify drawbacks of these mechanisms. 
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1 Introduction 
 
We all understand the meaning of risk but surprisingly there is no definition for risk that is agreed by all 
researchers. A relatively common definition for risk says that it is a condition in which there is a possibility of an 
adverse deviation from a desired outcome that is expected or hoped for; see Voughan and Voughan (2013). 
Core feature of insurance is sharing risk in exchange for payment. Insurance pricing is a methodology for 
determining the price of risk for insured. An appropriate pricing ensure that insurance company set fair and 
adequate premium given the competitive nature. Simplicity and stability are two other criteria that assumed to be 
satisfied in insurance pricing. In my opinion, an important question in insurance pricing is about the meaning of 
“fairness”. Our understanding by fairness is driven by both culture and legislation. From viewpoint of insurers, the 
fairness tied up with cost of the insurance product. In this paper, I want to discuss about the cost of the insurance 
product 
 

  

2 Main results 
 

Let me start with the list of costs in insurance pricing. There might be a long list for the cost of insurance, but these 

are categorized as below: 

 Losses and loss adjustment expenses, 

 Acquisition expenses, 

 Administrative expenses, 
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2 
 

 Taxes, 

 Profits and contingencies. 

Actuaries commonly focus on the first item. This can be understood from main actuarial journals. For instance, I 

checked four famous actuarial journals (see Table 1). First, I found the total number of publications from Scopus 

(https://www.scopus.com/sources?zone=TopNavBar&origin=sourceinfo) for each journal. Then, I decided to see 

all publications in each journal. Unfortunately, I couldn’t access to all contents so I just tried to look at their recent 

publications. My conclusion is that the main focus of the publications is on losses and loss adjustment expenses. 

One can complete this checking to find an exact estimate of the percentage of the publications on losses and loss 

adjustment expenses. 

 

Table 1: A sample of actuarial journals  
Journal Starting year Number of papers 

   

Scandinavian Actuarial Journal 1918 1964 

ASTIN Bulletin 1958 1247 

Insurance Mathematics and Economics 1992 2051 

North Actuarial American Journal 1997 959 
 
The other sources of theories are books. I also checked several books in the area of actuarial science. Figure 1 show 

four famous actuarial books. Again the conclusion was similar to the results that I got by review of the journals. 

 

    
  

Figure 1: A sample actuarial book 
 
Let us to see what theories we use for insurance pricing. Denote by random variable X the total incurred losses with 

an insurable risk. Then, X , that is called “premium”, will be defined as below: 

 

: ,X XS                                                          (2)  
 

where XS is the support of r.v. X. Finding X is based on the assumption that a contingent claim expenses can be 

compensated by fixed payments which is indeed the premium. Several common forms for X are given in Table 2. 

 
Table 2: Common forms of premium principles  

Name Formula condition 

   

Expected value principle  (1 ) E X 
 

0   

Standard deviation principle    E X X  
 0   

Variance principle    2E X X  
 

0   

Zero utility principle    ; where 0X E u X u         

 
In these approaches, mean and variance of X cover incurred losses and parameters ,  and   applied to capture 
other costs of the insurance product (items 2-5 in above mentioned list). In order to find mean, variance and higher 
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moments of X, we require knowing loss distribution. There is a vast literature on this topic. The above mentioned 

books include many good references. Studies on determining X can be divided into two categories: 

 Structural form of X and their characteristics, 

 Computational issues. 
 
Theoretically, a premium principle is desirable for insurer if it develops an adequate premium return. However, 
literature shows that most of business lines prefer to use expected value principle. Almost all life insurance 
products use expected value principle. Posterior rate making such as Bonus-Malus Systems are indeed based on the 
expected value principle. I think the main reason for this choice is the challenges that we have in practice when we 
want to use other principles. By the way, simplicity and flexibility of expected value principle provide several 
advantages. For instance, using GLM and Bayes theorem one can improve the level of fairness with this principle. 
These tools can be used to model variability of losses by risk factors. Such aims can be indeed achieved when we 
have access to data. Nevertheless, the problem of the creditability of insurance data is one of the most fundamental 
problems for the non-life actuary. But in the last few years, the impact of big data on the assessment of individual 
risks results in a growing debate on what is a fair actuarial price; see. e.g. Martinez et al, 2016. 
Now, let me give a brief discussion about other sources of insurance cost. Acquisition expenses are agent’s 
commission which is very common in life insurance. This cost is not stochastic, but it could be reduced by new 
technologies partly. Administrative expenses include costs other than losses and acquisitions and seem to be fixed. 
But in practice these costs depends on the quality of insurer’s workforce. Taxes are percentage of the total 
premium, so higher costs produce higher taxes. The last item is a hoped-for return on capital. 
Let come back again to the expected value principle. The parameter  included in this premium principle to capture 
all costs other than losses and adjustment losses. The above discussion on the insurance costs show that  vary by 
company for the same insurable risk. So, the total premium for a unique risk may differ dramatically and this is in 
contradiction with fairness. 
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Solving Parametric Fractional Differential Equations Arising from Rough Heston
Model using Quasi-Linearization and Spectral Collocation
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Abstract

The rough Heston model has recently attracted the attention of many finance practitioners and re-
searchers as it maintains the basic structure of the classical Heston model while having descriptive ca-
pabilities in terms of micro-structural foundations of the market. Using the fact that the characteristic
function of log-price in this model could be expressed in terms of the solution of a nonlinear parametric
fractional Riccati differential equation not admitting a closed-form solution, devising efficient numerical
schemes for pricing and calibration under this model has become a crucial need in the computational
finance community. Although the fractional Adams method has been used in most of the recent studies
on the rough Heston model, this method suffers from some stability and convergence issues in treating the
problem. In this paper, we present a numerical method based on Newton-Kantorovich quasi-linearization
to solve the nonlinearity issue followed by spectral collocation based on “poly-fractonomials” to approx-
imate the fractional derivatives in an accurate and efficient manner. We provide sufficient conditions
under which our method is convergent and the order of convergence is also obtained. In order to guar-
antee the specified convergence rate, we first prove some regularity results on the linearized problem and
then employ the proposed scheme to solve a practical calibration problem from the SPX options market.
The efficiency of the proposed method is illustrated by comparing the results with the fractional Adams
method.

Keywords: Rough Heston model, Fractional nonlinear Riccati differential equation, Spectral collocation
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An efficient pricing method for basket options under jump diffusion
model

Ali Safdari-Vaighani
1

Department of Mathematics, Allameh Tabataba’i University, Tehran, Iran.

1 Introduction

Option contracts under actual market conditions which are more complex than a simple Black-Schole model
are important hedging strategies in the modern financial market. Basket options have an important role in
the FX market in particular as they offer protection against drops in all the currencies at the same time.
Basket options provide a cheaper alternative to buying individual options on each asset to hedge against risk
and also the transaction costs are greatly lowered when one only buys a single option rather than multiple
options. Basket options are attractive products which required the reliable pricing method to take all the
beneficial characteristics of a basket option such as correlation effect of underlying assets.

The leptokurtic feature has been observed since 1950’s. However classical finance models simply ignore
this feature. For example, in the Black–Scholes Brownian motion model, the stock price is modeling as

dS(t) = µS(t)dt+ σS(t)dWt

In this model, the continuous compounded return, ln(S(t)/S(0), has a normal distribution, which it is not
consistent with ”leptokurtic feature”.

After the 1987 market crash, the implied volatility smile becomes economically significant and the per-
formance of the Black–Scholes model deteriorated [Rubinstein (1985)]. Many studies have been conducted
to modify the Black–Scholes model to explain the three empirical stylized facts, namely the leptokurtic
feature, volatility clustering effect, and implied volatility smile.

• Fractal Brownian motions models [Rogers (1997)]

• Models based on Levy processes [Cont and Tankov (2004)]

• Stochastic volatility models [Fouque et al. (2000), Heston (1993)]

• Jump-diffusion models [Merton (1976), Kou (2002)]

Assume that the asset price Si, i = 1 . . . d follows the process

dSi
Si

= µdt+ σidWi + (eJi − 1)dq, (1)
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Using the Ito’s formula, the contingent claim V (S, t) that depends on S = (S1, . . . , Sd) ∈ Ω̃ = Rd
+ can be

derived by taking the expectation under the risk-neutral process.

∂V

∂t
(S, t) = −1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
(S, t)−

d∑
i=1

rSi
∂V

∂Si
(S, t) + rV (S, t)

− λ
∫

Ω̃
[V (SeJ , t)− V (S, t)−

d∑
i=1

Si(e
Ji − 1)

∂V

∂Si
(S, t)]g(J)dJ (2)

Let Si = exi and τ = T − t and by the variable transformations, V (ex, T − τ) = U(x, τ) the equation can be
rewrite in the more tractable form:

∂U

∂τ
=

1

2

d∑
i=1

d∑
j=1

ρijσiσj
∂2U

∂xi∂xj
+

d∑
i=1

(r − σ2
i

2
− κiλ)

∂U

∂xi
− (r + λ)U︸ ︷︷ ︸

LU

+ λ

∫
Ω
U(x+ J, τ)g(J)dJ︸ ︷︷ ︸

IU

(x, τ) ∈ Ω× (0, T ], (3)

where κi =
∫

Ω(eJi − 1)g(J)dJ with the distribution function of jumps g(J) and λ is mean arrival rate of
jumps. The resulting PIDE poses difficulties to solve numerically due to

• We are dealing with d-dimensional PIDE problem.

• Truncating the infinite domain of the PIDE to finite boundaries.

• The payoff function possesses a discontinuity in its first derivative at the exercise price.

• We should avoid producing a dense system of equations when we discretize the equation.

Basket options evaluation are not tied to Monte-Carlo simulation method. They have indeed been actively
researched by other numerical methods. We list the following four popular methods:

• Finite difference scheme for the two dimensional PDE (Nielsen et. al. 2000), the two dimensional
PIDE (Forsyth et.al. 2008)

• Radial basis function approximation method for the two dimensional PDE (Pettersson et.al. 2008,
Safdari et.al. 2015)

• Fast Fourier transform (FFT) approach, (Oosterlee et.al. 2008)

• Monte-Carlo simulation (Glasserman 2004)

2 Radial basis function partition of unity

In a partition of unity (PU) scheme, local approximations on overlapping patches that form a cover of the
computational domain are weighted together by compactly supported partition of unity weight functions to
form the global approximation. Let {Ωj}Mj=1 are overlapping patches that form a cover of the computational
domain Ω. The global approximation function s(x) in domain Ω to the solution function u(x) is constructed
as

s(x) =

M∑
j=1

wj(x)sj(x), (4)
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where sj(x), j = 1, . . . ,M are local interpolates and sj(xi) = u(xi) for each node point xi ∈ Ωj

sj(x) =
∑

k∈J(Ωj)

ψk(x)uk,

The partition of unity weight functions wj , are constructed using Shepard’s method

wj(x) =
ϕj(x)∑

k∈I(x) ϕk(x)
,

which ϕj(x) are compactly supported functions with support on Ωj . The global approximation function for
time depended problem can be introduced as

s(x, t) =

M∑
j=1

wj(x)sj(x, t), (5)

Why we have chose the RBF–PUM as numerical method

• Easy to implement in any number of dimensions

• Allows for local adaptivity. Patches can be locally refined and have shapes adapted to the local solution
behavior.

• Produce the sparse differentiation matrices

• Leads to the high order of convergence rate
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A jump diffusion model when both underlying and volatility contain
correlated jumps
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Abstract
An option pricing model when not only the underlying asset but also the volatility are coming from

stochastic drivers along with contemporaneous jumps is considered in this work. To price under this
introduced 1+2 dimensional PIDE problem, a local scheme will be constructed to be fast and efficient by
relying heavily on sparse matrices and adaptive node layouts. Several issues are discussed to circumvents
on the challenges of pricing under such a jump-diffusion model.

Keywords: Stochastic volatility model; double integral; jump diffusion; contemporaneous jumps
Mathematics Subject Classification [2018]: 65M22; 91B25

1 Introduction

The standard option theory in finance assumes that the logarithm of asset price is normally distributed,
[3]. However, in practice, the observed distributions are not normal - they exhibit ‘fatter tails’, i.e. the
probability of very large moves in either direction is larger than allowed by normal distribution. Therefore,
the jump-diffusion method has been brought to provide plausible mechanism for explaining why fat tails
exists and what are their consequences, [2].

Both cases, when jumps in volatility and returns are occurring independently (known as SVIJ), as well
as when they are taking place contemporaneously (known as SVCJ), have been discussed in the work [3].
To illustrate further, both SVIJ and SVCJ are good models for option pricing under jump diffusions, but
the SVCJ model could provide better fit to the observations of the market, see also [4].

There are several works handling the pricing problems which need a PIDE’s solution in two spatial
dimensions (specially with a double integral source). The work [1] investigated a finite element (FE) approach
for solving this problem. In [7], an implicit–explicit computational scheme is investigated for solving the
Bates SV model [2] using an operator splitting.

In this work, we consider a new convex combination of the two already well–known RBFs, viz, the
multiquadric (MQ) and the inverse multiquadric (IMQ) RBFs as follows:

φ(ri) = θ(c2 + r2i )
1
2 + (1− θ) (c2 + r2i )

−1
2 , θ ∈ [0, 1], i = 1, 2, . . . ,m, (1)

where ri = ‖x− xi‖2 denotes the Euclidean distance and the parameter of shape is c. This RBF is denoted
by CRBF as the convex combination of the aforementioned RBFs.

Here the motivation is to contribute in solving a (1+2)D PIDE originated by the model of the SVCJ
consisting of a multiple integral. We compute and use the weights of the novel CRBF–FD scheme for
spatially discretizing the PIDE problem. A Krylov subspace method alongside nonuniform discretizations
provide an efficient tool for tackling the SVCJ model in computational finance.

A main idea of this work is when we compute the double integral resulting from the jump terms, the
solution values in each discretized cell is approximated by the average of the values in the four corners. This
contribution allows for analytic integration of the jump density which is novel in literature.
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2 The SVCJ PIDE

Under the dynamic of the SVCJ model, for pricing in case of a European option, we have the following
PIDE which is formulated in forward time [5]:

∂u(s, v, τ)

∂τ
=

1

2
vs2

∂2u(s, v, τ)

∂s2
+

1

2
σ2v

∂2u(s, v, τ)

∂v2
+ ρσvs

∂2u(s, v, τ)

∂s∂v

+ (r − q − λξ)s∂u(s, v, τ)

∂s
+ κ($ − v)

∂u(s, v, τ)

∂v
− (r + λ)u(s, v, τ)

+ λ

∫ ∞
0

∫ ∞
0

u(szs, v + zv, τ)p(zs, zv) dzv dzs︸ ︷︷ ︸
LIu(s,v,τ)

=: Lu(s, v, τ), s, v ≥ 0,

(2)

wherein τ = T − t and Lu(s, v, τ) = LDu(s, v, τ)+λLIu(s, v, τ). The 2D probability density function (PDF)
p has a log–normal distribution p(zs, zv) for zs and normal distribution along zv, is expressed as [3]:

p(zs, zv) =
1√

2πzsδν
e

− zv
ν
−

(ln(zs)− γ − ρJzv)2

2δ2


. (3)

3 Nodes layout

For producing a mesh to be as coarse as possible away from the hot area and as refined as possible in the
hot zone, some strategies have already been given (for different other models) in [6]. Assume that {si}mi=1

is a partition for s ∈ [smin, smax]. Then, we define:

si = Ψ(ξi), 1 ≤ i ≤ m, (4)

wherein m � 1 and ξmin = ξ1 < ξ2 < · · · < ξm = ξmax are m equally–spaced points with the following

features: ξmin = sinh−1
(
smin−sleft

d1

)
, ξint =

sright−sleft
d1

, ξmax = ξint + sinh−1
(
smax−sright

d1

)
. We also consider

here that smin = 0. The parameter d1 > 0 controls the density of the points s = E. Moreover, we have

Ψ(ξ) =


sleft + d1 sinh(ξ), ξmin ≤ ξ < 0,
sleft + d1ξ, 0 ≤ ξ ≤ ξint,
sright + d1 sinh(ξ − ξint), ξint < ξ ≤ ξmax.

(5)

Some common choices are d1 = E
4 , while sleft = max{0.5, e−0.0025T } × E, sright = E, [sleft, sright] ⊂

[0, smax], and smax = 4E. Similarly, if {vj}nj=1 be a set of nodes, then we define:

vj = d2 sinh(ςj), 1 ≤ j ≤ n, (6)

where n � 1 and d2 > 0 controls the mesh concentration near v = 0. A common choice is [6]: d2 = vmax
200 ,

where vmax = 3. In addition, ςj are equally–spaced nodes given by ςj = (j − 1)∆ς, ∆ς = 1
n−1 sinh−1

(
vmax
d2

)
,

for any 1 ≤ j ≤ n.

4 RBF-FD estimates

For the case of the 1st derivative and without loss of generality, we consider the three unstructured points
[8], {xi − h, xi, xi + ωh}, ω > 0, h > 0, and write:

f ′(xi) ' Ξi−1f(xi−1) + Ξif(xi) + Ξi+1f(xi+1) = f̂ ′(xi), (7)
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wherein f and f̂ stand for the exact and approximate values. As long as c� h, we attain

Ξi−1 = − ψ1

2c2h(ω + 1) (−3 (c4 − 2) θ2 + (c6 + 3c4 − 2) θ3 − 6θ + 2)
,

Ξi =
ψ2

2c2hω (−3 (c4 − 2) θ2 + (c6 + 3c4 − 2) θ3 − 6θ + 2)
, (8)

Ξi+1 = − ψ3

2c2hω(ω + 1) (−3 (c4 − 2) θ2 + (c6 + 3c4 − 2) θ3 − 6θ + 2)
,

wherein ψ1 = ω(2c8θ3 + c6θ2(θ(h2(4 − 3ω) + 6) − 6) − 5c4h2(θ − 1)θ2(3ω − 4) + c2(θ − 1)2(θ(h2(9ω − 5) −
4) + 4) + h2(θ − 1)3(11ω − 17)), ψ2 = (ω − 1)(2c8θ3 − 3c6θ2(θ(h2ω − 2) + 2) − 15c4h2(θ − 1)θ2ω + c2(θ −
1)2(θ(9h2ω−4)+4)+11h2(θ−1)3ω), and ψ3 = −2c8θ3+c6θ2(θ(h2(3−4ω)ω−6)+6)−5c4h2(θ−1)θ2ω(4ω−
3) + c2(θ − 1)2(θ(h2ω(5ω − 9) + 4)− 4) + h2(θ − 1)3ω(17ω − 11).

To calculate the weights for the function 2nd derivative, one obtains as long as c� h:

f ′′(xi) ' Θi−1f(xi−1) + Θif(xi) + Θi+1f(xi+1) = f̂ ′′(xi), (9)

where

Θi−1 =
ψ4

c2h2(ω + 1) (θ (θ (c6θ + 3c4(θ − 1)− 2θ + 6)− 6) + 2)
,

Θi = − ψ5

c2h2ω (θ (θ (c6θ + 3c4(θ − 1)− 2θ + 6)− 6) + 2)
, (10)

Θi+1 =
ψ6

c2h2ω(ω + 1) (θ (θ (c6θ + 3c4(θ − 1)− 2θ + 6)− 6) + 2)
,

where ψ4 = 2c8θ3+c6θ2(θ(h2(ω(3ω−5)+4)+6)−6)+5c4h2(θ−1)θ2(ω(3ω−5)+4)−c2(θ−1)2(θ(h2(ω(9ω−
13) + 5) + 4) − 4) − h2(θ − 1)3(ω(11ω − 19) + 17), ψ5 = 2c8θ3 + c6θ2(θ(h2(ω(3ω − 4) + 3) + 6) − 6) +
5c4h2(θ− 1)θ2(ω(3ω− 4) + 3)− c2(θ− 1)2(θ(h2(ω(9ω− 17) + 9) + 4)− 4) +h2(θ− 1)3((13− 11ω)ω− 11) and
ψ6 = 2c8θ3 + c6θ2(θ(h2(ω(4ω − 5) + 3) + 6)− 6) + 5c4h2(θ − 1)θ2(ω(4ω − 5) + 3)− c2(θ − 1)2(θ(h2(ω(5ω −
13) + 9) + 4)− 4)− h2(θ − 1)3(ω(17ω − 19) + 11).

5 Double integral and final system

We discretize the multiple integral operator of (2) given by:

LIu(s, v, τ) =

∫ ∞
0

∫ ∞
0

u(szs, v + zv, τ)p(zs, zv) dzv dzs. (11)

It is necessary to first impose a transformation as follows:

z1 = szs, z2 = v + zv. (12)

The transformation (12) acts on (11) and leads to:

LIu(s, v, τ) =

∫ ∞
0

∫ ∞
v

1

s
u(z1, z2, τ)p(z1/s, z2 − v) dz2 dz1. (13)

Computing (13) at the computational node (si, vj) reads LIu(si, vj , τ) =
∫∞
0

∫∞
vj

1
si
u(z1, z2, τ)p(z1/si, z2 −

vj) dz2 dz1. Here, we choose a rectangular [0, smax] × [vj , vmax], which is large enough so that integrating
over it gives a sufficiently good approximation as in the work [7]. Accordingly, in the computational domain,
we have:

LIu(si, vj , τ) =

∫ smax

0

∫ vmax

vj

1

si
u (z1, z2, τ) p (z1/si, z2 − vj) dz2 dz1. (14)
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4 F. Soleymani

This yields LIu(si, vj , τ) =
∑p=m−1

p=1

∑q=n−1
q=j Mp,q, where

Mp,q =

∫ sp+1

sp

∫ vq+1

vq

1

si
u (z1, z2, τ) p

(
z1
si
, z2 − vj

)
dz2dz1. (15)

We consider an estimate for u for every cell [sp, sp+1]× [vq, vq+1], and then integrate the density function
p theoretically. The simplest way to approximate u is to take into account u as a fixed function on each cell
as comes next:

u(z1, z2, τ) ' 1

4
(u(sp, vq, τ) + u(sp, vq+1, τ) + u(sp+1, vq, τ) + u(sp+1, vq+1, τ)) , (16)

where (z1, z2) ∈ [sp, sp+1]× [vq, vq+1]. Using this approximation for u in (15) we have:

Mp,q =
1

4
(u(sp, vq, τ) + u(sp, vq+1, τ) + u(sp+1, vq, τ) + u(sp+1, vq+1, τ)) (17)

×P

(
sp
si
,
sp+1

si
, vq − vj , vq+1 − vj

)
,

where P(A,B,C,D) =
∫ B
A

∫ D
C p(z1, z2)dz2dz1.

Ultimately after the incorporation of the boundaries directly into the system matrix, we contribute a
set of semi–discretized (linear) ODEs with the system matrix Υ̃ which is real, and unsymmetric. The set of
ODEs is locally well–posed, i.e., there exists a unique solution (depending on the initial condition), which
satisfies the system with the Lipschitz constant ‖Υ̃‖, for a spectral matrix norm.

This system is solved now by the Krylov subspace method which saves the computational time when the
system matrix Υ̃ is of large size in contrast to the existing time–stepping solvers, at which the explicit ones
relies heavily on the choice of a very refined step size and the implicit ones suffer from more computational
burden imposed because of solving nonlinear (systems) of algebraic equations per temporal cycle.
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Our goal is to develop new Monte Carlo techniques for pricing Asian options. In particular we consider
discrete Asian arithmetic options driven by the mixed fractional Brownian motions and we price them
using a control variate approach that exploits an explicit exact solution for discrete geometric Asian
options.
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Valuing Equity-Linked Death Benefits under Phase-type models 1

Saghar Heidari2

Shahid Beheshti University, Tehran, Iran

Abstract

In this paper, we study the pricing problem of equity-linked life insurance products such as guaranteed
minimum death benefit (GMDB) in the case that remaining life time of a policyholder, denoted τ , ap-
proximated by a Phase-type (PH) distribution and underling asset dynamic, denoted by Xt, is described
by a jump-diffusion regime-switching model. To find the fair value of the products, we use the discounted
density approach. For this purpose, we modified the recent results for the Wiener-Hopf factorization
under PH assumption in Markov-modulated economy to define the joint law of the overall supremum
value of the process Xt at time τ .

Keywords: Life Insurance, Equity-Linked Death Benefits, Phase-type distribution, Regime Switching
model

Mathematics Subject Classification [2018]: 13D45, 39B42

1 Introduction

In the past, life insurance companies used to offer life insurance contracts that provided a fixed capital at
time of death of the policyholders embedded insurance protections. In the past decades, contracts often
involve a return linked to the market. As an example of these contracts, equity-linked contracts are more
popular products that offer minimum death benefits. The pricing problem of these life insurance products
is a significant challenge for insurance companies for financial purposes.

It is known that the time-until-death random variable τ(x) of a person at age x, when signing the
life insurance contract, is assumed as combination of exponential distributions [4]. We know that linear
combination of exponential distributions are not necessary exponentially distributed and can be negative in
the tail part, which plays an important role in valuing equity-linked insurance products. These difficulties
leads to using alternative distributions such as PH distributions [5]. Approximation of the future lifetime
distribution by PH instead of exponential distribution has two advantages. First is that many calculations
that are explicit for exponential distributions are often computationally tractable with PH assumptions
(Asmussen et al. 1996). Second reason is that, PH distributions are dense so that a given distribution F
on [0,∞) can be approximated arbitrarily well by a PH distribution with large enough number of phases.
There are many papers in ruin theory, credibility theory, risk theory and options pricing that considered PH
distributions. But as far as we know, the only references of applications of PH distributions to life insurance
are (Lin and Liu 2007) and (Zadeh et al. 2014).

Resend empirical studies show that the assuming Geometrical Brownian motion for dynamics of un-
derlying assets in well–known Black–Scholes–Merton model (Black and Scholes 1972) has some deficiencies
such as ignoring market jumps and considering market volatility as a constant factor which is not consistent
with some financial features such as the volatility smile and the thin–tailed return distribution of asset

2speaker
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2 S. Heidari

dynamic. Consequently, alternative models have been introduced to capture those phenomena in financial
markets. These models include stochastic volatility models, jump–diffusion models [3] and regime–switching
models [2]. Applying these models provide better results on fitting market data because they can explain
the jump patterns exhibited by some financial assets and have the potential to capture a wide variety of
implied volatility skews in real world options data. In this framework, recent research in finance litera-
ture are allocated to creating more realistic models by combining different models like jump–diffusion plus
regime–switching models. Under this model the parameters such as drift and volatility are allowed to take
diverse values in finite number of regimes.

In this paper, we consider PH distributions for future life time of insured to find the fair value of
equity-linked products in life insurance, an area where PH distributions have been far less employed than
in the related areas of non-life insurance. We also assume that the underlying asset dynamics provided
jump features of market price, considering jump diffusion regime switching models. To solve the pricing
problem with discounted density approach, we apply a version of the Wiener-Hopf factorization. Recently
the traditional version of Wiener-Hopf factorization has been developed [1] for the case of PH distribution
of τ and underling asset dynamic jump-diffusion with PH jumps. This motivated us to extend the results
for the case of jump-diffusion regime-switching models.

The outline of the paper is as follows: The next section is allocated to introducing PH distributions. In
section 3 we define the jump-diffusion regime-switching models for the dynamic of underling assets. Then
in section 4 we modified the Wiener-Hopf factorization for our model to find the joint law of the processes
for pricing GMDB by discounted density approach. Finally the performance of the proposed model are
illustrated through some numerical examples.

2 Phase-type Distributions

A random variable τ is called a phase-type variable with representation (α,T,m), if τ = inf{t ≥ 0, Jt = †}
is the distribution of the life-time of a terminating time-homogeneous Markov process {Jt, t ≥ 0} on a finite
state space with m states and additional absorbing state †, where α = (α1, ..., αm) is the vector of initial
probability distribution and T = (tij)m×m is generator matrix: t11 · · · t1m

...
...

...
tm1 · · · tmm

 .
The associated vector of exit rates (killing rates) is given by t = −T1, where 1 is a column vector with all
entries equal to 1 and

t =

 t1...
tm

 ,
with

ti +
m∑
j=1

tij = 0, i = 1, · · · ,m.

The density function of the phase-type variable τ is given by

P(τ ≤ z) = αeTzt,

where the exponential of matrix T is defined as
∑∞

n=0
Tn

n! .

Assuming that T +αt is an irreducible matrix, because otherwise we can eliminate some states without
affecting the distribution of τ , leads to this fact that all the non-terminating states are transient and so T
is invertible.
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Equity-Linked Death Benefits under Phase-Type models 3

We represent the time-reversed representation of τ by (α∗,T∗,m) of terminating time-homogenous
Markov process {J∗t , t ≥ 0} with

J∗t =

{
J(τ−t)−, t < τ,

†, otherwise,

where the initial distribution α∗, generator T∗ and the exit rates vector of the process are as follows:

α∗ = tT∆ν , T∗ = ∆−1ν TT∆ν , t∗ = ∆−1ν αT,

where ∆ν is the diagonal matrix with the positive vector ν = −αT−1 on the diagonal.
For more details of phase-type distributions, see (Asmussen 1996).

In this paper, we use phase-type distribution to approximate τx, the remaining life-time of an insured of
age x, instead of exponential distribution.

3 Jump-Diffusion Regime-Switching model

We assume that the economy switches from one state to the other states governed by a finite state continuous
time Markov chain {I(t)}t≥0 with the state space {1, . . . , n}. Let the matrix Q = (qi,j)n×n be the rate matrix
of the chain. Recall that qi,j > 0 for i 6= j and that

n∑
j=1

qi,j = 0, i = 1, . . . , n.

When the economy is in the i-th state (i.e., I(t) = i), the asset price process S(t) is assumed to follow the
jump–diffusion regime switching model:

dS(t)

S(t−)
= µidt+ σidW (t) + dZi(t), t > 0,

here, µi = ri − di, ri is the interest rate, di is the dividend rate, σi is the volatility of the underlying asset,
and Zi(t) is a compensated compound Poisson process, independent of the Wiener process W (t) under the
measure Q. As usual, the process Zi(t) is specified as

Zi(t) =

Ni(t)∑
j=1

(
eJi,j − 1

)
− λiεit,

where εi is the expected jump percentage, Ni(t) is a Poisson process with the risk–neutral intensity λi and
{Ji,j}∞j=1 is a sequence of independent and identically distributed random variables. For the two well-known
jump models, Merton’s model and Kou’s model, the probability density functions of the random variable Ji
are specified as follows:

gi(y) =
1√

2πσJi
e
−

(y−µJi )
2

2σ2
Ji , (1)

and
gi(y) = piηi,1e

−ηi,1y1{y≥0} + (1− pi)ηi,2eηi,2y1{y<0}, (2)

respectively, where µJi ∈ R, σJi > 0, ηi,1 > 1, ηi,2 > 0, pi ∈ [0, 1] and 1 is indicator function.
For each state define the Levy process Xi(t) by asset price S(t) such as S(t) = S(0)eXi(t). From the

Levy processes features (Cont 2004) the Levy-Khinchine formula Xi(t) for complex values of w is given by

ΦXi(t)(w) = E[exp(wXi(t))]

= exp t

(
µiw +

1

2
σ2iw

2 +

∫
R

(ewx − 1− wx1|x|≤1)λidν(x)

)
= exp(tκi(w)),
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where

κi(w) = µiw +
1

2
σ2iw

2 + λi(ζi − 1),

with

ζi =
piηj1
ηj1 − w

+
(1− pi)ηj2
ηj2 + w

,

ζi = exp(µiw +
1

2
σ2iw

2),

for the Kou’s model and Merton’s model respectively.

Denote the elements E[exp(wXj(t))|I(0) = i] for i, j = 1, · · · , n, by matrix [Ft(w)]n×n such that

Ft(w) = exp(tΦ̄(w)),

with

Φ̄(w) = Q+A,

where A is diagonal matrix in which Aii = κi(w).

In this paper, we assume the dynamic of asset price as jump diffusion regime switching model and since
our approach can be used by both jump models, we consider gi(y) as general case for jumps distribution.

4 Pricing Equity-Linked Life Insurance Products

In this section, we are interested to study some valuation problems of equity-linked products, in particular,
guaranteed minimum death benefits (GMDBs) in life insurance.

We assume that the stock price process S(t) follows the jump diffusion regime switching models as
discussed in previous section. Let τ = τ(x) be the time until death of an insured (policyholder) of age x
at t = 0, when signing the contract. We propose that τ is phase-type distributed, i.e. the distribution in
section 2, independent of S(t).

In life insurance contracts, the payment of insurance benefits can be considered as general benefit function
Φ(S(τ), S(τ)), where S(τ) is the running maximum, S(τ) = maxt≤τ S(t). For example the benefit function
of guaranteed minimum death benefits in life insurance contracts is

Φ(S(τ), S(τ)) = max(S(τ),K) = S(τ) + (K − S(τ))+,

where K is the guaranteed amount and a+ = max(a, 0).
So the guaranteed minimum death benefits can be considered as the payoff a Put vanilla option written on
the stock.

To value the life insurance contracts, we need to calculate the expectation of discounted value of the
benefits:

E[e−rτΦ(S(τ), S(τ))], (3)

where r is a discounting factor.

Let the Levy process Xt as S(t) = S(0)eXt . Further, where Jt lives on phases 1, · · · ,m, Xt switched in
regimes with m(n + 1) phases i, ij for i = 1, · · · ,m and j = 1, · · · , n. The killing rate in state i is ti and
zero in all ij states.

To calculate the expectation of (3), the distribution of the maximum or minimum values of the Xτ is
required, so we define

Xt = sup
s≤t

Xs,

Xt = inf
s≤t

Xs,
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and the times the maximum or minimum values are attained by

ηt = inf{s ≤ t,Xs ∨Xs− = Xt},
η
t

= sup{s ≤ t,Xs ∧Xs− = Xt}.

Now considering the reversal of PH, we have the following result.

Theorem 4.1. Assumption the standard reversal of PH with representation (α∗,T∗,m), the modified fac-
torization is as follow

Pi
(
Xτ ∈ dx,Xτ −Xτ ∈ dy, Iητ = k, Jτ− = j

)
= Pi

(
Xτ ∈ dx, Iητ = k

)
P∗j
(
Xτ ∈ dy, Iητ = k

)
uk,

where,

uk =
α∗j

P
(
Iητ = k

) =
α∗j

P∗
(
Iη
τ

= k
) .
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Abstract

The main goal of this paper is to price a risk management problem based on the price of European call
options. First of all, we provide a risk management problem which plays the role of an insurance contract
to manage the risk of losses caused by market price fluctuation. Then, working towards controlling price
movements, we introduce a machine learning algorithm with a quadratic hypothesis to model implied
volatility and rule out static arbitrage on call option surface. We address how to preclude over-fitting
(high variance) and under-fitting (high bias) by a regularized cost function including a penalty term
which controls the trade-off between over-fitting and under-fitting. Eventually, the results of a numerical
implementation show that the proposed modeling of implied volatility yield a volatility surface free of
static arbitrage, therefore it can be used to monitor price variability and also to improve the precision of
contract pricing.

Keywords: Risk Management; Implied Volatility; Static Arbitrage; Machine Learning.

AMS Mathematical Subject Classification [2018]: 97M30

1 Main results

1.1 Risk management framework

let (St)0<t<T be a random process representing the value of a risky asset over the interval [0, T ], and let

r > 0 denote the risk-free interst rate. If an agent invests in the asset at time 0, we consider a problem

that the agent wants to manage the risk of losses L =
(
S0 − e−rTST

)+
. To manage the risk of losses the

agent buys a contract X at the price π (X), that also satisfies 0 ≤ X ≤ L. Therefore, the agent’s global

position of risk then is P = L − X + π (X). Also, to avoid the risk of moral hazard we assume X and

L−X are comonotonic; in other words, both parties in a contract feel the risk of losses. In a complete

market we can assume the valuation π of the contract X is given by π (X) = EQ (X). To price a risk

management contract, the most common approach is to minimize the agent’s global position of risk. On

the other hand, we assume that the agent measures the risk of losses with value-at-risk (VaR) introduced
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as VaRα (L) = inf {x ∈ R |FX (x) ≥ α}, where α ∈ (0, 1) represents the risk aversion of the agent. Then,

the risk management problem is given by:

min
0≤X≤L,

X andL−X
are comonoton

{
VaRα (L−X) + EQ (X)

}
(1)

Now, based on [1], we provide the following theorem that links the price of risk management contracts to

the price of European call options.

Theorem 1.1. An optimal solution X for the problem 1 is given by

X = min
{(

S0 − e−rTST

)+
,
(
S0 − e−rTV aR(1−α) (ST )

)+}
The form of the solution is given as X = f (ST ), where

f (x) =
(
S0 − e−rTV aR1−α (ST )

)+
+ e−rT

(
x− S0e

−rT
)+

− e−rT (x− V aR1−α (ST ))
+ (2)

In fact, an expectation over the solution X comes up with this idead that the first term of the solution 2 is a

constant which can easily be computed by market information, but the second and third terms are somehow

similar to the pricing formula for an European call option based on the Black-Scholes framework, so the

problem of contract pricing is changed into the problem of option pricing, and we only need to make sure

that the call options are correctly priced. This will lead us to restrict our analysis only to static arbitrage

since it is a kind of arbitrage defined on the call surface and without loss of generality we consider that

there is no martingale measure in the market. In the next step, we propose a quadratic machine learning

approach to model the Black-Scholes implied volatility of European call option to take care of the contract

pricing.

1.2 The quadratic parameterization

For a parameter set η = {θ0, θ1, θ2} , the quadratic parameterization of total implied variance with respect

to moneyness x is given by wQ2

imp(x, η) = θ0 + θ1x + θ2x
2, where θ0 > 0, θ1 ∈ R. The condition of θ2 > 0

along with the condition of θ21 − 4θ0θ2 < 0 make the function x → wQ2

imp (x, η) positive and strictly convex

for all x ∈ R.

Proposition 1.2. The quadratic surface wQ2

imp(x, η) is free of calendar spread arbitrage if for any two times

to maturity τ1 < τ2 corresponding to w(., τ1) and w(., τ2) by the parameters sets η1 = {θ01, θ11, θ21} and

η2 = {θ02, θ12, θ22} the following conditions satisfy

(1) θ22 − θ21 > 0;

(2) θ22θ01 + θ21θ02 <
θ12θ11

2 .

Proposition 1.3. The quadratic volatility model wQ2

imp(x, η) for options with less than one year expiration

time, is free of butterfly arbitrage if

(1) θ21 − 4θ0θ2 + θ2 < 0;

(2) 1
4 < θ0 < 1.
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Figure 2: Durrleman Plots for six different expiration time.

1.3 The cost function

To avoid high bias (under-fitting) and high variance (over-fitting), we use a penalty term [4] for each volatility

slice as follows

η̂ = argmin
θ

1

2m

 m∑
i=1

(
wQ2

θ (x(i))− w(i)
)2

+ λ
2∑

j=1

θ2j

 (3)

and Also a forward slice by slice strategy is used in this paper to rule out calendar spread arbitrage. Fig-

ure 1 shows that the parametrization is free of calendar spread arbitrage since total implied variance is an

increasing function of expiry time [3]. Figure 2 shows that for all different times to expiration, the volatilty

slice is free of butterfly arbitrage because the Durrleman’s function for all volatilty slices is positive around

at the money [2]. Table 1 shows the information about time to maturity and the optimum value of λ for

each volatilty slice.

Table 1: Expiration times and the optimum values of λ
Expiry date Time to maturity λ

20/12/2014 0.0136 0.3
02/01/2015 0.0465 3
17/01/2015 0.0876 1.2
23/01/2015 0.1041 2.8
20/02/2015 0.178 0.9
20/03/2015 0.232 1.3
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Abstract

In this paper, Our objective is to predict the lapse risk by studying savings contracts at an individual
level. In fact, by considering a sequence of a binary process for a policyholder status, we present an
algorithm based on dynamic machine learning to predict its path. Using this method, we provide a
dynamic model to predict the lapse risk of each policyholder based on static and dynamic factors.

Keywords: Lapse, Cash-Flow-Projection, Solvency Capital Requrment

AMS Mathematical Subject Classification [2018]: C52, C53, G22

1 Introduction

In this paper, we focus on structural lapse risk in the case of Individual savings contracts and apply machine
learning methods to identify homogeneous risk groups. One of the interesting features of the methods
used here is to be able to model the behavior of policyholders based on static and dynamic factors(such as
economic factors). To study the impact of dynamic and static factors on lapse risk, see [1].

2 Model formulation

The purpose of this paper is to describe a sequence of machine learning procedures that can be characterize
the process of lapse risk. In this approach, we first introduce a machine learning algorithm to train the
parameters of each customer’s behavior prediction model in the first year of its contract, and then deal
with model training with another machine learning algorithm for each customer’s behavior in the second
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2 Khaled Masoumifard, Soroush Amirhashchi, Reyhaneh jannati

year of its contract. We continue this approach until that we can extract a measure of the behavior of each
customer with respect to the lapse process. Consider the following data structure for further explanation

Policyholder1 (1,X
(1)
y1 ) (1,X

(1)
y1+1) (0,X

(1)
y1+2)

Policyholder2 (1,X
(2)
y2 ) (1,X

(2)
y2+1) (1,X

(2)
y2+2) · · ·

Policyholder3 (1,X
(3)
y3 ) (1,X

(3)
y3+1) (1,X

(3)
y3+2) (1,X

(3)
y3+3) (0,X

(3)
y4+4)

Policyholder4 (0,X
(4)
y4 )

Policyholder5 (1,X
(5)
y5 ) · · ·

.

In general, investigate data with this structure is complicated: for example consider policyholder 2, which
has only been observed for two years of its process, and we do not know what will happen to it in the
future, but all situations of the policyholder 3 have been observed for 10 years. Therefore we have a lot
of censored observations. To extract information about risk lapse from this data in an appropriate way, at
first we remove all policyholders that dead and then classify these data into k sets. The structure of data
in class i, i ≤ k, as follows,

Policyholder 1 (1,X
(1)
y1 ) (1,X

(1)
y1+1) (1,X

(1)
y1+2) · · · (1,X

(1)
y1+i)

Policyholder 2 (1,X
(2)
y2 ) (1,X

(2)
y2+1) (1,X

(2)
y2+2) · · · (1,X

(2)
y2+i)

...
...

...
... · · ·

...

Policyholder j (1,X
(j)
yj ) (1,X

(j)
yj+1) (1,X

(j)
yj+2) · · · (0,X

(j)
yj+i)

...
...

...
... · · ·

...

.

This means that in class i, the probability of Lapse is investigated for a person who at least four years of
their contract elapsed. Therefore, all people who have been under contract for less than i years or have been
lapsed before i years of their contract elapsed are removed from class i and then we classify the remaining
data using a supervised machine learning algorithm.

3 Main result

In this paper, we investigate the lapse risk in life insurance of Mellat Insurance Company by applying the
model described in the previous section in life insurance data from 2009 to 2019. We have applied the
5-fold cross validation method to classification this data in all ten steps of the machine learning algorithm.
At each step, the response variable is a binary variable such that one represents lapse at that step and
zero indicates the contract is active or ended. Also, the age of policyholder and inflation rate were used as
independent variables in this model. Implementation results show that the lapse risk can be predicted with
excellent accuracy in the future years. The results for model accuracy are presented in Figure 1 and Table
1. Thus, with these results, it can be claimed that the model described in the previous section can predict
the behavior of each policyholder with respect to attributes of each policyholder, economic conditions and
etc.
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Figure 1: Accuracy for lapse projection

Iteration Accuracy Kappa AccuracySD KappaSD
Lapse in arrival year 0.9753 0.3320 0.0003 0.0089
Lapse after one year 0.8284 0.3042 0.0029 0.0126
Lapse after two year 0.8316 0.5686 0.0060 0.0171

Lapse after three year 0.8180 0.5184 0.0022 0.0058
Lapse after four year 0.8494 0.6538 0.0031 0.0072
Lapse after five year 0.8521 0.7062 0.0094 0.0184
Lapse after six year 0.8932 0.7591 0.0132 0.0315

Lapse after seven year 0.8588 0.6205 0.0257 0.0621
Lapse after eight year 0.8327 0.5244 0.0090 0.0359
Lapse after nine year 0.8229 0.3859 0.0188 0.0793

Table 1: projection accuracy of the lapse risk model for 10 years
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Abstract 
 

Some empirical evidence shows that Jumps effect on financial asset prices and volatilities of returns change 
randomly over the time. In this paper, we present a class of time-change Levy process that can capture the volatility 
clustering and heteroskedasticity. The random clock process used to induce stochastic volatility is the integral of a 
positive increasingly Levy process with mean reverting property. By using the characteristic function and fast 
Fourior transform technique, the closed form formula of option pricing can be derived. In addition, taking into 
account this structure, we show that random clocks driving are highly correlated to trading volumes. Finally, after 
calibrating the parameters of the process we perform empirical researches on two Iran stock indices. 
 
Keywords: European option, Time-changed processes, Subordinator, Volatility clustering. 
 
Mathematics Subject Classification [2010]:  60G51; 60H10; 60E10. 
 
 
 
1.Introduction 
One of the most important topics in financial markets is the pricing of securities that are used as a hedging 
instrument and the value of the securities is derived from value of their underlying asset. Option pricing is the most 
common field in study of derivatives market. Geometric Brownian motion is used to model option prices in the 
Black-Scholes model. Financial market data shows jumps in prices, the skewness in distribution of returns 
compared to the normal distribution and as well as stochastic volatility over time. Therefore, the prices of the 
option resulting from the Black-Scholes model are not consistent with market data. In order to enhancing the 
performance of the Black-Scholes model for option pricing, a model that covers price jumps in asset pricing 
models is used[4]. The value of an option has dependence to the current stock price, the time value, volatility and 
interest rates. So the underlying asset must represent characteristics of financial markets such as skewness, heavy 
tailedness, volatility clustering and jump in asset price. The volatility clustering appears when the volatility of their 
returns are correlated [1]. These features can be found in a family of Levy's processes that are more in line with 
empirical realities [2]. For this purpose, we can randomize the volatility parameter of the Black-Scholes model or 
to time-change Levy process with a positive increasing process with dependent increments to cover the stochastic 
volatility [3]. The volatility clustering feature indicates that asset returns are not independent across time while 
Levy processes have independent increments, seems to be weak in representing the volatility clustering. For this 
reason, the stochastic volatility models are applied to represent volatility clustering. One approach into discrete-
time models is dealing with GARCH models. In continuous-time processes by randomizing the volatility parameter 
such as the Heston model whose volatility is the Cox-Ingersoll-Ross (CIR) process and also the Bates model we 
can introduce some kind of stochastic volatility processes [5]. Time-changed Levy processes offer an alternative 
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method to generate stochastic volatility with non-stationary increments consist to use an integrated mean reverting 
process like CIR [3]. In this article, we apply a class of time-changed Levy process subordinated by a positive 
increasingly Levy process for option pricing. This process has Markov property but is not time-homogeneous. One 
of the advantages of these processes is that there exist analytical expressions of the mean, variance and moment 
generating function (mgf) of them. The other one is that one can consider the corresponding multi-variable process 
as a linear combination of different processes, with the same random times, and obtain their stochastic correlation 
function. In this framework first we calibrate the parameters of the model and fit the process to daily log returns of 
two indices of Iran stock market. The numerical analysis shows that the introduced stochastic times are highly 
correlated to trading volumes.  
 
2. Theoretical framework of the model  
In this section, first by the famous Levy-khintchine formula we present the moment generating function (mgf) of 
the process and present the dynamic of the jump diffusion process. Then introduce it's subordinator. In the 
univariate case, let  be a Levy process defined on a filtered probability space denoted by . 

This process has independent and stationary increments described by a triplet , The mgf of the process is 
denoted by 

 
Where  is the characteristic exponent. Without loss of 
generality, we assume that .  According to the Levy-Ito decomposition,  is the sum of three components: a 
deterministic drift , a diffusion with variance  and a jump process, , of intensity , also called the 
Levy measure of   . So the jump diffusion process can be represented as 

where  is a Brownian motion. The 
stochastic clock of the time-changed Levy process is the integral of a positive increasing process  as 

.  represents the arrival rate of information. This process is also the intensity of a jump process 
, where  is a Poisson process and  is a sequence of independent random jumps with an exponential 

density, . The stochastic differential equation of the  is where 
 is a speed of reversion toward , a mean level which has the solution as 

. 
 

Fig.1. The first and 
second subplots 
show the sample 
paths of  and   , 
daily simulated over 
a period of 3 years 
and the third of is 
the daily variations 
of . 

 
In Figure 1, we 
show the sample 
paths of ,   

and  respectively. Parameters for this simulation are , ,  and .  is a normal 
inverse Gaussian (NIG) process with a mean of 5% and a deviation of 15% . 
 
To investigate the properties of the time-changed Levy process, the conditional mean, conditional variance and 
covariance function of the introduced process by using these moments are given. For more details See [6].  
The expected value of   , conditionally on , is given by  
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where 

 

Also, The variance of  , conditionally to , is given by  

 

If  are subordinated by the same stochastic clock , the covariance between and  for , 
conditionally to , is time varying as 

 
where  is defined by Eq. (4). 
Furthermore, we can consider n time-changed Levy processes may be linearly combined to define 
a new multivariate process with a richer dynamics. For example, for the bivariate model (n = 2) is defined by linear 
combinations of  and as  and , where  is a constant. In this 
framework, the time varying covariance between  and  is given  

 
where  and  are defined by expressions (3) and (4). The mgf of  is 

 
Where  and  is the filtration of . 
 
3. Pricing of Options 
The pricing of derivatives is done in a risk neutral world. And under the considered measure, discounted prices of 
assets are martingales to ensure the absence of arbitrage. It is then crucial to determine a family of equivalent 
measures, eligible to be risk neutral. Let us consider the family of equivalent measures that is induced by 
exponential martingales of the form: 

 
where   ,  and  are constant. Is shown that  is a martingale, which is an essential feature to use  as a 
change of measure. Under the equivalent measure ,  is a process with mgf  
where  and  is a counting process with an intensity 

. In order to invert numerically the probability density function  to estimate the 
parameters by log-likelihood maximization, we discretisize the function by Discrete Fourier Transform (DFT). Let 
M be the number of steps used in the DFT method and , be the step of discretization. Let us denote 

  and 

 , for  and  be mgf of , under the risk neutral measure Q. 
The values of   at points  are computed approximately as 

 
where  and . Furthermore, we consider a sample of discrete 
observations of    as  for  where the interval of time between two observations is . For filtering the 
market time a particle filter is proposed and in the structure of the algorithm, the log likelihood is approached. 
Next, by maximizing the log likelihood the parameters are estimated. 
Let us consider an European option of maturity T , written on a single stock, with a price denoted . The 
payoff is expressed as a function of its log-return and is noted V( ). The option price under the risk neutral 
measure is  
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𝙾  

This numerical application aims to test the ability of time-changed Levy processes to explain the behavior of Basic 
metals sector indices and the Metal ore sector indices. Three time-changed Levy processes are considered in this 
exercise: a Brownian motion (BM), a normal inverse Gaussian (NIG) and a Variance Gamma (VG) process. For 
fitting the process, one simple approach is to consider the arrival rate of trades constant and equal to its asymptotic 
level .  

Under this assumption, the proposed model becomes stationary and, for a given set of parameters , daily returns 
have the same statistical distribution . Parameters are finally estimated by the following log-
likelihood maximization: 

 
By the covariance function in  Eq. , the correlation between the returns in the multivariate model is given by: 

 
The comparison of standard deviations of  and  emphasizes that the Basic metals and the Metal ore are 
two stocks indices with very similar variances, then we infer that the correlation between daily returns is nearly 
constant and close to  
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Abstract

We study the fractional stochastic volatility model in which the volatility id driven by a fractional
Brownian motion and the price is driven by an independent simple Brownian motion. We relate the option
price to a quadratic average of the exponential fractional Brownian motion and we derive the asymptotics
of the mentioned average as t tends to infinity.

Keywords: Fractional stochastic volatility model, volatility smile, call option pricing, asymptotics of the
distribution density

AMS Mathematical Subject Classification [2018]: 91G20, 60G22

1 Introduction

Implied volatility surface is the plot of the implied volatility (σ) as a two variable function of moneness

(strike price K) and expiration time (T ). This surface is obtained from empirical data of option prices

traded in the options markets. Figure 1 shows the volatility surface.

Figure 1: Implied volatility surface
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Should Black-Scholes model be the ground truth of the market, the volatility surface would be flat (which

is not the case). Hence the curvature of this surface is an indicator of how much the Black-Scholes model

fits to the market.

So far, one of the challenges of mathematical finance has been to build more sophisticated models that

illustrate the same implied volatility as observed in real data.

One of the efforts in this direction has been made using the so called stochastic volatility models (SVM).

These models assume that the volatility is not constant but instead is a stochastic process in itself. Hence

σ(t) also follows a stochastic differential equation alongside the price process S(t). One of the most famous

such models is the following due to Hull and White (1987).

dS(t)

dS(t)
= µ(t, S(t))dt+ σ(t)dw(t)1 (1)

d(lnσ(t)) = K(θ − lnσ(t))dt+ γdw(t)2 (2)

where w1 and w2 are independent Wiener processes. A simple argument shows that when conditioned on

the trajectory of σ(t), the price at time t of a European option of exercise date T is indeed the Black-Scholes

price where the constant volatility σ is replaced by its quadratic average over the period σ2
t = 1

T−t

∫ T
t σ2(u)du.

Hence the option price can be obtained by taking expectation of this Black-Scholes price.

Although the SVM models fit better to the volatility surface, they are still far from a good fit. In recent

years a new family of models have been introduced which is a generalization of SVM models in the sense

that they use the fractional Brownian motion as the noise in the volatility process.

Definition 1.1. A fractional Brownian motion (fBm) with Hurst parameter 0 ≤ H ≤ 1 is a zero-mean

Gaussian process (WH
t )t∈R with the covariance

E
[
WH

t WH
s

]
=

σ2
H

2

(
|t|2H + |s|2H − |t− s|2H

)
The fractional stochastic volatility model (FSVM) is given by the following system:

dS(t)

dS(t)
= rdt+

√
VtdB(t) (3)

d (Vt) = µVtdt+ σVtdW
H
t (4)

The same argument as in the SVM models implies:

Theorem 1.2 (see [2]). The European call option price is given by

C(t) = S(t)EQ
t

[
Φ

(
mt

Ut
+

Ut

2

)
|Ft

]
− e−mtEQ

t

[
Φ

(
mt

Ut
− Ut

2

)
|Ft

]
where

mt = ln

(
e−r(T−t)S(t)

K

)
, Ut =

√∫ t

0
σ2(u)du

and Φ is the standard Gaussian distribution function.
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2 Main results

Our ultimate goal is to study the properties of the option prices in the fractional Hull-White model of the

previous section. Theorem 1.2 shows that any information on the distribution of the variable U(t) could be

employed to obtain information on the distribution of the option price as well. Hence one can study the

distributional properties of U(t).

Article [3] does the same thing in the classical Hull White model and then uses it to study the asymptotic

behaviour of the distribution density of the stock price process. Following the framework of [3] we define

αt =

∫ t

0
eµs+σWH

s ds

And notice that by the time reversing property of the fBm we have,

αt
d
= eµt+σWH

t

∫ t

0
eµ(s−t)+σ(WH

s −wH
t )ds

Now we want to use the Ito formula. The Ito formula for fBm exists only for H > 1
2 (except H = 1

2 which is

indeed the Bm itself). For H > 1
2 the Ito formula is simply the chain rule. By applying Ito formula we find,

dVt = (µVt + 1) dt+ σVtdW
H
t

let f(v, t) be the density function of V . By using the fractional version of the Kolmogorovs forward equation

we the following partial differential equation governing f :

∂tf +
∂

∂v
((2v + 1)f)−Ht2H−1 ∂2

∂v2
(σvf) = 0

f(t, 0) = f(t,∞) = 0, f(0, x) = δx0

Questions of interest, regarding the function f(t, x) are its asymptotic behaviour when t → 0,∞ and

also x → 0,∞.

In this article we provide an asymptotic bound for f when t → ∞ and show that under certain assump-

tions, it decays exponentially and obtain the rate.

Theorem 2.1. If for some t0 > 0 and a positive constant M , we have |f(t0, x)| < M , then

f(t, x) ≤ Me−µ(t−t0)

For proof we use the result of [4] on asymptotic of the solution of hyperbolic PDEs.
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Abstract
The sheer size of data in the new age is not only a challenge for computer hardware but also the

essential bottleneck for the efficiency of many machine learning algorithms.In this issue, we, describe the
difference between factor models and principal component analysis (PCA). Both techniques are utilized
to “simplify” complex data sets mainly collected of multiple time series as a purpose of a smaller number
of time series.

Keywords: Principal Component Analysis, Factor Analysis, Stock Selection.
Mathematics Subject Classification [2018]: 62P05, 62H25

1 Introduction

Factor models and PCA have been widely employed in many applications, such as portfolio management
(Fama and French, 1992; Carhart, 1997;Fama and French, 2015; Hou et al., 2015), large-scale multiple
testing (Leek and Storey,2008; Fan et al., 2012), high-dimensional covariance matrix estimation (Fan et al.,
2008,2013), and forecasting using many predictors (Stock and Watson, 2002a,b), high-dimensional covariance
matrix estimation (Fan et al., 2008,2013), corporate finance, performance management, and many other
areas of financial analytics. In spite of this fact that factor models and PCA overlap many resemblances
with linear regression analysis, there are also considerable differences. With factor analysis, we attempt to
know that if and how we can describe our variables as a multiple linear regression on a reduced number
of independent variables. We will begin with a definition of factor models and factor analysis and then
introduce some ways of creating factor models. PCA is a historical method for mathematicians and is
still one of the most common techniques for data analytics and visualization. High dimensional data, for
example, images, macroeconomics dataset, often have the attribute whose it lies in a low-dimensional area
and that many dimensions are highly correlated.

2 Assumptions

Categories of Factor Analysis

We can write explicity factor model as form as N equations:
y1t = a1 + b11f1t + · · · + b1qfqt + ε1t

...

yit = ai + bi1f1t + · · · + biqfqt + εit i = 1, ..., N, t = 1, ..., T

...

yNt = aN + bN1f1t + · · · + bNqfqt + εNt
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The ai are the constant terms, the bjt coefficients are called factor loadings, the fjt are the hidden factors,
and the εit are the error terms.
The main two assumption of factor models as following:

1. Zero-mean variables of factors and residuals

2. Assumption of uncorrelatedness between factors and residuals vectors, that is:

E(ft) = 0, E(εt) = 0, E(ft.εt) = 0, for any t

Categories of Principal Component Analysis

With algebra glance, principal components are specific linear combinations of the p random variables
X1, ..., Xp . And also, in the Geometric approach, these linear combinations show the selection of a new
coordinator or code selection that gains from X1, ..., Xp as a code axis. The updated axes give us the highest
volatility directions and also provide us with a more conservative structure of covariance. As we will see,
principal components belong only on the covariance matrix (or correlation matrix ) of X1, ..., Xp . Let the
random vector X ′ = [X1, ..., Xp] have the covariance matrix Σ with weights λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 let’s see
the relation of them:

Y1 = a′1X = a11X1 + a12X2 + · · · + a1pXp

Y2 = a′2X = a21X1 + a22X2 + · · · + a2pXp

...

Yp = a′pX = ap1X1 + ap2X2 + · · · + appXp

And then if we using this equation :
The linear combinations Z = CX have

µZ = E(Z) = E(CX) = CµX

ΣZ = Cov(Z) = Cov(CX) = CΣXC′

Then we can have this result:
V ar(Yi) = a′

iΣai i = 1, 2, ..., p

Cov(, YkYi) = a′
iΣak i, k = 1, 2, ..., p

(1)
y1, ..., yp that are the uncorrelated linear combinations and each one has the maximum variances as significant
as it can. See equation (1).
The first definition has the greatest difference from the others that can be extracted from this formula:

maximizes V ar(y1) = a′
1Σa1

First principal component = linear combination a′
1X that maximizes

V ar(a′
1X) subject to a′

1a1 = 1

Second principal component = linear combination a′
2X that maximizes

V ar(a′
2X) subject to a′

2a2 = 1 and

Cov(a′
1X,a′

2X) = 0

At the ith step,
ith principal component = linear combination a′

1X that maximizes

V ar(a′
iX) subject to a′

iai = 1 and

Cov(a′
iX,a

′
iX) = 0, for k < i
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3 Application to Financial Data

Explanation of Data: The data are daily returns of m = 470 equities on the S&P 500 index from 04.01.2010
through 30.12.2016, for a total of 1762 observations. In this emperical example these time series should be
transformed by taking logarithms and/or differencing to make them approximately stationary.
The scree plot method shows us a line for each factor and its eigenvalues. Number of the eigenvalues that
are greater than one regarded as the number of factors.

In our dataset, the first ”15” factors have the eigenvalue of more than 1 in the Factor Analyse test. It
means that we necessity to choose only 15 factors (or unobserved variables). We can also calculate the factor
loading (B) and the variance of the residuals ( Ψ ) over the assumptions that factors are uncorrelated.
See our 5 factors detail:

Table 1: The “SS loadings” row is the sum of squared loadings

1 2 3 4 5
SS Loadings 327.582940 55.278911 25.944567 13.682766 10.637179

Proportion Variance 0.696985 0.117615 0.055201 0.029112 0.022632
Cumulative Variance 0.696985 0.814600 0.869801 0.898913 0.921545

Figure 1: the first ”15” factors have the eigenvalue of more than 1

Study of factor investigates the broad dataset and considers connections interlinked. It reduces the ob-
served variables to a few unknown variables or defines the classes of interrelated variables that help market
researchers compact market situations and identify the secret relationship between customer interest, desire,
and cultural influence.
See our result from the PCA method:
The first ”32” principal components cover 0.99 of the variance.
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This paper considers the problem of predicting the claim reserve based on aggregated data from run-off 
triangles. We analyze claims development results and quantify its prediction uncertainty. This is an important 
view in solvency considerations and risk- based controlling of non-life insurers.  
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1 Introduction 
Claim reserve is an estimate of an insurer’s liability from future claims. Chain ladder is the simplest method to 

predicting claims reserves but this method only establishes a point estimate of claim reserve for accounting 

purposes which is insufficient for the actuarial analyst to understand the possible fluctuations in the claim reserve 

and their impacts on the entity’s profit and loss statement, as well as on the balance sheet. In this paper we predict 

claim reserve by using four methods and compares them with the methods that provided by central insurance of 

Iran. The Solvency II Directive (2009/138/EC) is a Directive in European Union law that codifies and harmonises 

the EU insurance regulation. Primarily this concerns the amount of capital that EU insurance companies must hold 

to reduce the risk of insolvency. Solvency II is a far-reaching program of prudential regulations, which vary in 

severity depending on the riskiness and diversity of an insurer’s business. Solvency capital requirement (SCR) is a 

Value-at-Risk (VaR) measure based on a 99.5% confidence interval of the variation over one year of the amount of 

“basic own funds” (broadly assets minus technical provisions). The SCR includes non-life insurance underwriting 

risks. One of the uncertainty sources in non-life insurance is estimating companies’ liability especially claim 

reserve.  In most solvency considerations one is interested into the changes and uncertainties over a one-year time 

horizon. That is, one predicts the outstanding loss liabilities today and in one year with the new information 

available in one year. The difference between these two successive predictions is the so-called claims development 

result (CDR). In international regulation framework, we calculate one-year CDR and conditional mean square error 

of prediction (MSEP). This is an important view in solvency II considerations. 

1-1 Models and formulas 

In this section, we introduce models for claim reserving that are based on triangle models. Also, we represent 

stochastic approach for calculating CDR and its prediction uncertainty. 

1-1-1 Chain ladder 

A way to classification of data is use run-off triangle. In this triangle, let noted accident year by i and development 

year by j. development year means number of years that claims have delay to reported or paid. The main task of 

actuaries is to predict the lower triangle. We assume that  is cumulative claims that occur in year i and developed 

j year after,  and .  
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Figure1: run-off triangle 

Model assumption 1 (Classical chain ladder): 

• Cumulative claims  of different accident years I are independent. 

• There exist development factors  such that for all  and  we have 

 
Development factor is 

 
Claim reserve amount for accident year i= 1,…,I and development year j=I-i+1 is equal to . Chain 

ladder algorithm isn’t a stochastic model; hence we can’t calculate uncertainty such as MSEP. To solve this 

problem stochastic models in chain ladder algorithm are developed, for example Mack distribution-free chain 

ladder (Mack, 1993), over-dispersion Poisson by England and Verrall (2002) and Bayesian chain ladder by Gisler 

and Wuthrich (2008). Mack distribution-free chain ladder is more usual between these methods because it is simple 

and distribution-free.  

Model assumption 2 (Mack distribution-free chain ladder):  

• Cumulative claims  of different accident years I are independent. 

•  is a Markov process and exist  and  for all  and  that 

   
 

1-1-2 Mean Square Error of Prediction (MSEP): 

In this subsection we want to study the accuracy of predictions by model assumption 2. In claim reserving, general 

method to measure uncertainty is conditional MSEP. Assume that we are in time I and information  is available. 

We would like to estimate variability of reserves that is solvency II requirements. Wuthrich and Merz (2008) 

showed that MSEP under model assumption 2 is given by 

 
1-1-3 Claim Development Reserve (CDR): 

The study of the total uncertainty of the full run-off is a long-term view. Another important view is short-term view 

that is important for management decisions. Based on model assumption 2 and observation  in time I and  for 

one year after we have 

 
For claims reserving at time I we predict the total ultimate claim with the information available at time I and, 

similarly, at time I +1 we predict the same total ultimate claim with the (updated) information available at time I +1 

( . The CDR at time I +1 for accounting year (I, I +1] is then defined to be the difference between these 

two successive predictions for the total ultimate claim.  

Definition 1: Based on model assumption 2, CDR for accident year I in accounting year (I,I+1] is given by  

 
That  is incremental of paid losses.  
The conditional MSEP is then defined by 
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For calculation of CDR we use bellow equation: 

 
1-1-4 Minimum-variance method for claim reserving: 

In this method, for a given insurance portfolio, let denote the burning cost by  on underwriting year i as 

observed at the end of h-th year of run-off. Cumulative of  denoted by . Our observation in run-off triangle 

denoted by D= {Cih; i=1, 2… n, h=1, 2…i}. Claims reserve for occurrence year q is: 

 
And . We assume that after m years all claims are settled.  is unbiased estimator for  

Model assumption 3 (Minimum-variance method for claim reserving): 

1)  and  are stochastically independent for  

2)  independent of i. 

3)  independent of I (  is premium volume of year i) 

4)     

For more details see (Kramreiter and Straub, 1973). Claims reserve by using this method is  

 
Theorem 1: based on model assumption 3, conditional MSEP is given by 

 
Note that  is an unbiased estimator.        

1-1-5 Credible loss ratio reserving method: 

In this section we introduce credible loss ratio method based on (Werner, 2009). Werner’s formulas recalled 

hereafter, because they are used in our numerical example. The considered credible loss reserving method requires 

slightly less information. We suppose that there are I underwriting periods, for which one knows besides actuarial 

premiums Vi , i = 1,...,I , used as a measure of exposure,  is loss ratio.  is the incremental of losses. Loss ratio 

is . The quantity  is nothing else than the loss ratio estimate of the total ultimate 

claims required for the underwriting period i. The loss ratio payout defined by . Individual total 

ultimate claims amount is given by . Individual loss ratio IBNR claims reserve, is defined by 

 
Where represents the proportion of the total ultimate claims, which is expected to be paid in the future 

for the underwriting period i. On the other side, collective loss ratio IBNR claims reserve is 

 
The individual claim reserve considers the latest accumulated claims amount to be fully credible predictive for 

future claims and ignores the prior burning cost estimate of the total ultimate claims, while the collective claims 

reserve ignores the current accumulated paid claims and relies fully on this prior estimate. Therefore it is natural to 

apply the credibility mixture to those reserves and use the credible loss ratio IBNR claims reserve estimate 

 
is the credibility weight associated to the individual loss ratio reserve. It interesting to reconsider two popular 

choices of the credibility weights proposed in the literature. Gunnar Benktander(1976) proposed the credibility 

weight GB. This leads to the Benktander loss ratio IBNR claims reserve. Walter Neuhaus (1992) 

corresponds to the credibility weight . It leads to the Neuhaus loss ratio IBNR claims reserve. 

1-1-6 Claims reserve prediction based on central insurance of Iran directive: 

In year 2018, insurance regulator of Iran based on article 58 of third party liability (TPL) of automobile act and 

article 10 of technical reserve law, approves a directive for TPL loss reserve adequacy. In this section we modeling 

this directive and compare its result by previous method as mentioned already. Based on this directive, insurance 

companies oblige to calculate their liabilities in TPL line of business by using chain ladder or loss ratio based on 

partial information methods for companies with more than 5 years experience. The proposed chain ladder method is 

the same as model assumption 1. We focus on Loss ratio based on partial information method. Assume that 

accident year denoted by i=1,2,3,4,5 and development year is j= 0,1,2,3,4.in this method we assume that losses are 

normalized with  where  is premium.  is incremental loss that occur in year i and develop until year j. 

First of all we calculate the mean of each column. After that we calculate cumulative mean . 
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The percentage of unearned liabilities is given by , Where J=4. Claims reserves 

amount is  

Model assumption 4 (loss ratio based on partial information): 

1) , where  and  are independent. Assume that  

2)  are independent 

3)            و 
 

2 Main results 
In this section we use TPL loss data of one Iranian insurance company with more than 5 years experience. Results 

of calculation of claims reserves is given in table 1. 

Table1. Claim reserve calculation (million IRR.) 

Model 4 

Credible loss 

ratio- 

Neuhaus 

Credible loss 

ratio- 

Benktander 

Model 3 Model 1&2 year 

0 0 0 0 0 1391 

265382 268344 268939 273020 275122 1392 

1253270 1276028 127753 1274523 1288087 1393 

6036588 6360220 6414043 6425132 6485426 1394 

27551922 26647884 26438829 23127068 23251594 1395 

35107162 34552474 34399564 31099743 31300229 Total reserve 

Table1 show that the reserve for models 1 and 2 are the same. Chain ladder method is suitable for number of loss 

prediction and provide weak estimate of loss amount. In credible loss ratio method, current cumulative loss paid 

and prior information consider together. In model 4 we can’t predict lower triangle’s cells. Central insurance 

proposed two methods for calculation of claim reserving by insurance companies with more than 5 experiences. As 

can be seen in table1, these two methods (1 and 4) have around 4 billion IRR differences. 

Root of conditional uncertainty prediction of CDR based on model assumption 2 is 97% total uncertainty. The 

reason of this high value is that knowing the next diagonal (I+1) in claim development triangle already releases a 

major part of the claims run-off risks. The amount of prediction uncertainty for model assumption 3 is equal to 97% 

too. Claim development result present in table 2. The result show profit in insurer’s balance sheet. 

Table2. Claims development results (million IRR.) 

CDR   Accident year 

0 0 0 1391 

275122 0 275122 1392 

976207 311880 1288087 1393 

5100632 1384794 6485426 1394 

16792039 6459555 23251594 1395 

23144000 8156229 31300229 Total 

With solvency II, insurers should not just predict the reserve, but also asses the uncertainty of their predictions. 
Next to solvency II, also the upcoming IFRS17 regulation will encourage insurers to get more detailed grasp on 
their reserve. We propose to Iranian insurance industry to use more detail for predicting their loss reserve and use 
international regulation recommendation to calculate loss reserve based on micro model and calculate the 
uncertainty of predicting and claims development result. 
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Abstract
In this paper, we propose a deep learning based model first presented in [J. Sirignano, R. Cont,

Universal features of price formation in financial markets: perspectives from deep learning, Quantitative
Finance, 19 (2019), pp. 1449–1459], to predict price movements in Limit Order Book (LOB) data of the
Tehran Stock Exchange (TSE). Our model is trained on data from 30 top companies, utilizing stacked
Long Short-Term Memory (LSTM) to capture longer time dependencies. Importantly, experimental
results show that the average accuracy of the model is 88.80% in out-of-sample data set. It demonstrates
the model’s ability in extracting universal features in the considered financial market.

Keywords: Deep Learning models, Time series forecasting, Limit Order Book data, Stock analysis
AMS Mathematical Subject Classification [2018]: 13D45, 39B42

1 Introduction

Recently, machine learning models, especially deep learning models, have gained much popularity for a
variety of tasks such as image analysis, natural language processing and speech recognition. Deep learning
model is a powerful method for extracting features. Recurrent Neural Networks (RNNs) are a type of deep
learning based models mostly used for forecasting time series data. RNNs have a challenge memorizing
knowledge due to the vanishing gradient property and Long Short-Term Memory (LSTM) was introduced
to solve this challenge. During the last years, these models have achieved remarkable results in financial
modeling such as market forecasting [3], deep hedging [1] and risk management [2]. In this paper, we
focus on forecasting stock market using limit order book data, because it is an important task for market
practitioners and academia as an investment management tool.

Among the existing approaches, theoretical models provide a mathematical and economic understanding
of the limit order book dynamics. However, in these models, there are some assumptions which limit it in
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using in the real markets. In contrast, Sirignano [3], shows that deep neural networks achieve the better
performance compared to other methods such as decision trees, boosted trees, random forests and support
vector machines in data-driven models of the limit order book. More recently, Sirignano and Cont [4], pooled
all data from different stocks (independent of the specific asset) to improve generalization ability of deep
learning based model in price formation in financial market which is called the universal model.

In this paper, we present a universal deep learning based approach to model stock price movement
in Tehran Stock Exchange. Also, we find out that the preprocessing step is necessary to get reliable
performance. To this end, we preprocess the data with MinMax scaler normalization and smoothing method.

2 Main Problem

Our main goal is to estimate the price formation mechanism. It maps an order flow (other variables can be
used) to the market price which is defined as:

Price(t + ∆t) = F(Price history(0...t), Order flow(0...t), Other information), (1)

= F(Xt, ϵt), (2)

where Xt is the state of the limit order book at time t and ϵt is a random noise.

2.1 Limit Order Book data structure

A limit order is an order to buy or sell a certain number of an asset at a specific price. Unexecuted limit
orders are placed in Limit Order Book (LOB) based on the price and time levels. In this paper, we use
five levels of both price and volume on each side (buy and ask) of the limit order book from the 30 top
companies for 24th March 2012 to 9th November 2013 between 08:30:00 and 12:30:00 as training dataset.
These 30 top companies are among the most liquid stocks listed from 2012-2013. So, we have 20 features at
each timestamp and specifically, each data is a time series of 100 timestamps of LOB in the form:

X = [x1, x2, ..., x100]
T ∈ R100×20, (3)

xt = [pia(t), p
i
b(t), v

i
a(t), v

i
b(t)]

n=5
i=1 , (4)

where X is a single input, pia and pib are respectively, an ask and a bid price and via and vib are an ask and a
bid volume at i th level of a limit order book. It should be noted that, we have normalized the LOB data
for each asset by MinMax scaler of scikit-learn package.

Figure 1: Limit Order Book example at time t and t+ 1.

In a given financial market, mid-price is an average of the best bid and ask prices on the first level of
LOB which represent the direction of price changes. So, we use mid-price movement as our labels. Because
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of the high frequency data structure, we use smoothing labelling method of the form:

S (t) =
1

k

k∑
i=0

Pt−i, (5)

as a preprocessing step in which Pi is the i th mid-price. Then, we consider Mt = St+1 − St to provide the
direction of price movement at time t. Therefore, if M < 0 or M > 0, we define it as down or up and if
M = 0, there is no difference between the two consecutive smooth prices which it means as a stationary
state.

2.2 Model Architecture

In this section, the model architecture is provided. Our model consists of three stacked LSTM layers and
two dense layers with rectified linear units (ReLUs) and softmax as activation function on the top stacked
LSTM layers, as shown in Figure (2). The last layer transforms the output to a probability distribution
for the next price move. LSTM is a sequential model which has a memory cell and three gates as input
gate, output gate and forget gate. They could maintain its state over time and store useful information to
model long term features in sequential data. Stacked LSTM is a variation of LSTM which consists of more
than one layer of LSTM. It learns a function from sequence of past observations to map it to an output by
minimizing a loss function. In this paper, each LSTM layer has 100 hidden units and the output size of it
is 20. We use the categorical crossentropy loss function and Adaptive Moment Estimation (ADAM) as the
optimization algorithm. Also, we set the learning rate to 0.001.

Figure 2: Model architecture schematic.

3 Main results

In this section, we illustrate the results of applying the proposed method on the 30 top Iranian companies.
We split the data into two groups: train and test set. Training is done on limit order book for the 30 stocks
from 24th March 2012 to 22th August 2013 with 20% of the data considered as the validation data. We
assess the proposed model on the in-sample and out-of-sample data (10 companies from different industries)
from 24th August 2013 to 9 November 2013. In this experiment, there are two versions of our approach. In
the first version, it is trained on each specific stock and in the second model, it is trained on a pool of all
stocks. The second model is referred to as the universal model. To evaluate the model, two performance
measures are utilized. The first measure is an accuracy criteria and the second one is F1 which is a measure
of test’s accuracy. Table (1) presents the results of our model for out-of-sample data. We report the results
for in-sample-data and stock-specific cases in table (2). Also, We display the confusion matrices in Figure
(3). Our results demonstrate the model’s ability to extract universal features and it confirms that there is
a universal price formation mechanism from the dynamics of supply and demand in a financial market.
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Table 1: Experimental results on transfer learning

Company Accuracy % F1 % Company Accuracy % F1 %
Mokhaberat Iran 89.71 89.77 Machinesazi Niro Mohareke 84.67 84.68

Karton Iran 88.98 88.96 Palayesh Bandarabas 88.20 88.15
Keshtirani Iran 96.65 96.45 �Sanaye Lastiki Sahand 86.36 86.34

Sanaye Fazar Ab 91.06 91.01 Group Mapna 91.53 91.50
Lole va Machinesazi Iran 86.33 86.30 Tose Sakhteman 84.57 84.34

Table 2: Experimental results for the in-sample data

Model Average accuracy %
Universal 86.99

Stock specific 48.98

Figure 3: Confusion matrices. Results on Sanaye Fazar Ab, Keshtirani Iran, and Group Mapna from the
left to right.
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Abstract 
 

A catastrophe bond (CAT) is a financial instrument designed to provide money for insurance 
companies in the occurrence of devastating natural disasters like earthquakes or tsunami. If a 
predetermined catastrophe or event occurs, the investors will lose the principal they invested, and the 
issuer will receive that money to cover their losses. The aim of this paper is to model the price of the 
catastrophe risk bonds. under the assumption that the occurrence of the catastrophe is independent of 
financial market behavior, we employ a jump-diffusion interest rate model and solve the resulted PIDE 
with the finite element method. Also, we consider a dependency between the claims sizes and the claim 
inter-arrival times for the aggregate claims as a semi-Markov process and obtain explicit CAT bond 
prices formulae with regard to four different payoff functions.  

 
 

Keywords: Pricing CAT bond, Jump-diffusion interest rate, Markov-dependent environment, Finite element method.  
 
 
 
1 Introduction 
 
When natural and man-made disasters occur, losses and recovery costs are typically covered by a combination of 
utility companies, special insurance programs and/or governments. For instance, mainly losses from the 2011 
Fukushima disaster were covered by the government of Japan. Because, in such cases, financial demands on 
insurance and reinsurance businesses are potentially enormous, introducing a securitization method to achieve an 
adequate liquidity fund is significant. An alternative method is issuing Catastrophe (CAT) bonds. CAT bonds 
transfer the financial consequences of catastrophic events from the risk carrier (an insurance company, country or a 
regional government) to investors in a contract. Insurers and reinsurers typically issue cat bonds through a special 
purpose vehicle(SPV), a company set up specifically for this purpose. Cat bonds pay high-interest rates and 
diversify an investor's portfolio because natural disasters occur randomly and are not correlated with other 
economic risks. 
In this study, we derive CAT bond pricing formulae under the assumption that the occurrence of a catastrophe is 
independent of the global financial market behavior. To obtain a complete model, we consider the CIR interest rate 
with a jump. The financial markets may receive information either through small, gradual perturbations or large, 
sudden shocks (Merton, 1976). For interest rates, jump-diffusion processes are particularly meaningful since the 
interest rate is an important economic variable, which is, to some extent, controlled by the government as an 
instrument. These jumps are caused by several market phenomena such as money market interventions by the Fed, 
news surprises, and shocks in the foreign exchange markets, and so on. In pricing financial derivatives, term 
structure models with jump are particularly important because ignoring jumps in financial prices may cause 
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inaccurate pricing. Furthermore, similar to [1], we formulate our model in a Markov-dependent environment and 
model the dependency between the claim inter-arrival times and the claims sizes for the aggregate claims as a semi-
Markov process. The advantage of this consideration is the development of a more realistic model, where both the 
claim severity and occurrence time before the next claim are partially dependent on the claim intensity, which 
indicates the seasonality effect of catastrophe events. For instance, major catastrophe event like an earthquake may 
trigger many other disasters (e.g., tsunami, flood, side earthquakes, wildland fire, and landslide) in a short time. 
Also, by considering four different payoff functions (classical zero-coupon and coupon, multi-threshold zero-
coupon, and defaultable), we obtain analytical formulae for catastrophe bonds. 
  
2  Mechanism of catastrophe bonds 
The general structure of Catastrophe Bonds is presented in Figure 1. SPV enters into a reinsurance agreement with 
a sponsor or counterparty (e.g., insurer, reinsurer, or government) by issuing CAT bonds to investors and receives 
premiums from the counterparty or sponsor in return for providing a pre-specified coverage. This agreement 
specifies the conditions and terms for when the insurance will cover a claim and which triggers will activate the 
policy. The existence of SPV minimizes the frictional cost of capital and eliminates the counterparty risk. 
Therefore, sponsors can transfer part of the risks to investors who willingly accept the risk in exchange for higher 
expected returns. The SPV collects both the premiums and the principle (respectively received from sponsors and 
Investors) and invests in a collateral account, where they are typically invested in highly-rated money market funds. 
The returns generated from collateral accounts are swapped for floating returns based on LIBOR (London 
Interbank Offered Rate). The investors' coupon payments are made up of SPV investment returns and the premiums 
the sponsor pays. Before the maturity time of the CAT bond, if no trigger event occurs, the collateral is liquidated 
at the maturity date, and investors are paid compensation for bearing the catastrophe risks plus their principle (solid 
line in Figure 1). Whereas, if before the maturity a trigger event occurs, the SPV will 
 liquidate collateral to make the payment and reimburse the sponsor under the terms of the catastrophe bond 
agreement, and CAT bond investors will only receive part of their principle (dashed line in Figure 1). 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 

Figure 1 
  
3 Modeling the catastrophe bond 

 
In this paper, we use an insurance industry index trigger. The aggregate loss process is modeled as a compound 
distribution process defined by the frequency (inter-arrival times) and the severity (claim sizes) of disasters. 
Classical Cramer–Lundberg risk model, stated that risk models are characterized by two stochastic processes: claim 
number process and claim amounts process. In this study, we assume these two processes are mutually 
independent. But in order to consider a more appropriate model, in modeling the aggregate losses, Similar to Shao 
(2015), we add dependence between the claim sizes and the inter-arrival times in the claims process. 
Furthermore, we develop an PIDE representation for r-component of the proposed CAT bond model. we consider 
the CIR interest rate with a jump and the short-rate dynamics {r(t): t ∈ [0, T]} can be expressed as follows: 

( ) ( )dr r dt r dw Jdq                                                                                    (1) 

    ( )     ,   ( )r k r t r tr      
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with the condition 22k  where , , (0)k r , and   are positive constants. Jump size J is a normal variable with 
mean ߤ and standard deviation γ 
When interest rates follow the SDE(1), a bond has a price of the form  , ,B r t T .We set up a riskless portfolio 
and the jump-diffusion version of Ito’s lemma to functions of r and t .And then, we derive the partial differential 
bond pricing equation. 
 
From Ito’s Lemma, we can write dB as  

21{ ( ) } ( ) { ( , ) ( , )}
2t r rr rdB B B r B dt r B d B r J t B r t dq         

                 
(2) 

By considering two non-identical CAT bonds 1B and 2B , We can construct a risk free portfolio by hedging 1B  with 

2B .  So we obtain the following PIDE  

21[ ( ) ( )] ( ) ( ) 0
2t r r rrB r r B r B r B M           

                               
(3) 

Where  [ ( , )].QM E B r J t   
 
We use finite element method to solve this PIDE . 
 
We consider four types of payoff functions (the zero-coupon, the multi-threshold zero-coupon, the defaultable zero-
coupon, and the coupon payoff functions) for CAT bonds with T maturity time. Under the assumption that the 
payoff function is independent of the financial risks variable, by means of these payoff functions, the structure of 
interest rate and aggregate loss for a predetermined threshold level D , we obtain four models for the value of a 
catastrophe bond at timet using the standard tool of a risk-neutral valuation measure. 
 
4 Solution 

 
We employ finite element method for solving the following PIDE for r-component of the CAT bond model, 

21[ ( ) ( )] ( ) ( ) 0
2t r r rrB r r B r B r B M             

[ ( , )]QM E B r J t   
 
The basic idea of the finite element method is approximating the solution of a differential equation with a set of 
algebraically simple functions by dividing the spatial domain of the differential equation into sub-domains called 
elements. The parameters of this function for each element are usually different. The functions are equal regarding 
the function type yet different concerning the values of the parameters. Each of these functions only has local 
support. To put it into a more vivid picture, outside a small number of elements, it takes on the value zero. The 
elements are no overlapping and cover the domain on which the differential equation is defined.  
FE can be used not only to find approximate solutions for a given differential equation but also any equation of 
calculus, hence integral, integro-differential, and variational equations can be solved as well. J. Topper (2005). 
 
5 Main results 
 
In this section, we price CAT bonds using the standard tool of a risk-neutral valuation measure with four different 
payoff functions for T time maturity one-period CAT bonds. 
 
In an arbitrage-free market, at time t, the price of an attainable contingent claim with payoff{ ( ) : }P T T t can be 
shown by the fundamental theorem of asset pricing. By assuming the payoff function is independent of the 
financial risks variable (interest rate): 
 

   ( )d
V( ) ( ) ( ) ( , ) ( ) .

T

t
r s sQ Q P

CAT t CAT t CAT tt E e P T F E P T B t T E P T
   

 
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1) Let  (1) ( )V t be the price of the T-maturity zero-coupon CAT bond under the risk-neutral measure Q at time t  

with payoff function (1) ( )CATP t for a predetermined threshold level D, the value of CAT bond at time t is given by: 
(1)V ( ) (t,T) z( (1 ) F(T t, D),CIRt B       

where F(T t, D) represents the accumulated function of the aggregate loss. 

  

2) Let (2) (t)V be the price of the T-maturity zero-coupon CAT bond under the risk-neutral measure Q at time t with 

payoff function (2)( )CATP t (with a multi-threshold value)for a predetermined threshold level D, the value of  CAT 
bond at time t is given by: 

(2)
1

1
( ) ( , ) (F(T t), D ) ( , ))

h

CIR k k k
k

V t B t T Z F T t D 


     

 

3) Let (3) ( )V t be the price of the T-maturity coupon CAT bond under the risk-neutral measure Q at time t with the 

payoff function (3)
CATP ( with a coupon payment at the maturity date) for a predetermined threshold level D, the value 

of CAT bond at time t is given by: 
(3) ( ) ( , )( ( , ))CIRV t B t T Z CF T t D    

 

4) let (4) ( )V t be the price of the T-maturity coupon CAT bond under the risk-neutral measure Q at time t with the 

payoff function (4)
CATP (defaultable payoff function)for a predetermined threshold level D, the value of CAT bond at 

time t is given by: 
(4) ( ) ( , ) (1 ( ) ( )) ( , ) ( )lV t B t T Z F Z F Z F T t D PF Z            

    

 

where F˜(x) denotes the issuing company’s default probability at time T. 
 
In this paper at first, we presented some concepts and mechanisms of Catastrophe Bonds. We developed a 
contingent claim process to price CAT bonds using models with a risk-free spot interest rate under assumptions of a 
no-arbitrage market, independently of the financial risks and catastrophe risks. With the concept of Financial 
Mathematics i.e., Ito formula and free risk portfolio, we modeled these bonds. By using the finite element method, 
we solved the resulted PIDE for r-component. Then, Under the risk-neutral pricing measure, bond price formulae 
are derived for four types of payoff functions when the trigger is determined by the aggregate loss process with a 
semi-Markov-dependent structure. 
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Abstract 
Risk assessment is a crucial element in the life insurance business to classify the applicants. Companies 

perform underwriting process in order to make decisions on applications and to price policies accordingly. Increase 
in the amount of data and advances in data analytics, the underwriting process can be automated for faster 
processing of applications. This study aims at providing solutions to enhance risk assessment among life insurance 
companies using predictive analytics. Machine learning tolls aims to gain this solution. The dataset consists of 
insured’s purchase Saman life insurance from 2008 to 2017, with 7 attributes, which describe characteristics of life 
insurance insured’s. Decision tree and multinomial regression use to predict insured’s risk level. Multinomial 
regression shows that employment type is not significant in the variables. Decision tree plot also indicate 
employment type is not significant. 
 

Keywords: Risk assessment, Life insurance, Predictive analytics, Decision tree, Multinomial Regression.  
 
 
 
 

1 Introduction 
 
The role of insurance in providing financial protection in the economy is well established. Over the years, the 

provision of cover by insurance companies has been crucial to the consummation of business plans and, by 
extension, wealth creation. 
      Risk assessment leads the insurance market to recognize the risk factors that might be occur insured’s loss and 
suggest an instruction to asses new buyers as simplification of selling life insurance. It is also beneficiary to asses 
risk profile of every customer and offer the appropriate life insurance policy according to their risk level. 

There are multiple types of non-financial risks: Hazard risk, operational risk and strategic risk. Strategic risk is 
closely related to the firm‘s overall strategies. Reputation risk, competition risk and regulatory risk are included in 
the strategic risk. 

Data mining can be defined as the process of selecting, exploring and modeling large amounts of data to 
uncover previously unknown patterns. In the insurance industry, data mining can help companies gain business 
advantage. By using data mining techniques insurance companies can extract their customer’s financial behavior 
and also predict and design appropriate policy to attract significant portion of market. 
     The findings of this research will redound to the benefit of insurance company considering that predictive 
analytics plays an important role in insurance risk assessment. The greater purchasing life insurance at the same 
time with customer profiling information rise accuracy and construct a guidance in order to control insured’s risk. 

This study is an attempt to elaborate on and predict insured’s risk that purchase life insurance policy with 
considering insured’s sex and age and their related policy features such as critical sum-insured, employment type.  

In this case study we use insured’s data set from 2008 to 2017 in order to answer these questions: (1) What 
factors effect insured’s risk? (2) What is the each attributes coefficient value in risk level relationship? (3) What is 
the insured’s risk prediction of life insurance policy? 
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Definition 1.1. Suppose that we wish to classify an observation into one of K classes, where K ≥ 2. In other words, 

the qualitative response variable Y can take on K possible distinct and unordered values. Let  k  represent the 

overall or prior probability that a randomly chosen observation comes from the  kth class; this is the probability 
that a given observation is associated with the  kth category of the response variable Y. Let 

)|()( kYxXPxf rk   denote the density function of X an observation that comes from the  kth class. 

Then Bayes’ theorem states that 
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Definition 1.2 A classification tree is classification tree used to predict a qualitative response. A classification 
tree, predict that each observation belongs to the most commonly occurring class of training observations in the 
region to which it belongs. 

. Since we plan to assign an observation in a given region to the most commonly occurring class of training 
observations in that region, the classification error rate is simply the fraction of the training observations in that 
region that do not belong to the most common class: 

)ˆ(max1 mkk pE   

Here mkp̂ represents the proportion of training observations in the mth region that are from the kth class.  
In a node m, representing a region Rm with Nm observations, 
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1
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p
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Example 1.3. The dataset consists of insured’s purchase Saman life insurance from 2008 to 2017, with 7 

attributes, which describe characteristics of life insurance insured’s. The data set comprises of nominal, continuous, 
as well as discrete variables. This study is an attempt to elaborate on and predict insured’s risk that purchase life 
insurance policy with considering insured’s sex and age and their related policy features such as critical sum-
insured, employment type.  

In this case study use insured’s data set to answer these questions: (1) Which attributes effect insured’s risk? (2) 
What is the each attributes coefficient value in risk level relationship? (3) What is the insured’s risk prediction of 
life insurance policy? 

 
Table1: Attributes Description 

Attribute                                                Type                                    Description
Payment type                                     Categorical         3 payment type to pay premium 
Employment-Info                               Categorical          3 Employment to category insured’s risk
Policy period                                       numeric          Normalized insured’s policy period 
Insured’s sex                                        Categorical          2 types of Insured’s sex 
Insured’s age                                        numeric          Normalized insured’s age 
Sum insured                                          numeric          Normalized Sum-insured price 
Critical illness sum insured                numeric          Normalized Critical illness sum-insured price
Response                                               Categorical          6 categorical insured’s risk level 

 
 

Solution. Decision tree and multinomial regression are the model use to answer example 1.3. 
 

Main results 
 

The following table is a decision tree result model. 
 
Confusion matrix is the evaluation matrix in decision tree model which is indicate in following table. 
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Table2: Confusion matrix 

        Predicted 
Actual 

1 2 3 4 5 6 Error

1 9698 2709 221 7 0 166 24.2
2 5122 4606 156 3 0 104 53.9
3 1021 315 377 9 0 50 78.7
4 1238   402 69 26 0 95 98.6
5 802    80 169 7 0 58 100
6 949 175   40 4 0 335 77.7
Overall error: 48.1%, Averaged class error: 72.18333% 
 
 
Figure 1 shows that insured’s second risk level portion is 44 percent and third risk level is 34 percent portion. In 
second risk level insured’s age less than 46 years old have the 47 percent. In the six and seventh  risk level 
insured’s age greater than 46 years old have the most portion among other insured’s. 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Decision tree model 
 

 
Another model applied to dataset is multinomial regression with the following result. 
 

 Table3: Multinomial regression model 
variable  LR Chisq Df Pr(>Chisq)     

Policy period 81.56 5 3.955e-16 *** 
Employment type 15.53 10     0.114    
Insured age 1822.07  5 < 2.2e-16 *** 
Insured sex 216.49  5 < 2.2e-16 *** 
suminsured 173.39  5 < 2.2e-16 *** 
Critical illness suminsured   719.97  5 < 2.2e-16 *** 

  
As the result in Table3 all of the variables except employment type are significant. 
The evaluation AIC is AIC: 73210.09 in this model, and Pseudo R-Square: 0.06394640. 
Descriptive analysis also applied to this data set. 
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 Abstract 

 
As we know, Insurance fraud is an important and costly problem for both policyholders and insurance 

companies in all sectors of the insurance types such as health insurance. Fraud in health insurance is done by 
intentional deception or misrepresentation the facts for gaining more benefits and it is vary due to inadequacy of 
relevant laws or influence of community culture. In this paper, we introduce type of fraud in medical expenses in 
several countries, then we investigate frauds by health care providers. Data mining tools and techniques can be 
used to detect fraud in large sets of insurance claims data. These tools are divided into two learning techniques 
including supervised and unsupervised that is employed to detect fraudulent claims. Specifically, in this paper we 
are going to use k-means algorithm for preventing fraud in health insurance industry. 

Keywords: Insurance fraud, Anomaly detection, Data mining, Supervised and Unsupervised learning. 
 

 
 
 
 
1. Introduction 

 Every year the expenditure healthcare is being exceeded by many of the countries. Due to the extreme growth of 
market size and their influential factors this application domain requires a high-end data analytics mechanism. The 
significant problem of this wing is fraud, waste, abuse includes improper billing, repeated claims, uncovered services, 
drug abuses, counterfeit drugs, off-label marketing issues and many more. There is a series of technical challenges 
for data analytics. As there is massive storage of data over a period of time and from the representation point of view 
these all are many diverse datasets P.Naga Jyothi, et al (2019). 
Fraud is one of the major problems which cause significant losses in insurance industry. Insurance fraud can be 
referred to "Inflating Loss". Gill et al. (1994) defined fraud in the insurance industry as “knowingly making a 
fictitious claim, inflating a claim or adding extra items to a claim, or being in any way dishonest with the intention 
of gaining more than legitimate entitlement.” Although the amount of losses incurred through fraud in insurance 
industry is difficult to analyze, such losses are more common in contracts with higher premiums. Researchers have 
shown that investigating insurance fraud is often difficult and not cost-effective, because failing to detect fraud 
incorrectly can hurt honest customers and delay their payments. High costs involved in detecting fraud are also 
worrisome, so many insurers pay for claims without proper investigation. 
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Sometimes the laws that apply to fraud in some countries are not specific to insurance fraud and do not adequately 
reduce fraud in the industry. Lack of specific laws makes it too difficult to prosecute criminals. With growth of social 
health and medical insurance, insurance industry has become one of the biggest victims of frauds, and this may 
accelerate development of a comprehensive legal framework to control and supervise fraud in health insurance. 
Therefore, with increasing rates of frauds in many countries, traditional methods have not been effective in addressing 
this widespread problems, and therefore, data mining tools and techniques can be used to detect fraud in large sets 
of insurance claims data. In this paper, we are going to introduce other studies on detecting frauds in health insurance 
and employ machine learning methods to investigate frauds in health insurance data of an Iranian insurance company. 
(Melih Kirlidog, 2012). 
Fraudulent health insurance is simply defined as: "A fictitious claim by which an insurer or health care provider is 
forced to contract or pay fictitious damages. This deliberate act results in financial gain for insured or medical center 
and is brought under false pretenses." 
In the definition provided by the Health Insurance Association of America (HIAA), fraud and insurance fraud are 
deliberate misrepresentation, deliberate deception, or present of evidence by an individual or entity with knowing 
that this would result in unauthorized benefits and frauds. Examples of common abuses in health insurance are: 
additional tests to diagnose illness, prolonged hospital stay longer than needed, patient admission at night instead of 
day, patient admission only for symptoms and diagnosis, etc. So at first phase we identified and investigated some 
losses that were suspect to frauds. In what follows, we use unsupervised methods such as K-means to detect frauds. 
For this purpose we used health losses in an insurance company of Iran. We worked on dentistry losses for one years 
and found some losses that were suspect to frauds. 
 

2. Data  
In this paper we have worked on health insurance data during 2 years 2019-2020. We selected dental losses that were 
paid for two-years period because the most paid losses related to dental losses. There are different variables gathered 
from losses and the history of insured including national insurance code, health center, loss amount, loss 
announcement date, loss payment date, contract end date and the number of payments for each national code. The 
top 10 loss in health centers are shown in the figure below. 
 

 
Figure 1: The Top 10 loss in health centers 

 
 The number of dental losses that were paid for two years are about 25,000 which are belong to 19,000 insureds. 
All insureds have been referred to the contract health centers.  
 

Table 1: Summary statistics for claims data 
Number of losses Total  losses amount 

(Rials) Number of health centers 

25,059 199,317,196,749 359 

 
3. Analyzing methodology 

There are two learning approaches in data mining models. Those are supervised method and unsupervised method: 
Supervised learning is the machine learning task of learning a function that maps an input to an output based on 
example input-output pairs. It infers a function from labeled training data consisting of a set of training examples. 
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We don’t use this method in this paper, because we don’t have labeled fraud data records in our country. 
In this paper we use unsupervised method. Our goal is to find fraud patterns in unlabeled data. It focuses on finding 
those instances which show unusual behavior. Indeed we are going to discover both old and new types of fraud since 
they are not restricted to fraud patterns which already have pre-defined class labels like supervised learning 
techniques do. 
Since fraud is high in health insurance especially in health centers, our focus is on losses that paid by health centers. 
Anomaly detection analysis was performed using K-means method. K-means clustering algorithms aims at 
partitioning n observations into a fixed number of k clusters. The algorithm will find homogeneous clusters. 
Due to the random initialization, one can obtain different clustering results. When k-means is run multiple times, the 
best outcome, i.e. the one that generates smallest total within cluster sum of squares (SS), is selected. The total within 
SS is calculated as: 
For each cluster results: 

● for each observation, determine the squared related to distance from observation to center of cluster 
● sum all distances 

 
In this study we consider 10 clusters that are based on the amount of losses and national code, the figure is shown 
below.  

 
Figure 2: Paid losses clusters using K-means 

For determine the number of clusters use these three steps 
● Run k-means with k=1, k=2…k=n; k is the pre-defined number of clusters. 
● Record total within SS for each value of k. 
● Choose k at the elbow position, as illustrated below. (Ramasubramanian A. S., 2017) 
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Figure 3: Total within square (SS) 

 
In this study, losses above 60 million Rials were separated for each national code. We calculate mean difference 
between loss announcement date and loss payment date. In 13 health centers where have much more losses than 
others the average difference between loss announcement date and loss payment date was less than 1 day, the average 
payment per person in these centers is over 80 million Rials. We identified 66 losses suspected to fraud. These losses 
were paid by 13 health centers.  
 
 

Table 2: Health center, average claims amount (Rials), and claim numbers 
Health center 

name 

Number of losses 

(for each national 

code) 
Average of paid loss Sum of paid loss 

Mean difference between date of 

announcement and date of payment 

in days 
Health center 1 11 76,867,727 845,545,000 0 

Health center 2 9 88,895,444 800,059,000 0.3 

Health center 3 9 88,282,833 794,545,500 1.1 

Health center 4 6 78,300,667 469,804,000 0.6 

Health center 5 5 70,000,660 350,003,300 1.0 

Health center 6 4 78,364,400 313,457,600 0 

Health center 7 4 66,249,250 264,997,000 0.1 

Health center 8 3 90,345,667 271,037,000 0.0 

Health center 9 3 84,411,333 253,234,000 1.8 

Health center 10 3 83,139,333 249,418,000 0.8 

Health center 11 3 84,689,667 254,069,000 0 

Health center 12 3 105,461,667 316,385,000 0 

Health center 13 3 74,471,667 223,415,000 1.0 

 
4. Conclusion 

Data mining techniques such as anomaly detection and clustering, can successfully detect anomalies or frauds in 
large datasets. This can be very useful for the insurance industry that is struggling with fraudulent claims. After 
identifying anomalous claims, further analysis should be carried out to find frauds. Fraud patterns are often 
recognized by insurance professionals, such research can reveal some new and unknown patterns. 
In this article we find 13 health centers with maximum paid losses that showed inappropriate patterns in the payment 
process using data mining and clustering techniques. In these health centers, the average time between announcement 
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and payment date was less than one day. Note that these health centers are suspected of fraud and further investigation 
should be done to ensure frauds. 
In conclusion, this paper reviews various methods for finding fraudulent behavior in health insurance claim. By 
analyzing the learning techniques, we will get a clear idea for the future work in health insurance claim fraud 
detection.  
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Abstract
In this paper, we consider the problem of pricing Catastrophe bonds which are based on interest rate

and aggregate loss. Since both of these underlying asstes are stochastic varibales, so we need to select an
appropriate and reasonable process for them. Concerning interest rate, different models with the feature
of mean reversion have been proposed before, Cox-Ingersoll-Ross or Vasicek model, to name but a few.
However, consdering a suitable process for aggregate loss is not as clear as the first. It’s partly due to the
fact that the aggregate loss will not have continuous value necessarily. To put it simply, after occuring a
catastrophe, the aggregate loss make some jumps from an specified value to another. Therefore, in order
to bring this feature into account, it does make sense to assume the aggregate loss follows a Geometric
Brownina Motion process with a jump-diffusion term. In spite of these explanations, the main focuse
of this work is on extracting a pricing model and the numerical solution for that. The latter is of great
importance, mainly because, after going thorugh constructing the desired model, the existance of jump-
diffusion term leads us to a Partial-Integro Differential Equation (PIDE) for which no closed form solution
can be propsed. On ther hand, dealing with Cat-Bonds, it’s likely to consider additional underlying assets
which means the dimension of the PIDE goes high. So, it seems reasonable to look for a matheod which
is dimension-blind and because of this, in this research Radial Basis Function (RBF) is proposed as the
numerical method. In addition, unlike other common method such as Finite Difference or Finite Element,
no grid of points are required. In simple term, scatter points are enough for interpolating the solution.
In fact, afforementioned features make this method attratctive not only for sovling an equation but also
in other fields such as, machine learning and neural networks.

Keywords: Cat-Bonds, Partial-integro Differential Equation, Radial Basis Functions, Meshless Methods,
Neural Networks
AMS Mathematical Subject Classification [2018]: 13D45, 39B42

1 Introduction

Generally, Cat-Bonds are based on at least 2 underlying assets: The aggregate loss L and the interest rate
r. Very simply, the mechanism of Cat-Bonds include a sponsor who is looking for transfering and hedging
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the risk, an investor who is looking for higher rate of returne with the knowlegdge of higher risk, and a
special purpose vehicle (SPV) which is a link between the first and the latter. It means that SPV provide
the sponsor and investors with coverage againts possible catastrophes and a chance to gain higher rate of
return, respectively, by issuing Cat-Bonds. To this extend, the sponsor pays a premium to the SPV, so,
in case a natrual catastrphe happend with certain magnitude, in specified palce and time, the SPV cover
the damage which is infelected to the sponsor. On the other hand, an investor purchase the bonds in
exchange of a certain price with hope to gain more money at the expiary time T. After all the capital from
both sponsor and investors come to the SPV, this vehicle invest all this fund and usually swapped the the
return with LIBOR rate using swap securities. Now, if nothing happens, the principle of the wealth, plus
a repayment goes for the investor. It should be noted that, the latter is the reward of accepting risk of
occuring a catastrophe. Moreover, if a catastrophe of great magnitude which is mentioned in the contract,
happens then, the SPV pays the sponsor according to the contracts. Again, the reader sould note that, the
catastrophe should occur in the period and location that is clearly mentioned in the contracts. However, the
structure of some Cat-Bonds are more complicated and pay some coupon to the investor. In addition, it is
worth bearing in mind that, the way of determining the exact amount of delivered damage to the sponsor
which is the result of catastrophe, plays a key role in these contracts. The reason is simply that, triggering
a Cat-Bonds depends on the magnitude of inflicted loss to the sponsor.

In this work, with regards to the preceding part, we assume the price of Cat-Bonds V is a function of
time, t, L and r. such that we have:

dL = αdt+ σLdW + ηdqQ (1)

Here Q shows the martingle measure, η is the amount of jump that happend. Though, several model can be
choosen for the interest rate, here for sake of simplicity, we assume it follows a simple GBM model. Thus:

dr = µdt+ σrdW (2)

Now, with respect to the Ito’s lemma and the basic assumption that any value of bonds at any time can be
traded in the market, the desired model will be achieved of the form:

Vt + (α− σL)LVL +
1

2
σ2
LL

2VLL + (µ− σr)rVr +
1

2
σ2
rr

2Vrr − (r + λQ)V + λQJ (3)

such that: Λ is the market price of risk, λQ is the probability of occuring a jump and J is:

J = E[V (L+ η, r, t)] (4)

which is the integral part of the model.

In the preceding arguments we have mentioned RBF method as a desired numerical method for solving
equation [3]. So here, we bring its definition and will discuss how it work solving a PIDE.

Definition 1.1. A function Φ : Rs → R is called radial provided there exist a univariate function ϕ :

[0, inf) → R such that:
Φ(x) = φ(r) r = ∥x∥ (5)

and ∥.∥ is some norm on Rs.
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In simple term, the definition 1.1 says that

∥x1∥ = ∥x2∥ ⇒ φ(x1) = φ(x2) (6)

One of the main advantages of this method in interpolation problems is that regardless of the dimension of
the space, we use an univariate function instead of multivariate function and this feature is clearly due to
the existance of the norm. Therefore, if one point of the space is a vector of the form x = (x1, x2, ..., xs),
with help of norm inside the radial function we would have r = ∥x∥ which is a scalar.

Using this property, for interpolating function P at the point x we rewrite the function as follows:

P (x) =
N∑
k=1

ak(t)φ(∥x− xk∥2) (7)

such that xj are the scatter points in our space. As we mentioned earlier, there is no need for a mesh or
a grid of data and only scatter points are enough for interpolating a function. Because of this fact we also
call this method meshless methods.

Now, if we put equation [7] in [3] the PDE part will easily change to a first order, ordinary differential
equation of time t. However, the existance of the answer will be under question due to the fact that, there
is no guarantee the resulted matrix would be invertible matrix. we can overcome this difficulty if the radial
function in equation [7] would be positive definite. Thus, definitely, our linear system will have an answer.

2 Main results

In this research, an effort has been made to present a model for pricing Cat-Bonds based on two underlying
assets while we assume that one of them,called aggregate loss, is exposed to some jumps which is the direct
result of occuring a catastrophe. After extracting the pricing model, RBF method was briefly introduced
as a proper numerical method for our work. One of the main reason for using RBF is that, in case we
consider more underlying assets than we did in this paper, the dimension of the question goes high which
means it would be a problem to deal with that because, most common numerical methods like Finite
Difference or Finite Element will not properly work in high dimensions problems. On the contrary, as it’s
been mentioned, RBF method will not face difficulties in these kind of problmes at least from theoretical
point of view. Eventually, All these discussion means that, RBF method could be an excelent instrument
leading us to more and more accurate pricing model of Cat-Bonds.
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Abstract

This paper investigates the effectof the behavioral bias on investors’ financial decision making (insur-
ance companies) inTehran Stock Exchange for the period 2011-2017. For this purpose, panel data meth-
ods in the form of the single-factor model of the capital asset (including risk premium) and Fama–French
three-factor model (including the size and ratio of book-to-market (B/M) as well as risk premium), and
Carhart four-factor model (including momentum as well as risk premium, size and ratio of book-to-market
(B/M))were used. The results showed that the inversion of the return in the companies with consistently
good performance is greater than the companies with inconsistently good performance. Also, the results
showed that the reaction of the return in case of not being confirmed by the market in the companies
with consistently good performance is greater than the companies with inconsistently good performance.

Keywords: changes in return prediction, behavior orientation, financial decision, panel data method.

Mathematics Subject Classification [2018]: 13D45, 39B42

1 Introduction

The course of the history of financial literature shows that at the beginning of the global economy growth
in the early decades of the 20th century followed by the appearance and development of the money and
financial markets, the pundits and scholars in the field of financial theories typically tried to explain the
details of investment in the financial markets in the framework of the technical, economic and financial
variables.

The traditional financial perspective assumes that people make rational decisions to maximize their
wealth at a definite level of risk and to minimize the risk at a definite level of wealth. Such an approach
stating the way people should behave is called normative. This perspective has provided the tools required
to develop the portfolio theory, capital asset pricing, Arbitrage Pricing Theory and Pricing Option Theory.
As opposed to this traditional approach, the financing based on the behavioral approach, perceptual and
emotional errors that often influence the financial decision-makers which leads them to make undesirable
decisions. This approach emphasizes the positive description of human behavior, and it investigates and
studies the way people behave in practice in a certain financial field.
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The financial theories have adopted two different approaches over recent past decades. The first approach:
this is the neoclassic approach in the financial sciences whose fundamental financial theories’ assumption-
consists of the market efficiency and rational behavior of the investors in the market. This approach in
the financial sciences started along with the capital asset pricing model and efficient market theory pro-
posed in 1960s, and the midterm capital asset pricing and Arbitrage Pricing Theory (APT) of Miller and
Modiglianiin 1970s. The researchers found out over time and through different research that many people do
not behave rationally and the existing chaos in the market cannot be justified using efficient markettheory.
Many cognitive and behavioral factors play a role in the investors’ decision-making process. This leads to a
behavioral revolution in financial issues through the paper presented by Kahneman and Tversky in 1979.

2 Research methodology

At first, the information on the net profit (loss) and operating profit and loss, and the sales of the listed-
companies in the Tehran Stock Exchange over ten years is collected. Then, the growth of these variables
is calculated and the companies are classified into five classes of the same weight according to the growth
of each one of these ratios. Then, the companies at the two ends of the classifications are classified into
two portfolios, that is, purchase portfolio and sales portfolio where the difference in the return of the two
portfolios for the periods under study are calculated, and the hypotheses are tested using the one-factor
capital asset pricing model (CAPM) and Fama–French three-factor model and Carhart four-factor model
are tested based on the difference in the performance of the two portfolios. In this research, augmented
Dicky Fuller test; Kolmogorov–Smirnov test, error term normality test, White test and Durbin–Watson test
were used as well as the descriptive statistics like the mean, standard deviation, and skewness.

In the present research, the data were gathered using library method where the researcher conducts
the study through studying the relevant books and papers and collecting the information from the finan-
cial statements of the listedcompanies in the Tehran Stock Exchange through the information software
calledTadbirPradaz-RahavardNovin. The present research tries to investigate all companies included in
the definition of the statistical population. Thus, this research uses a time sampling method that tries to
generalize the results to the periods other than the period under study

3 Conclusion and suggestions

For this purpose, the regression method in the form of the single-factor model of the capital asset (including
risk premium) and Fama–French three-factor model (including the size and ratio of book-to-market (B/M)
as well as risk premium), and Carhart four-factor model (including momentum as well as risk premium,
size and ratio of book-to-market (B/M))were used. The results showed that after a long period of time
(5 years) of good performance, the company’s return is inversed due to representative bias. Finally, the
difference in the portfolios of consistent companies and inconsistent companies is calculated. The results
showed that the inversion of the return in the companies with consistently good performance was greater
in comparison with the companies with inconsistently good performance. Finally, to test the third research
hypothesis, at first the financial performance of the companies is categorized according to hypothesis 2, in
the next stage, the growth rate of the future period of the companies is examined. In this stage, the return
of the securities based on the growth rate in the future period that confirms or contradicts the consistency
(inconsistency) trend in the past is noted. The results showed that the return reaction, in case the trend is
not confirmed by the market, in the companies with consistently good performance is greater in comparison
with inconsistently good performance.
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Abstract

Life insurance is a dynamic and attractive market. In fact, everyone who buys life insurance goes
through a stochastic process with several stopping times like lapse time and death time. This stochastic
process depends on many factors such as gender, profession, age, Time elapsed time of the beginning
of the contract, economic parameters and etc. In this paper, we present a approache for generating an
internal parametric path process based on the maximum likelihood of exponentiation log-logistic geometric
distribution. By using this internal path in the nested simulation approach we can project the cash flow
for customers.

Keywords: Lapse, Cash-Flow-Projection, Salvency Capital Requrment

AMS Mathematical Subject Classification [2018]: C52, C53

1 Introduction

Two sets of stochastic scenarios have to be produced: outer scenarios for the evolution of all the variables

during first year and inner scenarios for the expectation evaluation. outer scenarios are scenarios where

the parameters are obtained from the observed data. In order to be able to simulate the cash-flow for

a customer, we need to have detailed information about the parameters of our model. One of the most

important risks that we need its information is lapse processes. Two sets of stochastic scenarios have to be

produced: outer scenarios for the evolution of all the variables during first year and inner scenarios for the

expectation evaluation. Outer scenarios are scenarios where the parameters are obtained from the observed

data. In order to be able to simulate the cash-flow for a customer, we need to have detailed information

about the parameters of our model. One of the most important risks that we need its information is lapse

processes.
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2 Main result

In this section, we investigate the lapse probability for policyholders by using a real dataset. In this dataset,

every policyholder has either lapsed or is still active. We have used a very general and flexible probability

distribution for the lapse time,

f(t) =


p0 t = 0

(1− p0) · · · (1− pt−1)pt 0 < t ≤ k

(1− p0) · · · (1− pk−1)(1− pk)
t−kpk t > k

(1)

where p0, p1, . . . , pk ∈ [0, 1]. We can mix this model with a regression model with m independent variables

as follows

pj = g(a
(0)
j + a

(1)
j x1 + a

(2)
j x2 + · · ·+ a

(m)
j xm), j = 0, 1, . . . , k.

Where g can be any probability distribution function (e.g. logistic, probit,...). By considering the right-

censored data, the likelihood function for this data as follows

L(a
(0)
0 , a

(1)
0 , . . . , a

(m)
0 , . . . , a

(0)
k , a

(1)
k , . . . , a

(m)
k ) =

n∏
i=1

(f(ti))
δi(S(ti))

1−δi . (2)

Where S is the survival function of T and δi is a binary variable that indicates a censored observation. By

maximizing the likelihood function, we can find the estimation of pj as follow

p̂j(x) = g(â
(0)
j + â

(1)
j x1 + â

(2)
j x2 + · · ·+ â

(m)
j xm).

Example: For our dataset, we have estimated the parameters for k = 5 and the logistic function g(x) =
1

1+e−x . Using the maximum likelihood method, the following result is obtained

â
(0)
0 = +0.0054 â

(1)
0 = +0.0014 â

(2)
0 = −6.5032

â
(0)
1 = −0.0102 â

(1)
1 = −0.0441 â

(2)
1 = −0.4162

â
(0)
2 = −0.0018 â

(1)
2 = −0.0466 â

(2)
2 = −0.1547

â
(0)
3 = +0.0026 â

(1)
3 = −0.0415 â

(2)
3 = −0.5099

â
(0)
4 = −0.0008 â

(1)
4 = −0.0036 â

(2)
4 = −1.4216

â
(0)
5 = −0.0051 â

(1)
5 = +0.0117 â

(2)
5 = −0.7452.

Since we have a lot of censored observations, we expect that the mean of T is bigger than the mean of the

real data. For example, if age = 30 and term contract = 15, mathematical expectation of T is 3.84 and

mean of data (ignoring the fact that some of them are censored) is about 3.4. In figure 1 we see how the

expectation value changes as age and term contract change.
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Abstract 
 

Solvency is a concept that determines the ability of insurance companies to meet their long-term fixed 
expenses and to accomplish long-term expansion and growth. Indeed, the solvency of insurance companies will 
be determined by measuring the risks that threaten their businesses. It needs to calculate the capital requirement 
to face expected losses. In this paper, we will provide a methodology based on the compound distribution of 
portfolio aggregate claim amount to determine capital requirement. To this end, it needs to find the distribution of 
aggregated loss function, which depends on the frequency and severity of paid losses. The modeling procedure 
includes two steps. At first step the frequency and severity are modeled separately, then by employing bootstrap 
algorithms, the distribution of total claim sizes are determined. Illustration of this approach has been provided by 
applying that on car insurance data of Saman insurance company.   
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Abstract 
 

Nowadays, systemic risk measures are getting common as a tool for surveillance and regulate the real part of 
an economy. Although many measures have been introduced in recent years, particularly after the 2007-2008 
financial crisis, the main concern is the point that an economic go worse and a crisis may occur to a jurisdiction.  

In this article, we tried to introduce a breakpoint regression method to estimate the crisis threshold so that the 
policy-makers can take precautionary actions before a crisis arises. We considered the value-weighted market 
Expected Shortfall (ES) as a systemic risk and stock market index as a global indicator. Using breakpoint 
regression we find some points that potentially could be the threshold of the systemic risk measure. 

 
Keywords: Systemic Risk, Expected Shortfall, Breakpoints, Early Warning.  

    
 
 
 
 
1 Introduction 
 
Most classical tests against changes in the coefficients of a linear regression model assume that there is just a single change 
under the alternative or that the timing and the type of change are known. More recently, there has been a surge of interest in 
recovering the date of a shift if one has occurred or in methods which allow for several shifts at once, see Bai (1997), Hawkins 
(2001), Sullivan (2002) and Bai and Perron (2003) among many others. In this paper, we are going to introduce some methods 
for finding breakpoints in regression and time series models. 
 
Consider the following standard regression model: 

 
 
In this section, the regression coefficients are tested for consistency: 

 
In contrast, H1 assumes that at least one of the coefficients changes over time. 
In many cases, it can be assumed that M breakpoint exists where the regression coefficients change. So there is an 
M+ 1 segment where the regression coefficients are constant and the above model can be rewritten as follows: 

 
The purpose of this paper is to find a threshold for the expected shortfall (ES) as one of the systematic risk measures.   
2 Regression results 
In Fig. 1 and Fig. 2, respectively, you can see the time-series graph of the ES values and the total index from 06/01/1390 to 
26/11/1395. 
In the first method, a simple regression model is considered between ES and total index and the change of regression 
coefficients is tested. 
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To this end, ES is considered as the dependent variable and the Tehran Stock Exchange index as an independent variable, 
considering the positive correlation between ES and the total index (using Pearson test) using the segments test where the slope 
The regression line changes can be calculated. 

 
Figure 1: Time series of ES index from 06/01/1390 to 26/11/1395 

 

  
Figure 2: Time series of the total  return index from 06/01/1390 to 26/11/1395 

 
 
In Fig. 3 you can see the point diagram of the total index and the ES in front of each other. 

 
 

 
Figure 3: Graph of total index vs. ES 

 
 
 
The following table shows the test results. 
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  ***Regression Model with Segmented Relationship(s)*** 
 
Estimated Break-Point(s): 
   Est. St.Err  
 0.016  0.000  
 
Meaningful coefficients of the linear terms: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)    51322       1736  29.572   <2e-16 *** 
ES             406331     179735   2.261   0.0239 *   
U1.ES        31727202   11516233   2.755       NA     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for gaussian family taken to be 458437121) 
 
Null     deviance: 6.7523e+11  on 1428  degrees of freedom 
Residual deviance: 6.5327e+11  on 1425  degrees of freedom 
AIC: 32560 
 
Convergence attained in 4 iterations with relative change 5.244692e-05 

 
As you can see the estimated breakpoint value for ES is .016. This value can be considered as a threshold value 

of the ES, for the period of 1390 to 1395, the ES value has been calculated for 1421 days, which is 95 days longer 
than the threshold, meaning that in the 5 years with a probability of .066, the ES value has exceeded the threshold. 

 
2 Time-series results 

 
So far, a breakpoint for ES has been calculated using a simple regression model between index and ES 

measure. Then, using the time series model, the breakpoints are calculated. For this purpose, we fit a time series 
model to ES data and calculate the number of breakpoints (points where time-series coefficients change) using 
Bayesian information criterion tests and least-squares residuals. 

The following time series models have been used for this purpose. 
 

 

 
In Figure 4 you can see the results of both BIC tests. 
 

 
Figure 4: Graph of Bayesian information criterion test and least-squares residuals 

As you can see, the five breakpoints give the lowest value in the Bayesian information criterion tests and the 
least-squares residuals. This means that five test points can be calculated for the test. 

Now to calculate the breakpoints, we fit the ES data to AR 20 time series models with lags of 20 and 60. In 
Figure 5 you can see the graph of ES values over 1429 days (from 01/01/1390 to 26/11/1395) with a lag of 20. 
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Figure 5: ES time series (top) with 20-day lag ES time series (below) 

 
Using the Breakpoints test, we calculate 5 breakpoints for ES with lag 20. 
 

  Optimal (m+1)-segment partition:  
breakpoints.formula(formula = x ~ xlag22, h = 0.1, breaks = 5,  
    data = x) 
 
Breakpoints at observation number: 
                             
m = 1   202                  
m = 2   203 426              
m = 3   203 448 680          
m = 4   203 448 679     1004 
m = 5   203 448 682 869 1009 

 
As you can see above, for m = 5 breakpoints, points 203, 448, 682, 869 and 1009 are obtained from the data. 

The points corresponding to these results in ES are .01145, .006231, .0088, .005, and .014393, respectively. In 
Figure 6 you can see these points on the time-series graph. 

 

 
Figure 6: ES time series (top) with 20-day lag ES time series (below) with breakpoints 
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Since the aim of this report is to find a risk threshold for ES, the results of points .01145 and .014393 can be 
considered as critical points. 
 
3 Conclusion 
Successful implementation of macroprudential policy is contingent on the ability to identify and estimate systemic 
risk in real-time. Therefore, it is necessary to find a timely risk threshold for timely policymaking. 
In this paper, methods for finding a threshold of risk measures are introduced and analyzed using Segments Test for 
Regression and Breakpoints in Time Series. These methods are implemented in the R packages Strucchange and 
Breakpoints. In the time series method, we used the BIC method to find the number of breakpoints.  
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Abstract

Due to the importance of the constructing a life table that provides an accurate estimation of the
mortality of the Iranian insured population, this paper is to estimate the mortality rates of insured of the
Social Funds of Farmers, Villagers and Tribes in 2016, which actually is a sub-population of 1.5 million
people in Iran. In this paper in order to estimate mortality rates of fund, we will only focus on the active
insured persons which is roughly 1 million people of total 1.5 million members of fund. In this paper, in
order to minimize the effect of data’s few-counting of death, the target population has been limited to
active insured members in the year 2016. The mortality rates for active insured male members of the fund
for ages between 30 and 80 have been estimated. The resulting rates for ages between 30 and 71 have
been compared with rates which obtained by insured people of the Social Security Organization, rates of
TD (Table de Deces) 88-90 and the rates presented by the United Nations. The results and comparisons
show that the estimated rates for the fund are largely reasonable and reliable. It can also be said that
the estimated rates for the fund is very close to the rates presented by the United Nations.

Keywords: Mortality rate, the Social Fund of Farmers, Villagers and Tribes, Active Insured members,
Makeham mortality model, Social Security Organization, United Nations, Table of TD 88-90

.
Mathematics Subject Classification [2018]: 62P05

1 Introduction

Demographic rates, such as mortality rates, have an important role in actuarial calculations. Since TD
88-90 Mortality Table, which is prescribed by the Central Insurance of Iran overestimates the mortality
rates and is still used in actuarial calculations in Iran, it is important to construct a life table that provides
an accurate estimation of the mortality of the Iranian insured population.
In Iran, most of life table construction studies have focused of constructing a life table for the general
population. The results of such studies can be found on the Statistical Center of Iran. It can be said the
only reliable research conducted for insured people is Eghbal Zadeh and Hassan Zadeh in 2017. [3]
In this paper, we estimate the mortality rates of insured members of the Social Funds of Farmers, Villagers
and Tribes (that is called the Tribes Fund or the Fund in this paper) in 2016, which has a population of
approximately 1.5 million active insureds in 2018.
The Fund members data in a form of two snapshots of year end 2016 and 2018. The year 2016 data includes
6 items which are Policy number, Date of Birth, Gender, Status, Executive date and Issue date. The year
2018 data, in addition to the items in the year 2016 data, also includes another item named ”The number
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of premium payment months in 2015” which specifies active insured members in 2015.
The fund has totally 1,509,887 members with 49,833 of whom are in “death” status. Because of high rate
of lapse in this fund, it is expected that deaths of some members are not reported, therefore, it is more
reasonable to consider only active insured members in the year 2016 as exposure. In order to estimate
mortality rates, we consider those who died in the year 2016 and belonged to the active insured members
in the year 2016. Following groups have been considered as active insured members in the year 2016:

• Individuals who had premium payment in the year 2015 and did not change their status till the year
end 2015 that the number of this group is 920,776 persons.

• Individuals whose issue date were in year 2016 which the number of this group is 92,082 persons.

Considering the two groups above, the fund had 1,012,858 exposure members in 2016. In addition to
deaths that have been registered, the fund also had dead members whose deaths had not been registered
(therefore their death date are not clear). In order to minimize the effect of data’s few-counting of death,
the not-registered deaths should be considered in mortality rates estimation. In the year 2016 the fund has
had 6,749 registered-deaths. The number of not-registered deaths of the fund is totally 41,435. This number
was obtained from The National Organization of Civil Registrants, but the date of deaths was not available
to us. We assumed uniform death distribution for those insureds with issue date after year 2015 and died
before year end 2018.
The method which is used for raw mortality rate estimation is as following:

q̂x =
Dx

Ex + 1
2Dx

. (1)

In which, q̂x is mortality rate at age x in the year 2016, Dx is the number of x-aged active insured who were
dead in the year 2016 and Ex is the x-aged exposures in the year 2016. See [2] for more details.
For estimating mortality rates, at first Dx and Ex should be calculated. A part of Dx for each age x is
determined by intersection between registered-deaths in 2016 and active insured members in 2016. Another
part of Dx which is related to not-registered deaths, is determined by intersection between not-registered
deaths in 2016 and active insured members in 2016. Since the death date for not-registered deaths are not
recorded, not-registered deaths in 2016 according to UDD assumption are determined as follow.

• Intersection between not-registered deaths and the individuals who had premium payment in the year
2015 and did not change their status till the end of year multiplied by 12

39 ,

• Intersection between not-registered deaths and Individuals whose issue date were in the year 2016
multiplied by 6

27 .

Ex for each age x is determined by the following:

Ex =
1

12
×

n∑
i=1

(sx,i − tx,i). (2)

In which, sx,i and tx,i are the death month and the entrance month number for insured i, respectively.
Notice that sx,i = 12 for all individuals who did not die till the end of 2016 and tx,i = 0 for all individuals
who were in the fund as active insured members before 2016. In fact, formula 2 is used to obtain the
exact amount of each member exposure. In this paper, it has been considered that all of enters and deaths
occurred in the middle of the year 2016.
The exposures for ages between 30 and 80 are such that the estimated mortality rates can be considered
reliable. We have decided to choose a minimum exposure 5000. After calculating the crude rates, we have
used the Makeham model for smoothing. Based on the Makeham model the force of mortality is given by:

µx = A+B × cx; 0 < A < 1, 0 < B < 1, c > 1. (3)

So the qx which is the mortality rate for age x is:

qx = 1 − px = 1 − e−
∫ 1
0 µx+tdt = 1 − e−

∫ 1
0 (A+B×cx+t)dt = 1 − e

−
(
A+

B(c−1)cx

ln(c)

)
. (4)

See [1] for more about the Makeham model in mortality.
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2 Main results

After calculating the crude rates, we use the least squares method to smooth the rate via the Makeham
model. The estimated parameters are as follow.

A = 0.0001, B = 0.0001521, c = 1.073.

In figure 1 the crude and smoothed rates of Tribe Fund for ages between 30 and 80 are compared.

Figure 1: Crude and smoothed rates of Tribes Fund for ages between 30 and 80

In the following, the rates for the fund have been compared with rates from the following three life tables

• Table of TD 88-90,

• The mortality rates of Social Security Organization, [3],

• The rates of United Nations.

The mortality rates from 4 sources mentioned above for ages between 30 and 71 are displayed in the
following figure.

Figure 2: Comparison between rates of 4 sources (Tribes Fund, SSO, UN, TD 88-90 ) for ages between 30 and 71

The following ratio has been used to compare the rates in pairs.∑n
x=m q̂

∗∑n
x=m q̂

∗∗ . (5)
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Table 1: The results of comparison between rates of 4 sources for ages between 30 and 71

Tribes Fund SSO UN TD 88-90

Tribes Fund 1 0.755 1.038 1.375

SSO 1.325 1 1.374 1.822

UN 0.964 0.728 1 1.326

TD 88-90 0.727 0.549 0.754 1

Table 1 illustrates the results obtained by ratio 5.
In Figure 3, the results of another comparison method has been shown, in which, for each age between 30
and 71, the death rate of the mentioned sources are divided by the death rate obtained for the Tribes Fund.

Figure 3: The ratios of the rates of three sources (SSO, UN, TD 88-90) over the Tribes Fund, for ages between 30 and 71

As it can be seen in Table 1, the estimated rates for the Tribes Fund and the United Nations rates are the
closest ones. From Figure 3 we have the followings:

• The rates of TD 88-90 are higher than the estimated rates for Tribes Fund for all ages between 30 and
71. However, for ages between 30 and 52 the ratio is close to 1,

• Totally the rates of the Social Security Organization are lower than the estimated rates for Tribes
Fund for all ages between 30 and 71,

• For ages between 30 and 60 the estimated rates for Tribes Fund are higher than the United Nations
rates and for ages between 60 and 71 this relationship is reversed.

Finally, as the actuaries over the past years have concluded that the mortality rates of TD 88-90 estimate
mortality much higher than the actual experience, our research results confirm this fact.
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Abstract

Accurate prediction of future claims is a crucial problem in health insurance. In this paper, we fit a
Bayesian Nonparametric regression model to health insurance claims data provided by Mellat insurance
company. This approach provides model with great flexibility that can accommodate complex characteris-
tics of the regression error distribution such as multimodality, heavy tails, and skewness. The hierarchical
structure of the model has the advantage that the parameter estimation is simplified via MCMC methods.
The results demonstrate that the fitted model can be improve the predictive accuracy of claims. Also,
the model can be used to estimate risk management measures such as VaR and TVaR for the data.

Keywords: Bayesian nonparametric regression, Dirichlet process prior, Predicting, Health insurance
claims.

AMS Mathematical Subject Classification [2018]: 62-XX, 62P05

1 Introduction

One of the most important problems in health insurance is modeling and predicting of future claims from

policyholders in different risk classes based on past observations of claims made by policyholders in these

risk classes.

Nonparametric Bayesian approach is a powerful tool for capturing complex characteristics of the dis-

tribution of insurance data such as heavy tails, skewness, or even multimodality. This method place prior

distributions on spaces of distributions rather than on parameters of a parametrically specified distribution.

In this paper, we consider a flexible Bayesian nonparametric regression model (Richardson and Hartman,

2018), in particular, a Dirichlet process mixture of log-normals in modeling health insurance claims data

provided by Mellat insurance company.
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The fitted model will lead to more accurate predictions for claims that can be used for pricing. This

model will also be valuable in risk assessment of future obligations.

The rest of this paper is organized as follows: The Dirichlet process and Dirichlet process mixture are

briefly described in Section 2. In Section 3, the mathematical structure of the Bayesian Nonparametric

regression model is specified. The data analysis is shown in Section 4.

2 Dirichlet Process and Dirichlet Process Mixture

The Dirichlet Process (DP) is most easily characterized by the Sethuraman (1994) construction of it. Let

G0 be a known distribution and let α > 0 be a positive constant. Then we say G ∼ DP (G0, α) provided

G(.) =
∞∑
l=1

wlδυl(.), υl
iid∼ G0,

where δυ(.) defines point mass at υ and where wl = ξl
l−1∏
i=1

(1− ξi) with ξl
iid∼ Beta(1,α). Therefore, G is a

random distribution that is discrete with probability one. G0 is called the base or centering distribution

since E(G) = G0.

The Dirichlet Process Mixture (DPM) takes advantage of the discreteness of the DP. Consider a para-

metric density function that depends on parameters ν, f(. |ν) , and ν |G ∼ G , G ∼ DP (G0, α). We obtain

the DP mixture using

f(. |G) =

∫
f(. |ν )G(dν) =

∞∑
l=1

wlf(.|ν l),

the Sethuraman (1994) construction.

3 Bayesian Nonparametric (BNP) regression model

Let yi is the log-claim per day of exposure for each policyholder. The Bayesian Nonparametric regression

model for is expressed as (Richardson and Hartman, 2018):

yi ∼ f(yi),

f(yi) =
∞∑
l=1

wlN(yi |z′ βl, σ
2
l ), i = 1, ..., n,

(βl, σ
2
l ) ∼ N(µβ,Σβ)× IG(aσ, bσ),

wl = ξl
l−1∏
i=1

(1− ξi), ξl
iid∼ Beta(1,α), l = 1, 2, ...

α ∼ G(aα, bα),

where G, N, and IG represent Gamma, Normal, and inverse gamma distributions, respectively and z′ is a

vector of covariates of the model, gender and age.

4 Analysis of the claims data

4.1 The data

The data set is taken from a group health insurance contract in Mellat Insurance Company for 1397. We

have claims information on 5461 policyholder that were part of this group plan. The claims were total yearly

103

SMMK
Rectangle



Modeling and Predicting Health Insurance Claims 3

costs divided by the number of days of exposure. Each record has two covariates, age and gender that used

as factor variables with 2 and 10 levels, respectively.

4.2 Estimation

We analyzed the data by fitting the Bayesian Nonparametric regression model described in Section 3. To

estimate the parameters with the Bayesian simulation method, we ran 70000 iterations using the OpenBUGS

software. The first 50000 iterations, set as the burn-in period were discarded. To reduce auto-correlation

problem, we considered every 20th iteration of chain. The convergence of the MCMC chain was monitored

using trace plots, autocorrelation plots, and MC errors of estimates.

The posterior predictive distribution for 6 of covariate combinations are shown in Figure 1.

Figure 1: The posterior predictive distribution of the log claims for a number of covariate combinations.

4.3 Risk measures

Following the notation by Klugman et al. (2012), let X denote arandom variable and πp is the 100p quantile

of the distribution of X. The Value-at-Risk for a random variable X, denoted as V aRp(X), is the same as

πp and P (X > πp) = 1− p.

Also, for a random variable X, the Tail-Value-at-Risk, denoted as TV aRp(X), is the conditional expec-

tation of X given that X exceeded the 100p quantile of the distribution, i.e.,

TV aRp(X) = E(X |X > πp ).
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Table 1 summarizes the results of the risk measures for a number of covariate combinations.

Table 1: Summary of risk measures.

Median Posterior credible intervals V aR(0.95) TV aR(0.95)

Male-Age [6-10] 8.75 [5.842-10.8] 10.5 10.882

Female-Age [21-30] 9.61 [6.884-11.92] 11.5 12.068

Male-Age [81-90] 9.574 [6.568-12.62] 12.32 12.747
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Abstract 
 
Banks' commitments to each other mainly arise in the interbank market, which can lead to increased systemic risk 
due to the spillover effect. Therefore, the objective of this paper is to analyze the network dynamic stability of the 
Iranian overnight money market through methods of statistical mechanics applied to complex networks .The 
results show that the network structure changes during time depending economic conditions. Systemic risk 
measures such as clustering coefficient, average short path, heterogeneity and centrality, show that the networks 
systemic risk increases and then by occurring default and crisis in one bank, default spillover during the domino 
effect in whole network. Also, in the event of failure, the most vulnerable group is to privatized and specialist 
governmental banks, and the private banks, due to the high volume of exchanges and net negative flows, can put a 
considerable systemic risk to the interbank market network. Morever, the signals of speculative activity by private 
banks are found.  
 

 
Keywords: Network stability, systemic risk, clustering coefficient, heterogeneity, centrality 

  
Mathematics Subject Classification [2018]:  54A06 
 
 
 
1 Introduction 
 
After the innovative researches on small-world networks by Watts and Strogatz  and scale-free networks 
by Barabasi and Albert, the study of complex networks has received increasing attention. Complex 
networks have become a general method for studying common properties of complex systems in the real 
world, and have penetrated into statistical physics, social sciences, biological sciences and many other 
fields. Applications of network theory in economic systems can be useful in considering explicitly the 
relations among economic agents. Many empirical analyses of economic systems have been 
constructed with the application of network tools, such as the world trade web, e-commerce, the 
correlation network of stock price returns and commercial credit among firms, financial credit from banks 
to firms and interbank credit. 
In the banking system, an intricate web of claims and obligations links the balance sheets of a wide 
variety of intermediaries, such as banks and hedge funds, into the structure of a network. As for the 
banking system, there is abundant theoretical economic literature on contagion risk and systemic risk 
which suggest various topological structures of the banking system, such as the complete and incomplete 
interbank structures, the 2-D directed lattice, money-center structure, a random network, and so on.  
In addition, some literature drew the conclusion that the banking system stability depended on its 
structure.  
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Therefore, it is of great importance to understand the structure of the real banking system. However, the 
structure of the real banking system is not completely in accord with the theoretical structure those 
scholars postulated. 
 
Interbank market permits liquidity exchanges among financial institutions through facilitating the 
allocation of the liquidity surplus to illiquid banks. Complex network relationships are formed through 
interbank lending, payment and settlement, discount and guarantee. On one hand, the complex debtor-
creditor relationships between banks provide channels for interbank liquidity exchanges, but on the other 
hand, they also become potential paths for financial contagion, which may trigger the domino effect. For 
example, the US sub-prime mortgage crisis broke out in August 2007, resulting in large number of banks 
failed (such as Lehman Brothers, Washington Mutual Bank, Colombia Trust, etc), which quickly evolved 
to a global financial crisis and greatly damaged the global financial system. 
It is well known that the topology of a network (for example the Internet connectivity map, the World 
Wide Web, author collaboration networks, biological networks, communication networks, power 
networks) affects its functionality and stability. 
Our paper focuses on the network analysis of the overnight maturity on the market for interbank deposits 
of Iran.  Our data set is composed of monthly banks operating in the Italian market between 2010-2015 
consisting 66 adjacency lending matrixes. For every month of trading we compute the network of debts 
and loans. The main objectives are to understand the network topology of Iranian interbank market. 
 
 
2    Main result  
 
 
The networks parameters is shown in the below table. By analyzing some of these measures we can 
determine the systemic risk and instability of interbank network. 
 

parametersmeanmeduimMinMaxSTDskewnesskurtisos

number of nodes19.10619.5004.00028.0004.921-0.6700.683

number of links74.69763.0003.000205.00049.4360.612-0.543

network density(undirected)(connectivity)0.3370.3420.1670.5330.0980.110-1.042

average degree of a node 3.5233.4720.6677.3211.7320.259-0.929

average path length1.7371.7601.0002.4300.340-0.305-0.337

network diameters4.1824.0001.0007.0001.445-0.078-0.427

network radius1.3181.0001.0003.0000.5271.3871.139

clustering coefficient0.2320.2460.0000.4560.118-0.318-0.531

Network centralization(undirected)0.3380.3110.0780.5260.0950.062-0.535

average numebr of neighbors6.4246.0001.33313.1433.1670.419-0.848

network heterogeneity(undirected)0.5120.5190.3540.6800.0940.013-1.129

Average of Eccentricity2.1052.1050.5004.4120.8920.142-0.556  
 
Systemic risk measures such as clustering coefficient, average short path, heterogeneity and centrality, show that 
the networks systemic risk increases and then by occurring default and crisis in one bank, default spillover during 
the domino effect in whole network. Also, in the event of failure, the most vulnerable group is to privatized and 
specialist governmental banks, and the private banks, due to the high volume of exchanges and net negative flows, 
can put a considerable systemic risk to the interbank market network. Morever, the signals of speculative activity 
by private banks are found.  
 
Average is around 2 which shows that the interbank network is small world network. As much the 
average short path and clustering coefficient is small the network gets more stable. This index has 
increased steadily since 1392, therefore the network’s stability reduces. 
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The higher the clustering coefficient, the easier it is for a bank to transmit to a neighbor, and thus the 
more systemic risk is to the other banks. 
 
 
 
 
 
The structure of Iran's interbank network has become more vulnerable to crisis and default from these 
measures point s of view. 
Another important concept of the network is the network centrality, which is the extent to which a 
network has one or more specific nodes that other nodes are clustered around. 
 
increasing the heterogeneity and centrality of the network makes the network more similar to the star 
networks which has more systemic risk.  
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Abstract

This paper introduces a new health product for first time which provides the benefits of insurer and
policyholder. This innovative product includes the benefits of long-term care, limited hospitalization
coverage and guaranteed lifelong withdrawal benefit option. Besides, the premium of this product is
directly affected by the return of financial market and this product protect the benefits of policyholder
against the downside risk.

Keywords: Variable annuity, Long-term care, Life care annuity, Guaranteed lifetime withdrawal benefit.
Mathematics Subject Classification [2018]: G22 , I1.

1 Introduction

Life Care Annuity (LCA) is a combination of lifetime annuity and long-term care insurance that discussed
by Murtaugh et al. [2] for first time. They studied the effect of the positive correlation between mortality
and disability on the LCA and proved that this product can reduce the cost of regular LTC.

Insurance companies offer variable annuity products along with a variety of riders, which are called
guarantee. These guarantees increase the willingness of policyholder to buy insurance policies. Life Care
Annuity-Guaranteed Lifetime Withdrawal Benefit is an example of such new product that suggested by
Hsieh et al. ([1]) in 2018 for the first time. In this popular product, LCA and withdrawal benefits are
provided together. This article introduce a new LCA-GLWB product that considers limited hospitalization
coverage as its benefit. Limited hospitalization coverage has been introduced by Yang et al. ([4]) in 2016.
They proposed an evaluation model that can accurately provide fair premiums for limited coverage policies.

This paper is organized as follows. In section 2, the details of the product have been reviewed. Moreover
the methods that are employed for evaluating the product are discussed. Numerical results are provided in
section 3 and we conclude with a discussion of our findings in Section 4.

2 Product specifications

At the beginning of the contract(State 1 in figure 1), the policyholder pays a lump sum (w0) to the insurance
company. Lamp sum has been invested in an investment fund, grows based on fund’s return rate R(t) and
reach to W (t) at time t. In this paper, we assume that insurer invest w0 under a Geometric Brownian
Motion (GBM) process. Therefore the fund’s return rate R(t) satisfies

Rt = exp{(µ− σ2

2
) + σ(Bt −Bt−1)}; t = 1, 2, ...,Kx, (1)
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Figure 1: The health status of the policyholder.

where Kx denotes the number of completed future years lived by the policyholder, Bt is the standard
Brownian motion process and µ and σ2 are expected drift rate and volatility of the process, respectively.
Moreover at the beginning of year t, the insurer withdraws the fixed management fees M and guaranteed
fees αWt. Limited hospitalization costs (HBt

x), healthcare costs (SBx
t ) and withdrawal benefits (gt = βtw0)

are other benefits that paid to policyholder at the ending of year t. Suppose that the healthcare benefits,
that pay back to policyholder when s/he moves to state 2 at time t, modeled by

SBx
t = cw0(1 + π)t, (2)

where π and c are a fixed inflation rate and positive constant respectively. Now suppose that this product
will paid bt in t’th year of the policy and will reach to zero after L days. Therefore, if Tt

x denote the total
number of days for hospitalization in the t’th policy year for an x-aged insured, then

HBt
x = btTt

xI(0, Dx) + (

Dx∑
i=1

biL−
t−1∑
i=1

biTi
x)I{Dx}+ 0I(Dx,∞), (3)

where Dx is the first time that total number of hospitalization days is greater than L and I() is an indicator
function. Finally the contract will be expired either policyholder’s invested amount reaches to zero or
s/he touches state 4(death). Based on the given description the account value at year t before and after
withdrawals, which is represented by W−

t and W+
t respectively, satisfies

W−
0 = w0,

W+
0 = max(W−

0 − αW
−
0 −M, 0),

W−
t = RtW

+
t−1; t = 1, 2, ...,Kx,

W+
t = max(W−

t − αW
−
t −M − gt −HBx

t − SBx
t , 0); t = 1, 2, ...,Kx − 1,

W+
Kx

= max(gKx +HBKx + SBx
Kx
,W−

Kx
).

(4)

Now the fair value under an equivalent martingale measure Q is expressed as

EQ(

Kx∑
t=1

gt + SBt
x +HBt

x

β(t)
) + EQ(

max(0,W−
Kx
− (gKx + SBx

Kx
+HBKx

x))

β(Kx)
), (5)

where β(t) is a risk-less asset that is known as the money market account and β(0) = 1. In next section, we
evaluate proposed product and find the fair value of it.
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Table 1: The actuarial values of the product using Monte Carlo method.
Entry age 60 65 70 75

Fair value 332407.7 338223.6 346139.9 348427.8

3 Numerical Results

This section presents the numerical results to estimating the fair value of the proposed product. Assume
that fixed daily payment for hospitalization (bt) and total limited hospitalization days (L) are 1000 and
10 respectively. Moreover, assume that fixed management fees (M), guaranteed fees (α), c, inflation rate
(π) and withdrawal benefits (βt) are 300, 0.008, 6%, 5% and 2% respectively. As defined in the previous
section, Tt

x follows a Poisson-Poisson distribution with assuming 0.3 and 12.3 for primary and secondary
time-varying intensity respectively. Mean and standard deviation of the invested mutual fund at time t
under GBM process are 0.04 and 0.16 respectively and

µx+t
ij = Aij +Bijexp {Cij(x− 68.5 + t)}+Dij(x+ t);∀65 ≤ x+ t ≤ 120, (6)

where

A =


0 −0.0322 0.0096 −0.0234

1.0400 0 −0.3380 0.0294
0.1740 0.5450 0 0.1850

0 0 0 0

 , B =


0 0.0519 0.0021 0
0 0 0 0
0 0 0 0.0056
0 0 0 0

 , (7)

C =


0 0.0435 0.1741 0
0 0 0 0
0 0 0 0.1330
0 0 0 0

 , D =


0 0 0 0.004

−0.0113 0 0.0083 −0.0002
−0.0015 −0.0047 0 0

0 0 0 0

 .
Table 1 is presented the actuarial value of the product. It can be seen that the fair value of tis product has
been increased by age, because older insured are more likely to use healthcare and hospitalize benefits than
younger people.

Hospitalization days, withdrawal benefits, inflation rate and coefficient of healthcare costs are important
factors to evaluating the product. Since increasing the value of them directly increase the benefits (or
annuity) that paid to policyholder, therefore we expected as those increase the price of the product. Figure
2 shows the impacts of these factors on fair value. As we expected, figure 2 shows that the fair value of the
product impacted by the value of the hospitalization days, withdrawal benefits, inflation rate and coefficient
of healthcare costs, directly.

4 Conclusion

In this paper, we analytically introduce a new health product and evaluate it. An x age policyholder pays w0
at the beginning of the contract and receives limited hospitalization costs, healthcare costs and withdrawal
benefits. Finally, this product expires either the policyholder dies or his/her account value reaches to
zero. We believe that this product includes the benefits of guaranteed income streams and LCA for the
policyholder and is more attractive for policyholders.
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Mean Field Games in Finance

Erfan Salavati1

Amirkabir University of Technology, Tehran, Iran

Abstract

The modern mathematical finance starts with the idea of arbitrage pricing. The origin of this idea
goes back to the works of Arrow and Debreu on general equilibrium of markets with a representative
agent.

Since then, mathematical finance has been mainly concerned with the derivatives pricing, portfolio
optimization and risk quantification. These problems, although interesting from a mathematical point of
view, has lost their connection to micro-economic foundation of mathematical finance, and there has not
been much studies on the equilibrium of financial markets.

In recent years, the new emerging topic of Mean Field Games (MFG) has created proper framework
for the study of equilibrium in financial markets.

MFG is a model for strategic decision making of N agents when N is a large number. Each agent has
a set of actions A. All agents are utility maximizing with a utility function J(αi, ᾱ) where αi is the ith
agent’s action and ᾱ is an overall average of the actions of the other agents. Hence the average ᾱ is the
factor that makes the interaction of the agents. The main question of interest in MFG is finding Nash
equilibrium of this strategic situation when N → ∞.

MFG has been successfully applied to several problems in finance such as Modelling the Bank Runs,
Systemic Risk, Price Impact and Limit Order Books.

In this talk we study a limit order market consisting of inhomogeneous agents and show that how the
Nash equilibrium gives rise to a Forward-Backward Stochastic Differential Equation (FBSDE) and discuss
some of the consequences.

Keywords: Mean Field Game, Differential Game, Limit Order Market

AMS Mathematical Subject Classification [2018]: 91A13, 91A23, 91G80, 93E20
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Abstract 
 

This paper examines if the predictability of factors’ premia can improve the performance of portfolio 
optimization techniques aim in optimal investing in these factors. We apply different methods of optimization to 
the well-known factors used in asset pricing models, including market factor, SMB, HML, RMW, CMA and 
momentum while trying to predict their premiums using different approaches of predictability in order to achieve 
superior investment performance, compared to when using their historical means as their predictions. We used 
different linear and non-linear methods to predict factor premiums in various time frames. We found that using 
predictability of factor premiums can improve the investment performance in factors and this improvement increase 
as we widen the time frame of the predictions. 

 
Keywords: Factor Investing, Predictability, Factor Premiums, Non-linear Models 

 
Mathematics Subject Classification [2018]:    

 
 
 
 
1 Introduction 
 
Factor investing is a new approach emerged in recent years which introduce new asset classes based on risk factors 
developed in multifactor asset pricing models as new assets for investing. The main idea stems from asset pricing 
literature which introduce new systematic risk factors like size, value and momentum in the form of hedging 
portfolios which capture part of risk premia not captured by traditional market risk premium. The real investment in 
these factors can be done through investing in a representative index or mutual funds formed based on the above 
mentioned risk attributes.  
Like other assets, portfolio optimization techniques like the mean-variance framework of Markowitz (1952) can be 
used to determine optimal weights for investing in these factors. But as Demiguel et al (2009) among many others 
have shown the main obstacle for implementing these techniques is finding a good estimate for expected return of 
the assets. One the other hand, there are a vast literature on predictability of market factor, but the predictability of 
other factors’ premia has been rarely studied in the literature.  
Our first motivation in this paper is to examine predictability of factor risk premia like size, value, momentum, 
investment, and profitability which are the most prominent factors in asset pricing models and can be used in factor 
investing context. The second motivation is to test if these evidence of predictability can improve the out-of-sample 
performance of portfolio optimization techniques compare to methods that just use historical average as the expected 
return. In coming sections, we explain various methods based on predictive regressions we used to examine and 
improve the predictability of factors’ premia, the various predictive variables we used, and also various optimization 
techniques we employed to test economic significance of the existing predictability evidence.   
 

2 Method 

2.1. Predictability of factor premiums 
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To examine predictability, data starts from July 1963 to March 2018 which consists of 657 months. We use a rolling 
window approach to estimate and then to forecast one-step-ahead premia. The rolling window is 240 months for all 
methods. The factors used are Market factor, SMB, HML, RMW, CMA and momentum. The first 5 factors are Fama-
French (2015) factors and Carhart (1997) momentum factor. 
To investigate the improvement of investment performance by using factors’ predictability we apply predictions on 
time frames of monthly, annually and 2-yearly. In this way the return calculation is always on monthly data but in 
the case of annual and 2-yearly, first we use annual and 2-yearly predictions respectively to calculate weights and 
then we calculate the return of the portfolio on monthly returns. 
In this paper factor premiums are predicted using a range of linear and non-linear models. Methods are as follows: 
 
2.1.1. Multivariate simple regression: 

 

𝐸(𝑓𝑗,𝑡+1) = 𝑎̂𝑓 + ∑ 𝑎̂𝑘

3

𝑘=1

𝑍𝑘,𝑡 + ∑ 𝑎̂𝑙

5

𝑙=1

𝐶𝑙,𝑡                                           (1) 

 
In this regression we use K=3 macro-economic state variables including risk free rate, GDP growth and output gap 
and L=5 stock market state variables including term spread, default spread, dividend to price ratio, volatility and 
trend to predict factor premiums. 
 
2.1.2. Multivariate threshold regression: 

 
In this method the same variables as the previous method are used, but here we use term spread as a threshold to 
divide the sample into two sub-sample and to estimate two different regressions in different states of economy 
determined by the term spread as a proxy for economy states. 
 
2.1.3. Combination of univariate regressions 

 
This approach employs eight separate univariate regressions to predict each factor premium and then combine these 
forecasts with an equally weighted average of all forecasts.  
 
2.1.4. Combination of threshold univariate regressions 

 
This method is the same as the previous method in all aspects except that here we use the univariate threshold 
regressions in which the threshold variable is the same variable used in the univariate regression. So again eight 
forecast are estimated for each factors and then they are combined with an equally weighted average. 
 
2.1.5. Combination of threshold univariate regressions with positive forecast constraint 

 
In this method the positive forecast constraint of Campbell and Thompson (2007) is use in threshold regressions of 
previous method in order to achieve more accurate and reasonable forecasts. 
 
2.2. Optimization techniques 

 
This paper investigate whether using predictability improves the performance of various factor investing techniques. 
we examine the performance of a couple of common optimization models. Models used in this paper are as follows: 
 
2.2.1. Mean-variance optimization, an out-of-sample approach (𝑴̂𝑽̂) 

 
This approach is the well-known mean variance optimal portfolio (Markowitz, 1952) in which the weights of optimal 
portfolio is calculated as follows: 
 

∑ 𝜇𝑡
−1
𝑡

|1𝑁
′ ∑ 𝜇𝑡|−1

𝑡

                                             (2)  

 
In which ∑𝑡 is the covariance matrix of assets and µ𝑡 is the vector of expected return of assets. In this approach both 
mean and covariance matrix are estimated from the sample data so they may be estimated with error. Once the weights 
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are estimated we can calculate the return of the portfolio for the next period and this process will continue till the 
returns are calculated for all periods. 
 

2.2.2. Mean-variance optimization, an out-of-sample approach with constraint on weights (𝑴̂𝑽̂𝒄) 

This is the same as 𝑀̂𝑉̂ explained above except for that, with this method we seek to limit weights to positive numbers 
or in the other word, no short-sell is allowed on assets. 
 
2.2.3. Mean variance optimization, a semi out-of-sample approach (𝑴̂𝑽) 

 
In order to purify the effect of mean estimation on the performance of portfolio, we can use known covariance matrix 
instead of estimating it out-of-sample hence eliminating the effect of probable covariance matrix estimation error. In 
this approach the mean is estimated from the sample data but the covariance matrix is the known covariance matrix. 
 
 

2.2.4. Mean variance optimization, a semi out-of-sample approach with constraint on weights (𝑴̂𝑽𝒄) 

 
This is the same as 𝑀̂𝑉 explained above except for that, with this method we seek to limit weights to positive numbers 
or in the other word, no short-sell is allowed on assets. 
 

2.2.5. Volatility timing, an out-of-sample approach (𝑴̂𝑽𝒐𝒍̂ ) 

 

This is a version of the class of strategies introduced by Kirby and Ostdiek (2012) in which the weight of each asset 
is the inverse of its standard deviation and the weights are summed to one, as in the formula: 
 

𝜎𝑖,𝑡
−1

∑ 𝜎𝑖,𝑡
−1𝑁

𝑗=1

                                             (3) 

 

2.2.6. Volatility timing, a semi out-of-sample approach (𝑴̂𝑽𝒐𝒍) 
 

In order to purify the effect of mean estimation on the performance of portfolio, we can use known standard deviation 
instead of estimating it out-of-sample hence eliminating the effect of probable standard deviation estimation error. In 
this approach the mean is estimated from the sample data but the standard deviation is the known standard deviation. 
 

2.2.7. Variance timing, an out-of-sample approach (𝑴̂𝑽𝒂𝒓̂) 

 

This is very similar to volatility timing, but in this approach the variance is used instead of standard deviation to 
determine the weights. 
 

2.2.8. Variance timing, a semi out-of-sample approach (𝑴̂𝑽𝒂𝒓) 

 

In order to purify the effect of mean estimation on the performance of portfolio, we can use known variance instead 
of estimating it out-of-sample hence eliminating the effect of probable variance estimation error. In this approach the 
mean is estimated from the sample data but the variance is the known variance. 
 

3   Empirical Results 
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Table 1 - Sharpe ratios for empirical data

Monthly Hostorical Multivariate Multi_threshold univariate-

combination

univariate-

threshold-

combination

univariate-

threshold-

posForecast-

combination

0.3019 0.0197 0.0481 0.1330 0.0564 0.34883*

p-value 0.7040 1.0000 1.0000 0.9999 0.9999 0.1694
0.32757* 0.0505 0.0756 0.1794 0.2657 0.35146*

p-value 0.3455 1.0000 0.9998 0.9987 0.8518 0.1356
0.2988 0.2800 0.2461 0.3769* 0.32972* 0.33707*

p-value 0.7506 0.7744 0.9397 0.2148 0.3658 0.2625
0.33* 0.2441 0.2341 0.38031* 0.32974* 0.34519*

p-value 0.2982 0.9471 0.9664 0.1808 0.3567 0.1629
0.2375 -0.0532 0.0771 0.1262 -0.0481 0.2424

p-value 0.9984 1.0000 0.9996 1.0000 1.0000 0.9792
0.2494 -0.0063 0.0083 0.0749 0.0629 0.2494

p-value 0.9952 1.0000 1.0000 1.0000 0.9999 0.9658
0.2203 -0.0119 0.0190 -0.0428 -0.0223 0.2376

p-value 0.9991 1.0000 1.0000 1.0000 1.0000 0.9886
0.2376 -0.0046 0.0948 0.0877 -0.0489 0.2569

p-value 0.9948 1.0000 0.9995 1.0000 1.0000 0.9586
This table shows the sharpe ratio of different optimization methods and different 
approaches of factor predictability and their p-values compared to 1/N strategy. If Sharpe 
of each method is more than historical Sharpe ratio, it is bolded and if Sharpe is more than 
Sharpe ratio of 1/N strategy, it has a star. Sharpe ration of 1/N strategy is 0.3186.

Table 2 - Sharpe ratios for empirical data

Annual Hostorical Multivariate Multi_thresho

ld

univariate-

combination

univariate-

threshold-

combination

univariate-

threshold-

posForecast-

combination

0.3044 0.0782 0.0091 0.44057* 0.42763* 0.43426*

p-value 0.6524 0.9998 1.0000 0.0375 0.0249 0.0004
0.33268* 0.0098 -0.0196 0.36934* 0.47368* 0.45661*

p-value 0.2430 1.0000 1.0000 0.3573 0.0018 0.0000
0.3016 0.2879 0.35006* 0.50639* 0.45649* 0.41492*

p-value 0.6945 0.7442 0.2186 0.0000 0.0001 0.0014
0.33601* 0.32238* 0.3893* 0.49207* 0.4683* 0.4382*

p-value 0.1878 0.4493 0.0382 0.0000 0.0000 0.0000
0.2361 0.0186 0.0901 0.0262 0.2004 0.36369*

p-value 0.9981 1.0000 0.9994 1.0000 0.9654 0.1005
0.2481 -0.0309 0.0399 0.0962 0.0035 0.37534*

p-value 0.9943 1.0000 1.0000 1.0000 1.0000 0.0544
0.2220 0.1032 -0.0337 0.0668 0.2453 0.36022*

p-value 0.9985 0.9991 1.0000 1.0000 0.8601 0.1166
0.2393 0.0012 0.0476 -0.0124 0.33398* 0.37907*

p-value 0.9920 1.0000 1.0000 1.0000 0.3887 0.0440
This table shows the sharpe ratio of different optimization methods and different 
approaches of factor predictability and their p-values compared to 1/N strategy. If 
Sharpe of each method is more than historical Sharpe ratio, it is bolded and if Sharpe is 
more than Sharpe ratio of 1/N strategy, it has a star. Sharpe ration of 1/N strategy is 
0.3167.
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As is shown in table 1 most of the Sharpe ratios are worse than 1/N strategy in all forecasting method except for 
univariate-threshold-posForecast-combination which is better than both the 1/N and historical methods in all 
approaches of optimization. This method of forecasting is best helping the investment performance. Generally 
univariate methods have better performance than multivariate results, but the increase in Sharpe ratios in 
univariate-combination and univariate-threshold-combination are marginal, so that only 2 optimization approach 
can result in a higher than 1/N Sharpe ratio. 
However when we widen the time-frame of the predictability (table 2 & 3) the results become stronger in 
confirming the effectiveness of predictability, specially in univariate methods, on investment performance of the 
optimized portfolio. So that in univariate-threshold-combination and univariate-threshold-posForecast-combination 
methods, all optimizations approaches result in much better Sharpe ratios than both 1/N and historical methods. 
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Table 3 - Sharpe ratios for empirical data

2Year Hostorical Multivariate Multi_thresho

ld

univariate-

combination

univariate-

threshold-

combination

univariate-

threshold-

posForecast-

combination

0.3011 0.0974 0.2182 0.46481* 0.45566* 0.41052*

p-value 0.7198 0.9996 0.9402 0.0049 0.0011 0.0059
0.33261* 0.1145 0.0564 -0.0277 0.48976* 0.44843*

p-value 0.2792 0.9990 0.9999 1.0000 0.0001 0.0000
0.2990 0.35798* 0.38717* 0.4654* 0.44109* 0.39914*

p-value 0.7501 0.1703 0.0507 0.0005 0.0007 0.0111
0.33573* 0.38837* 0.41355* 0.47492* 0.4786* 0.4358*

p-value 0.2285 0.0363 0.0083 0.0000 0.0000 0.0000
0.2354 0.0643 0.0173 -0.0008 0.30847* 0.36167*

p-value 0.9984 0.9998 1.0000 1.0000 0.5851 0.1148
0.2475 0.0773 0.0567 -0.0253 0.33117* 0.37135*

p-value 0.9953 0.9995 0.9999 1.0000 0.4096 0.0702
0.2229 -0.0544 0.0568 0.0540 0.35508* 0.3551*

p-value 0.9984 1.0000 0.9999 1.0000 0.2324 0.1598
0.2393 -0.0700 0.0502 -0.0384 0.36038* 0.36684*

p-value 0.9921 1.0000 0.9999 1.0000 0.2135 0.0977
This table shows the sharpe ratio of different optimization methods and different 
approaches of factor predictability and their p-values compared to 1/N strategy.
If Sharpe of each method is more than historical Sharpe ratio, it is bolded and if Sharpe 
is more than Sharpe ratio of 1/N strategy, it has a star. Sharpe ration of 1/N strategy is 
0.3194.

118



Socio-economic Differentiation in Experienced Mortality Modelling and
its Pricing Implications

Pintao Lyu
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Ahmad Salahnejhad Ghalehjooghi1

Risk Managment Dept., Nationale-Nederlanden, Rotterdam, The Netherlands

Abstract

In recent years, increasing availability and quality of individual-level data enables the life insurers to
render fair and flexible pricing based on the personal socioeconomic attributes. Yet, the current pricing of
many insurers is based on setting assumptions for the experience factor of the portfolio-specific mortality
rates over general population mortality rates. In this experience framework, it’s not straightforward to
price a personal attribute that is available in the portfolio but not available in the general population. To
fill in the blanks, our study uses regression models to account for the personal attributes and constructs
corresponding differentiated experience factors, which could be easily embedded in current practice. To
address the different uncertainty level of the differentiated experienced mortality, we employ the risk-
margin pricing and examine how the differentiated mortality can be reflected in the price. We use the
salary information as an example of socio-economic attributes and provide the price of a pure endowment
contract for a cohort without/with differentiation. We find that the price differentiation is significant
for different salary classes. Also as an example in price calculation, for 40 years old male cohort, salary
differentiation can result in around 7% discount for the low salary class and 7.9% surcharge for the high
salary class.

Keywords: Differentiation, Experience factor, Socio-economic, Experienced mortality, Pricing, Time-
consistent, , Risk-margin, EIOPA.
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Examination of reinforcement learning method for hedging

Hirbod Assa
1

Institute for financial and actuarial mathematics

University of Liverpool, UK

Abstract

Machine learning (ML) has become one of the many useful tools that is used in the field of quantitative
finance. As this area of research is still young, there are many questions that need to be answered. That
essentially include the comparison of the existing techniques with the ones that is suggested by new
ML methods. In this talk we are examining the usefulness of the Deep Reinforcement Learning (DRL),
comparing it with the delta hedging as a benchmark. Specifically, we use Deep Deterministic Policy
Gradient (DDPG) method and see how this method can converge to a correct solution in a Black-Scholes
framework.

Keywords: Hedging, Reinforcement learning, Delta hedging
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Applying Islamic Repo in monetary policy

Amir hamooni1

Mohsen yavari

Abstract

Short-term interest rate can be changed by using Repo whereby calculating duration and convexity
of debt security in market and required price change to achieve target rate. r is a change in short-term
interest rate.

∆r = rtarget − rcurrent

Required price change for modification of YTM calculate by securities duration and calculated duration
is deferent based on Repo type.

−Dk∆rk + 0.5∆rk2Ck = ∆pk∆pk

Duration formula for Repo seller who buy security with Repo proceeds is as following:

Dposition = Dbonds −Drepo

Islamic Repo consist of a call option that hand on by buyer to the seller and a put option, which
transfer by seller to the buyer. Option in contract will change calculation related to vulnerability position
of each side towards interest rate change. Exercising option by central bank is not based on profit, arising
from exercising option, but it is based on extent of interest rate convergence.

Figure 1
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Mapping Capital Requirements to Bank Lending Spreads:
The Role of Performance Measures

Ali Golbabaei1

University of Isfahan, Isfahan, Iran

Mahmoud Botshekan

University of Isfahan, Isfahan, Iran

Abstract

To meet the capital requirements demanded by Basel II and III accords, banks have two main options;
namely increasing capital or lowering risk weighted assets. The increasing capital is generally considered
as the first option by banks, but as capital is a more expensive source of financing, it causes banks perfor-
mance measures to deteriorate. One of the main options for a bank to recover its performance measure is
to increase lending spreads. King (2010) among others uses return on equity as a performance measure
to study this relationship. This study highlights the role of the performance measure in bank decision
and extends the model proposed by previous studies to map how increase in the capital ratio impacts
on return on equity (ROE) and economic value added (EVA) and how the choice of the performance
measures results in different decisions for banks. Using data of Royal Bank of Canada as a case study, the
results confirm the conceptual advantages of EVA against ROE as a performance measure and we conclude
that EVA can help banks to make better and less expensive decision in the balance sheet management
like lending spreads changes. By adding NSFR as liquidity requirement proposed under Basel III to the
requirements, the results also confirm the superiority of EVA against ROE. Finally we propose EVA per
capital as a more comprehensive measure in banking decisions that also consider valuation considerations
for banks.

Keywords: Banks, Basel regulations, Economic value added, Lending spreads

Mathematics Subject Classification [2018]: G21, G28, E51

1 Introduction

The lack of ability in absorbing major on and off-balance sheet risks, as well as deficiencies to consider
derivative related exposures during financial crisis resulted in the failures and losses of so many banks. So,
in response to these shortcomings, the Basel committee in December 2010 completed a number of critical
reforms to the Basel II framework which resulted in new accord named Basel III. The new version introduced
new requirements on the regulatory capital, the liquidity risk management and the leverage ratio and banks
had to improve their capital ratio and fulfill other requirements up to 2019 [2]. To meet the more restricted
capital requirements, banks have two main options: 1- increasing capital 2- lowering risk weighted assets
(RWA) [1]. Although increasing capital is generally considered a good deleveraging strategy by regulators,
but it results in the bank performance measures to deteriorate. The other option namely shrinking RWA
by scaling down loan portfolio (selling assets) or replacing riskier (higher-weighted) loans with safer ones
[3] has potentially adverse effects on real economy if many banks simultaneously engage in cutting lending
[4]. Cohen and Scatigna (2016) also show that retained earnings (as an internal source to increase capital)
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2 Mahmoud Botshekan, Ali Golbabaei

account for the bulk of capital ratio changes, while risk weighted assets reduction plays a lesser role and on
average banks tend to increase their lending activities. Therefore banks usually choose to increase capital
to meet the Basel requirements.

As capital is a more expensive source of financing, it causes banks performance measures to deteriorate
and one of the main options for banks to recover their performance measure is to increase lending spread.
King (2010) among others uses return on equity (ROE) as a performance measure to study this relationship,
but ROE does not consider the cost of financing that can play an important role in financing decisions.
A more comprehensive measure is economic value added (EVA) that also consider the cost of financing,
especially if we consider that deleveraging banks can reduce the cost of equity financing. Following the model
proposed by king (2010) and using accounting relationship, this study uses a method to map the impact
of higher capital and liquidity requirements on bank’s lending spreads comparing these two performance
measures, namely, ROE and EVA. We show that using different performance measures results in different
changes in lending spreads2 and using EVA leads to lower lending spread increase. Furthermore we show
EVA per Capital can be better performance measure against other traditional measures because it also
consider the shareholders’ wealth and help banks to make better and less expensive decisions (lending
spreads changes) about the balance sheet management.

2 Methodology

In this study, we assume that the bank chooses a targeted capital ratio each year to meet higher requirements
required by Basel accords. The total capital ratio (TCR) can be calculated based on the following formula:

TCR =
E

RWA
(1)

This formula is divided into two parts: 1- Equity capital (E) 2- The risk weighted assets (RWA). Banks
can increase the capital ratio either by rising capital or lowering RWA. As mentioned, we assume that the
bank fulfill higher capital ratio by increasing equity and the size and composition of the balance sheet (Risk
weighted assets) remain unchanged. In this case the capital ratio changes can addressed as:

∆TCRt+1 =
∆Et+1

RWAt+1
(2)

By resolving equation (2) for Et+1, we have:

Et+1 = Et + ∆TCRt+1 ×RWAt+1 (3)

Et+1 shows the new equity level needed to meet higher capital ratio. To hold the size of the balance
sheet constant, the increase in shareholders’ equity can replaced by decreasing in debt:

∆equity = −∆debt (4)

or

∆TCRt+1 ×RWAt+1 = −∆debtt+1 (5)

Because debt is substituted with more expensive financing source, namely the equity, increasing the
capital ratio by equity, we expect that performance measures like ROE and EVA are reduced. So, the bank
needs to raise its landing spreads (among other measures it could take) to recover its performance measures.
King (2010) examines the impact of higher capital and liquidity requirement on lending spreads using ROE
as a main performance measure for banks. Following model proposed by king (2010), this survey promotes
this model and introduces new model based on EVA to show that banks can use EVA as a main performance
measure and mangers can consider EVA in decision making.

2The lending spread is difference between the interest rate charged on loans and the cost of debts [5].
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2.1 Mapping higher capital ratio and EVA to lending spreads

Economic value added is a common measure of shareholder value creation. The EVA is a value created by
a firm on its current investment and calculated by difference between net operating profits after taxes and
the cost of capital [10]. In fact EVA measures if the managers can generate extra values with respect to cost
of financing. The formula for calculating EVA is as following:

EV Acompany = NOPAT − (WACC × capital) (6)

Where NOPAT is net operating profit after tax, WACC is weighted average cost of capital and Capital
is the sum of debt and shareholder’s equity. Comparing to the other performance measures like return on
equity (ROA) and return on assets (ROA), the measure is considered as a more comprehensive measure as
it also consider the cost of equity3.

Economic value added is also a tool that banks can use it for measuring their financial performance. But
Banks activities are different from activities of other non-financial institutions. One important difference
between financial institution and other firms is debt. For non-financial institutions, debt is an important
part of financing and therefore in calculation of WACC, Interest expenses must be included. But the liability
side of the bank’s balance sheet is a part of the business operations of the bank and it is not a financial source
[7]. So, the term debt for banks is different with that for firms. In analogy, Interest expenses for banks, on
this view is the equivalent of the cost of goods sold for firms. Therefore, in calculation of EVA for banks, it
must be excluded in WACC4. Consequently, the following economic value added equation (economic profit
or equity approach EVA) in equity level is suggested for banks5:

EV Aequity approach = net income− (CE × equity) (7)

Consequently, Substituting (3) into (7) yields the complete model:

EV A = (NetIntIncomet+1 + NonIntIncomet+1 −OpExpt+1) × (1 − tax) − [CE × (Et + ∆TCRt+1 ×RWAt+1)]
(8)

Where NetIntIncome is the net interest income, NonIntIncome is the non-interest income, OpExp is the op-
erating expenses and CE is the cost of equity. Using the following equation, the net interest income is calculated
as:

NetIntIncomet+1 = [(loant+1 × a) + (OIntIncomet+1)] − [IntExpt+1] (9)

Where a is the lending rate, OIntIncome is the other interest income and IntExp is the interest expenses. Using
equation (8) and (9) simultaneously, we can back out the lending rate (a) for each targeted EVA. The same line of
reasoning can be used to back out the lending spread needed if the ROE used as the performance measure. In this
study we assume bank wants to keep previous year performance measure (EVA or ROE) and simultaneously increase
its capital ratio. So the question is how the choice of the performance measure can affect the lending rate6 required by
the bank to prevent its performance to deteriorate. This could be highly important for the bank as in a competitive
business conditions, the less lending rate can consider as a competitive advantage for the bank.

3Goldberg (1999) expresses that EVA is different from other traditional measures (like ROE) mainly by taking into consid-
eration the cost of equity. Fiordelisi (2007) states that profit efficiency measures cannot be the most relevant and important
performance measure reflecting the bank strategy. Because they don’t explicitly take risk or the opportunity cost of capital in
consideration. Radic (2015) believes that the term profitability (usually calculated by ROA, ROE) is insufficient to appraise
bank stability since it does not consider the level of risk taken by banks. High profitability can be interpreted as signal of bank
soundness or high risk taking.

4To calculate bank’s cost of capital, Maccario et al. (2002) and Franco Fiordelisi (2007), focus on the cost of equity or
shareholders’ expected rate of return. Since they do not include deposits and other liabilities of the bank in the capital.

5Another performance measure is ROE, which is the ratio of net income to shareholder’s equity.
6In this survey, we just change the lending rate to raise the lending spreads and assume the deposit rate is constant.
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3 Main results

In this section we try to answer the question raised in pervious section using the data of Royal bank of Canada during
2016 to 2018. Using data taken from the end of each year (for example the balance sheet, income statement, capital
ratio, ROE and EVA), we increase the capital ratio by 1 percentage point for the next year. To prevent previous year
performance measures (EVA or ROE) from falling, all else being equal, we raise only lending spreads in response to
higher capital ratio. Panel A shows that by the use of information in the end of 2018, 1 percentage point (pp) increase
in the capital ratio can reduce ROE from 16 to 15 percent. To recover ROE, the banks needs to raise lending spreads
by 10.82 basis point (bp) for the coming year. On the other hand, when we use EVA as a performance measure, the
representative bank needs to raise lending spreads by 6.47 bp (Panel B) to recover EVA. We also consider another
advantage of EVA, considering varying cost of equity, in response to the higher capital requirements. Panel C, shows
that 1 percentage point increase in the capital ratio can reduce the cost of equity from 8.5 to 8.2 percent. In this
state, the banks needs to raise only 0.25 bp to recover EVA. The results are also the same in other years.

Table 1: The effect of 1% increase in the capital ratio on lending spreads
Panel A: ROE

ROE after 1% increase (%) Lending spread (BP) ROE after lending spreads changes cost of equity (%)
2018 15 10.82 16
2017 15 19.73 16
2016 14.7 10.70 15.4

Panel B: EVA (Fixed cost of equity)
EVA after 1% increase (million dollar) Lending spread (BP) EVA after lending spreads changes cost of equity (%)

2018 5595 6.47 5881 8.5
2017 4940 7.74 5262 8.5
2016 4035 6.49 4358 9

Panel C: EVA (Varying cost of equity)
EVA after 1% increase (million dollar) Lending spread (BP) EVA after lending spreads changes cost of equity (%)

2018 5870 0.25 5881 8.2
2017 5229 0.78 5262 8.1
2016 4331 0.54 4358 8.6

The results are also robust when we add NSFR as liquidity requirement and EVA per capital as a more compre-
hensive measure in banking decisions. Because of restriction in space, the results will be presented upon request.
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An investigation of demand for agricultural commodities in the
presence of future market
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Abstract
The purpose of this paper is threefold. First, by assuming that all investors have the possibility of

storing goods, we introduced a continuous time speculative storage model that is based on a basic version
of a model developed in Deaton and Laroque (1992, 1995, 1996), which incorporates speculative storage
into the demand and supply, establishing the concept of stationary rational expectations equilibrium
(SREE). Second, we prove that the speculators expectation price obtained from an ODE solution and
converges to the market price (SREE). At the end, we stimate the model parameters values in the both
without storge case and with storage case, and we show that introduced model is significant by doing
(Log) likelihood ratio test. The model proposed in this paper outperforms the data.

Keywords: Stationary Rational Expectations Equilibrium (SREE), Speculative Storage, Likelihood
Ratio Test.
AMS Mathematical Subject Classification [2018]: 13D45, 39B42

1 Introduction

Commodities are a very different asset class from the more traditional classes of traded assets such as
equities and bonds. Commodities normally encompass physical goods such as oil, gas, electricity, metals,
agriculturals and live stock. The physical nature of commodities is perhaps one of their most defining
characteristics specifically because it plays an important role in the behavior of their prices in both the spot
and future markets. It is notable that trading with, as well as, presence in the future markets, cause that both
demander and supplier immune themselves against the risk of market variations. On the other hand such
strategy enables the commodition suppliers to speculate that demands throughout these markets, and take
appropriate action in due course. Accordingly , one strategy to be adapted is to have a good perception and
knowledge of the commodities demands and price variations, as well. Such strategy enables the commodities
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owners to decide, based upon the commodities demands, whether to sell their commodities at the present
time or in the future.
The storage models for commodity prices date back to [5], and were further developed by incorporating
rational expectations in [6] and [10]. [2, 3, 4] developed a partial equilibrium structural model of commodity
price determination and applied numerical methods to test and estimate the model parameters, confronting
for the first time the storage model with the documented behavior of actual prices. More recently, many
authors improved the storage model in order to better capture the statistical characteristics; see for instance
[12, 8, 11, 9, 15, 13] and [1].

2 Model

The aim of this section is to introduce the model base on a rational decision maker problem in the presence
of the future market. Let us assume the commodity is traded in a market where the speculation is possible
by transferring the purchasing of the good to the next period within some future contracts. Therefore, the
spot prices will be impacted by future prices in the following manner: either the producer sells the good at
market prices since it is high enough, or not and the producer will account for future market prices. Denoting
the market spot prices by pt and the demand by xt, one can consider the following rational decision making
dynamic ruling the market:

pt = max{P (xt), e
−rE(pt+1)}. (1)

Where Et denotes the expectation given the information at time t, r is the discount factor, and P (xt) is
the (inverse) demand function. Assa[1], he has introduced the continues time dynamics under the market
condition as follow:

It = xt − P−1(pt), (Budget Constraint)

xt+1 = (1− δ)It + zt+1, (Equilibrium : Demand = Supply )
(2)

where It, zt, xt, δ denote the inventory, harvest shock, amount-in-hand, depreciation rate and pt as (1),
respectively.
As one can see in (2) the harvest shock coefficient is fixed. While this seems to be a weak assumption, so
we addition the scale term to the market condition as follow:

It = xt − P−1(pt), (Budget Constraint)

xt+1 = (1− δ)It + xtzt+1, (Equilibrium : Demand = Supply )
(3)

Now, we use of the method which is introdused by Assa [1] to obtain a continuous version of the demand
process. If we combine the budget constraint with the equilibrium relation,we get the following

xt+1 = (1− δ)(xt − P−1(pt)) + xtzt+1, (4)

we can rewrite (4) as
xt+1 − xt = −δxt − (1− δ)P−1(pt) + xtzt+1, (5)

Assa[1], he has assumed that the demand is not affected by changing the framework from discrete time to
continuous time. The reason is that the demand function is given on a yearly basis, and not in continuous
time. So, with this assump, we have

dxt =
(
−δxt − (1− δ)P−1(pt)

)
dt+ xtd(mt+ σBt). (6)
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where, the parameter m represents the equilibrium or mean value supported by fundamentals, σ the degree
of volatility around it caused by shocks, and δ the rate by which these shocks dissipate and the variable
reverts towards the mean.

If we denote the discounted price process by p̃t = e−rtpt then we simply have

p̃t = max{e−rtP (xt),E(p̃t+1)}. (7)

Now we want to find a solution for this equation. In principle, there is no closed form solution for this price
dynamic however, with some changes and making some assumptions one can get a fair approximation of the
solution.
First of all consider the economy has only finite periods, say T . In that case the commodity producer needs
to sell everything at the market price as T . As a result, we have p̃T = e−rTP (xT ). From the construction of
p̃t one can see that it is nothing but the Snell envelop of the process zt = e−rtP (xt) with p̃T = e−rTP (xT ).
In order to study this process we consider then a continuous time version of the model by introducing a
continuous Snell envelope as follow

p̃t = sup
t≤τ≤T

E(zτ |Ft) = sup
t≤τ≤T

E(e−rτP (xτ )|Ft), (8)

where the supremum runs over the set of all stopping times. However, we need to make another assumption
in our economy, to solve the pricing process: we assume the prices are at the stady state. That means one
can assume the price process is independent from time and it is only a function of the state variable x0 = x:

p̃(x) = sup
t≤τ

E(zτ |Ft) = sup
t≤τ

E(e−rτp(xτ )|Ft), (9)

Now let us assume that P is simple linear market (inverse) demand function define as

P (x) = (b− ax)+ (10)

for some a, b > 0 (Fig. 1).
However, this problem can be solved in an optimal stopping time framework. First of all observe that

p̃(x) = sup
τ

E(e−rτ (b − axτ )+|Ft) where xt follows a geometric brownian motion. If the demand process

starts at x, i.e., x0 = x, and we denote V (x) = sup
τ

E(e−rτ (b− axτ )+|Ft) then by Thorem(11.2.1) in [14], it
is known that V must solve the following problem

LgV = rV, V (x) > P (x)
V (x) ⩾ (b− ax)+

(11)

Where Lg is as follow:

Lg =
(
(m− δ)xt − (1− δ)P−1(g(xt))

) ∂

∂x
+

1

2
σ2x2

∂2

∂x2
. (12)

This is the demand function of the good price in the presence of the future market.[see. Fig.(2)]

Remark 2.1. When the market get to equlibrium, the V (x) function Should be equal to the market price.
i.e. V (x) = f(x). Following (Deaton), such function f a stationary rational expectations equilibrium(SREE).
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Figure 1: Graph of (inverse) demand function

Figure 2: Prices with and without storage

Theorem 2.2. There is a unique SREE f in the class of non-negative continuous non-increasing func-
tions.Furthermore, let x∗ = sup{x : f(x) = P (x)}. Then,{

f(x) = b− ax when x ⩽ x∗

f(x) > b− ax when x > x∗
(13)

f is strictly decreasing whenever it is strictly positive.

3 Simulation of the theoretical model

In this section, to provide a better understanding of the proposed algorithm, we itemize a simple pseudo
code to show how to choose the function value of f and estimated values (m,σ, x∗). The algorithm runs as
follows:

1. Start by a initial values (f0 = P, a, b, δ,m, σ, r).
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2. Solving the ODE (14) on the 400 points with known initial conditions and receive the new V on the
every step, the sequence Vn converges to the SREE f .

So, let f0 = P , and x∗n = inf{x : LVnVn(x) > rVn(x)}, we should solve the following ODE:
LVn+1 = rVn+1, x > x∗n

Vn+1(x
∗
n) = P (x∗n)

V ′
n+1(x

∗
n) = P ′(x∗n)

(14)

in which LVn satisfies in (12). By utilizing the Algorithm, we have the following descritization:
Vi+2 =

(
2Ki∆x
σ2x2

i
+ 2
)
Vi+1 +

(
2(∆x)2

σ2x2
i
r − 2Ki∆x

σ2x2
i

+ 1
)
Vi

Vi∗ = P (xi∗)
Vi∗+1 = P (xi∗+1)

(15)

Where and Ki =
(
(m− δ)xi − (1− δ)P−1(f(xi))

)
, and i∗ = inf{i : LVold(xi∗) > rVold(xi∗)}.

4 Estimation parametes with simulated data and actual data

Duo to demand function heavily depend on the demand components of the market i.e. σ,m. But, due to
the Therefore, we estimate these parametes in two cases. The frst case we estimate those with simulated
data , the second with actual data.
A. Estimate with simulated data
We use simulated data in two cases of demand functions (Linear and Isoelastic) with some initial values.
Table 5 and Table 6 show the (Log) likelihood value and parameters estimates for various models (with and
without storage), respectively .

Table 5
Log Likelihood Values and Parameters Estimates For Linear Demand.

Without-Storage With-Storage
m 4.326 6.97
σ 0.5608 0.98
x∗ - 2.87

MLE -8.22647e+08 -1.438844e+04

Table 6
Log Likelihood Values and Parameters Estimates For Isoelastic Demand.

Without-Storage With-Storage
m 4.48 6.68
σ 1.64 2.013
x∗ - 16.82

MLE -7.1352e+0.6 -2.438844e+03

B. Estimate with actual data
The actual data used in this study come from the actual commodity data (Sugar, Rice, Wheat, Tea and
Soybeans Monthly Price - US Dollars per Kilogram from Oct 1917 to Oct 2018 deflated by the U.S). consumer
price index. We show the estimated parameters and the likelihood function value in Table 7 and Table 8,
for Linear demand and Table 9 and Table 10 for Isoelastic demand, respectivity.
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Table 7
Parameters Estimates with Actual Data For Linear Demand.

m mStorage σ σStorage x∗ x∗
Storage

Sugar 2.89 3.64 1.41 2.01 - 2.85
Rice 3.42 4.79 1.05 1.2 - 2.31
Tea 6.35 7.88 1.24 1.91 - 2.73

Wheat 5.01 5.94 1.64 1.99 - 2.51
Soybeans 3.71 4.98 1.53 1.98 - 2.67

Table 8
Log Likelihood Values For Linear Demand.

Without-Storage With-Storage
Sugar -3.2138e+06 -2.6657e+02
Rice -2.1524e+04 1.2234e+02
Tea -5.7418e+05 -2.6529e+03

Wheat -8.7102e+06 -1.5264e+02
Soybeans -3.9773e+04 -1.03149e+04

Table 9
Parameters Estimates with Actual Data For Isoelastic Demand.

m mStorage σ σStorage x∗ x∗
Storage

Sugar 3.33 3.89 1.02 1.95 - 1.3
Rice 3.12 4.86 1.001 1.16 - 1.24
Tea 6.87 7.91 1.11 1.88 - 2.1

Wheat 4.96 5.79 1.23 1.94 - 2.87
Soybeans 3.66 4.78 1.68 2.001 - 2.5

Table 10
Log Likelihood Values For Isoelastic Demand.

Without-Storage With-Storage
Sugar -2.15634e+03 -1.652824e+01
Rice -3.23181e+04 -1.141852e+02
Tea -7.54618e+05 -2.433696e+03

Wheat -9.24732e+04 -1.5216e+04
Soybeans -8.22647e+08 -1.43884e+04
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Abstract

The fundamental problem that presumably expanded alternative streams and schools in economics in
the course of reform and evolution of mainstream and orthodox economics was the consideration of facts
and roots of micro and macroeconomic phenomena, which are entirely influenced by humankind as its
central axis, and significantly affect social and economic environments as well as associated institutions and
institutional structures. However, the major concern in most studies, which is still poorly understood, is
to reflect the epistemological and methodological bases of modeling in the fields of humanities (in general)
and economics and insurance (in particular) that realistically constitute the set of studies conducted
conventionally and carries the technical innovations in the modeling within the same conventional streams.
In other words, the distinct aspects that arose from the application of new methods to modeling are entirely
based on the method substitution, and no to deepen the cognitive foundations in the fields of epistemology
and methodology, which have practically created no evolution in this course. This paper attempts to
provide knowledgeable and profound insight into the modeling by describing the evolutionary literature
in economics and explaining its theoretical aspects. The GMDH algorithm is ultimately presented as an
example of evolutionary approaches with a well-established background in economic studies

Keywords: evolutionary economics, evolution, evolutionary methods, modeling, GMDH algorithm

1 Introduction

ing a valid scientific apparent and causal model. Realistic scientists conclude that science is not aimed
at prediction, because the admission of this goal is equal to the concentration of technology and setting
cognition aside and restricting to the instrumental aspects of scientificThe analysis and evaluation of any
human consequence entail a precise and comprehensive understanding of the inherent characteristics and
dimensions as well as endogenous and exogenous factors, although it does not make all the cognitive aspects
clear to us. A principal problem while analyzing human phenomena is to recognize the roots of the sub-
ject under investigation. Such recognition must have two central components, including comprehensiveness
and methodology. Since human phenomena are multidimensional with several aspects of various kinds, its
cognitive analysis must, therefore, be based on a kind of subjective and inter-discipline comprehensiveness.
The second component, which is indeed a key to solve the problem, is adopting an optimal methodology
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that is well suited to the subject under investigation. Such a methodology manages problem analysis and
explanation, besides providing a way to find the cognitive origins of the subject. These two components
describe a kind of developmental and institutional approach that has been cited by many economic re-
searchers in recent decades as a noticeable way of identifying and explaining human phenomena (in general)
and economic phenomena (in particular). A prominent feature of the methodology of heterodox thought
streams, and particularly institutionalists, is the importance of cognitive studies while analyzing and ex-
plaining human phenomena. The cornerstone of the new institutional economics includes the conventional
neoclassical theory (i.e. methodological individualism) and the principle of utilitarianism. Any change in
the methodological foundations of an economist will affect his/her understanding of the facts and his con-
ceptualization of economic phenomena, and, strictly speaking, the foundations adopted in the field of the
methodology of interest is the origin for the plurality of methodologies and, hence, economic perceptions. On
the other hand, there is a need for a balance between ontological assumptions and methodological principles
to understand socio-economic realities so that, ontologically, the social reality is considered multi-layered
and evolving, and to avoid explaining the subject by a single layer. Theories must also cover the evolu-
tion of realities and not be permanently extracted by establish research. Therefore, numerous fundamental
principles need to be analyzed to develop a precise methodology. The first essential principle is realism and
the avoidance of abstract and subjective presuppositions, frequently without any dimension of the subject
facts. The second is the consideration of the plurality and diversity of the phenomenon of interest, which
necessitates the adoption of interdisciplinary approaches. Avoiding limited and dualistic attitudes and con-
centrating on the interactive relationship perceptions is the third principle resulting from the methodology
of human subjects (in general) and economic problems (in particular). The fourth fundamental principle
of the methodology is to prevent classifying into the framework of a particular theory. We have to think
beyond theoretical boundaries and limiting paradigms. This does not mean to excommunicate the valuable
theories of scholars and philosophers which all of them have been a light of path for their posterities and
means that the recognition is not a limited and static category, but is expanded, dynamic, and profound
which constantly calling humankind. The following is an overview of the evolutionary economics as well as
behavioral and laboratory economics that recently awarded the Nobel Prize. The evolutionary algorithm
GMDH is ultimately discussed as a prosperous method in the field of economic studies.

2 Evolutionary Economics

Evolutionary economists believe that the dynamic economy is constantly changing and in turmoil, not
always tending towards equilibrium. Creating and providing resources for those commodities involves many
processes that change with the advance of technology. Organizations that govern these processes and
production systems, as well as consumer behavior, must evolve as the process of production and procurement
changes.

3 Laboratory Economics

Laboratory economics is nowadays an accepted method for testing hypotheses and validating economic
models. The core of laboratory economics is game theory, and laboratory economics is an empirical frame-
work for running games and comparing scientific results with theoretical predictions. Laboratory economics
is used in a wide range of topics, including market mechanisms, evolutionary theory, the decision-making
process, financial economics, learning and many economic and social issues

4 behavioral economy

Behavioral economics is the knowledge that attempts to better describe and analyze our economic behaviors
and decisions by combining our economic knowledge and the gains of psychology knowledge, and in particular
cognitive psychology. The behavioral economics of the first relied heavily on evidence formed by experiments,
but recently behavioral economists have gone beyond experimentation and used the methods of economists
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(Camerre, Lunstein Mathew, 2004). Recently, field data has greatly helped behavioral economics. Many
articles have used techniques such as field tests, computer simulations, and even brain scans.

5 GMDH Algorithm

The consideration of technical and quantitative fields should concentrate on developing diverse, competing,
and collaborative perspectives to design, simulate, and extract patterns that are close to the realities of sys-
tem dynamics, besides analyzing and recognizing economic phenomena in terms of their behavioral nature
and inherent dynamics, all to predict similar future consequences. Evolutionary algorithms, neural networks,
and other intelligent methods have been surely able to propose integrated patterns (i.e. the application of
regression results as neural network inputs), which provide high explanatory and predictive capacity, besides
fixing some of the inherent limitations of conventional econometric methods. From a methodological per-
spective, the consideration of ontological aspects and stress on process explanation, following the existential
nature of the phenomenon under consideration and the principle of nonlinear dynamics, is a prominent
feature of the foregoing methods. Most of the phenomena we are practically encountering are nonlinear
in nature and the equation governing their performance is difficult to obtain. What we have in cash is a
large quantity of time-series data. Accordingly, the application of dynamic nonlinear systems in analyzing
economic time-series is of great importance in the more documented and realistic analysis and predictions.
Dynamic nonlinear systems exhibit a variety of behaviors that can be applied to justify many of the seem-
ingly random economic phenomena. As such, many attempts have been made to fit the time-series of
nonlinear dynamic functions
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Abstract 
 
Prediction and detection of customer churn in the insurance industry is a core research topic in recent years. 

Insurers need to know the reasons of customer churn to predict churners, which can be realized through the 

knowledge extracted from data using data mining techniques. Therefore, accurate recognition of factors influencing 

customer churn and well-known data mining methods can help researches to choose methods and variables. The 

main purposes of this research are to present the main factors of customer churn and review various data mining 

techniques when applied to customer churn prediction. Besides, we present the strengths and weakness points for 

churn prediction methods based on reviewing the published papers in this field. 
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1 Introduction 
Customer Relationship Management (CRM) in the insurance industry is concerned with the relation between the 

policyholders (as customers) and an insurance company (or insurer). CRM is a very broad discipline, it reaches 

from basic contact information to marketing strategies which leads to create superior value for the insurer and the 

policyholders. CRM can be viewed in four aspects which are: customer identification, customer attraction, 

customer development and customer retention (Ngai et al., 2009, Huigevoort, 2015).  

An example of customer identification is customer segmentation, e.g. based on gender. Customer attraction deals 

with marketing-related subjects such as direct marketing. An important element of customer development is the up-

selling sales technique. Finally, customer retention is the central concern of CRM, and is linked to loyalty programs 

and complaints management. Customer satisfaction, which refers to the difference in expectations of the customer 

and the perception of being satisfied, is the key element for retaining customers (Ngai et al., 2009, Huigevoort, 

2015). Customer retention is about exceeding customer expectations so that they become loyal to the brand. For 

retaining customers, we need to study and analyze the main reasons of customer churn. Customer churn is a big 

issue of the insurance industry. The churn means those customers who want to leave the policy in the near future. 

As an insurer, every policyholder retained is as successful and an indication of a better future view. 

Therefore, there is an essential need to predict those customers on behalf of some parameters to perform some 

suitable action to minimize their churn.  

Customer churn in the insurance industry has divided into three types:  
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• Involuntary churn: This occurs when policyholders fail to pay policy premiums and as a result, the insurer 

terminates the policy.  

• Inevitable churn: This occurs when policyholders die or migrate resulting in omitting customers from the 

market completely.  

• Voluntary churn: This occurs when policyholders prefer to switch to another insurer because of more 

value. 

In the meantime, how to predict and prevent the churn of customers, has received the attention of many insurers 

and researchers in this field.  

The main purposes of this research are presentation main factors of customer churn and review various data mining 

techniques when applied to customer churn prediction. Besides, we compare the attained methods based on their 

strengths and weakness points and finally, the papers that used data mining to detect customer churn are analyzed. 

The paper is organized as follows. Section 2 reviews the main variables that effecting customer churn in the 

insurance industry. Section 3 presents some data mining techniques which can be used to predict and estimate 

customer churn.  Finally, Section 4 concludes the paper. 

  

2 Variables Impacting the Customer Churn 
The main step in the data selection procedure to predict customer churn is to extract the variables which can impact 

customer churn. Therefore, we investigate papers that study these variables which the most important churning 

characteristics found in this research, based on Huigevoort (2015), Risselada et al. (2010), Gunther et al. (2014) and 

Almana et al. (2014), are presented in Table 1. It should be mentioned these variables are completed, duration our 

research.  

Table 1. Some variables that impact on customer churn 

Demographic-related 

 variables 
Insurer-related variables 

Product-related 

variants 

Identification number 

Age 

Gender 

Marital status 

Network attributes 

Segment selected by the company 

Educational level 

Income 

Customer satisfaction 

Employment status 

Occupation 

Number of complaints 

Reaction on marketing actions 

Number of declarations 

Outstanding charges 

Duration of current insurance contract 

Number of times subscribed 

Competitors with superior technology 

Type of contact (email, call, …) 

Premium 

Discount 

Payment method 

Type of insurance 

Product usage 

Brand credibility 

Switching barrier 

Interest rate 

Sum Insured 

Claim history 

Duration of current 

insurance contract 

The proportion of fee 

Number of policy 
 

 

Before performing the data mining procedure, we need to select data based on the main variables of churn cause 

and run pre-processing methods on these data. Some data set are incomplete, inconsistent and noisy, which need to 

improve or eliminate their problem before performing any data mining methods. The pre-processing part in data 

analysis is necessary to get high-quality data which leads to better data mining results. Data pre-processing involves 

data cleaning, data imputation, data integration, data transformation, and data reduction.  

3 Data Mining Techniques to Predict the Customer Churn 
There are different data mining techniques that can predict customer churn in insurance study. Generally, data 

mining divided into two categories: Predictive data mining and Descriptive data mining. In one hand, predictive 

data mining models are used to express system which can help to predict the performance of various variables. 

Therefore, producing a model that can estimate by using executive codes, i.e. ranking is the scope of predictive data 
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mining. On the other hand, descriptive data mining study new data and performance describe the behavioral 

patterns of variables based on available data set. Then, a comprehensive understanding of the current system by 

using its hidden patterns and internal relations of a data set is the purpose of descriptive data mining. 

In Table 2, we present some well-known data mining methods to predict and detect customer churn. It should be 

mentioned, these methods are completed in the paper. Besides, the performance of data mining methods in 

customer churn prediction is studied in this paper based on published articles in this field. 

 

Table 2. Brief Description of Data Mining Methods 

Data Mining Methods Brief Description 

Decision Trees 

− The most common method used in predicting and evaluating the classification of 

customer churn problems 

− Two steps: tree building and tree pruning 

− Classify and label records  

− Alter the tree until a leaf node is attained in the customer's dataset 

− Assign a customer record to churner or non-churner leaf node 

Logistic Regression 

− The response variable is binary: churn or non-churn 

− The remaining variables are mostly continuous in nature because of that logistic 

regression appeared to be the best choice 

− Calculate the probability of each client churn 

Clustering 

− Different types: K-Means Algorithm, fuzzy clustering, hierarchical clustering 

− Partition the customers into clusters and calculate churn rate for each cluster to attain 

different profiles 

Classification 

− The databases can be segmented into more homogeneous groups 

− Then the data of each group can be explored, analyzed and modeled. 

− Segmentation can be done using variables associated with risk factors, profits or 

behaviors. 

Neural Networks 

− Identify complex relationships within the data 

− Dependent Variable: Exit of the customers from the insurance company 

− The input layer of Network: factors influencing customer churn 

Support Vector 

Machine 

− Used for classification and regression analysis 

− Used to classify churners and non-churners 

− Construct hyper-planes in a multidimensional space to separate churn and non-churn 

customers 
References: Ngai et al. (2009), Huigevoort (2015) and Almana et al. (2014) 

 

 

To detect which churn prediction methods are widely used in the literature, a literature review is performed. The 

four most used techniques in the literature are logistic regression, decision tree, neural networks and support vector 

machines (Huigevoort, 2015), which the main results of comparing these techniques are as follows: 

− Models based on logistic regression have been attached with good results in the prediction and detection of 

customer churn. It is based on a supervised learning model, i.e., a data set of past observation is used to see 

future values of the explanatory and numerical targeted variables. 

− The logistic regression and neural network techniques showed the best performance when applied to pre-

processed data. Also, when the normality assumption of the data set is not held, logistic regression is less 

affected. 

− The neural network model is suitable with data which have non-linear behavior or noise component. Two 

disadvantages of this model are the difficult parameter choices and the difficult interpretation due to these 

complex relationships. 

− Decision trees are not suitable for complex and non-linear relationships between the attributes. 

4 Conclusion 
Market saturation, increasing the competitiveness of the insurance products and the higher attraction cost of new 

customers than retaining old customers are the main reasons for keeping customers in insurance companies. To 

attain this goal, it is necessary to identify factors influencing customer retention, which can be used for the 

139



 

                  A Survey on Data Mining Methods for Customer Churn Prediction in Insurance Industry 

 

 
 

detection of customer churn. There is probably a lot of research available in the field of data mining applications 

for customer churn detection, but it is still an active field of research to obtain more accurate solutions. In this 

paper, we present variables impacting customer churn which divided into three categories: demographic, insurer 

and product-related variables. Besides, a review of data mining techniques used for customer churn prediction in 

the insurance industry is studied. The most important data mining methods are neural network, decision tree, 

logistic regression, support vector machine, clustering, and classification. The review shows to find customer churn 

prediction depends on the objectives of decision-makers.  

The results can enable analyzing and predicting future behaviors by considering the dark and unknown dimensions 

of customer behavior and considering new approaches to preventing customer churn. Based on the results, the 

following are some suggestions: 

− Value-added services, discounts, and promotional activities to satisfy and loyalty customers, 

− Customer segmentation and understanding the needs of each group and forecasting future needs, 

− Training of insurance companies staff in marketing skills to provide effective services, 

− Importance of service quality, 

− Strengthen customer complaints handling system to gain customer satisfaction, 

− Direct and indirect surveys to identify customer expectations. 

− Organizational structure and human factors can affect customer retention. With the right organizational 

structure, more clients can be retained for longer in the insurance company. 
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Abstract
The uncertain theory offers firstly with liu2 in the year 2007. The variable on uncertain theory is

useful for modeling human uncertainty. we want to find the best weight for each environment such have
a Return and Volatility, in the portfolio. The return of variable is an uncertain variable, In More three
the person thinks the Return of i’th environment are uncertain variables with Expected value µi and
Volatility σ2

i , Then we use an exponential utility function of Return portfolio for find the best weight of
environments.

Keywords: environment portfolio, uncertain variable, utility function, uncertain optimization.
AMS Mathematical Subject Classification [2018]: 91G10, 03B30

1 Introduction

Some information and knowledge are usually represented by human language like “about 100km”, “middle
age”, and “big size”. How do we understand them? Perhaps some people think that they are subjective prob-
ability or they are fuzzy concepts. However, a lot of surveys showed that those imprecise quantities behave
neither like randomness nor like fuzziness. This fact provides a motivation to invent another mathematical
tool, namely uncertainty theory.

The uncertain variable is a special type of variable such that we relate to every event the probability
uncertain(near be .5). The person in exchange stock market usually according to the feeling, buy and sell
the stock. In this article, we want to use the Normal uncertain variable for Return of stock then use the
exponential utility function for the return of the portfolio. and As a result, find the best weight of the
environment for stocks.

1.1 Uncertain Measure

Let Ω be a nonempty set, and collection F are σ-algebra on all subset of Ω .

Definition 1.1. Uncertain measure µ is a function from F to [0, 1] which for each event A of F, The
µ(A) is indicates the belief degree that A will occur. In order to ensure that the number µ(A) has certain
mathematical properties, Liu[1] proposed the following four axioms:
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Axiom 1. (Normality Axiom) µ(F) = 1 for the universal set F.

Axiom 2. (Monotonicity Axiom) µ(A1) ≤ µ(A2) whenever A1 ⊆ A2.

Axiom 3. (Self-Duality Axiom) µ(A) + µ(Ac) = 1 for any event A .

Axiom 4. (Countable Subadditivity Axiom) For every countable sequence of events {Ai}, we have

µ(
∞∪
i=1

Ai) ≤
∞∑
i=1

µ(Ai).

Example 1.2. Let Ω = {a1, a2, a3}. For this case, there are only 8 events.
Define

µ(a1) = .6 µ(a2) = .3 µ(a3) = .4

µ(a2, a3) = .4 µ(a1, a3) = .7 µ(a1, a2) = .6

µ(∅) = 0 µ(F) = 1

Definition 1.3. Uncertain variable ξ on Uncertain space (R,B(R), µ) is normal with expected value µ and
Volatility σ2 if The Distribution Function of ξ be

f(x) =

π√
3σ
e

π(µ−x)√
3σ

(1 + e
π(µ−x)√

3σ )2
(1)

hence, we have Cumulative Distribution Function of ξ are

Φ(x) =

(
1 + e

π(µ−x)√
3σ

)−1

. (2)

Theorem 1.4. let ξ be Normal uncertain variable with expected value µ and Volatility σ2, Then if for any

real numbers b and σ in positive real numbers R+, we have |bσ
√
3

π
| < 1, Then

E(e−bX) = e−bµb
√
3σ csc(b

√
3σ) (3)

Proof.

E(e−bX) =

∫ ∞

−∞
e−bxd

(
1

1 + e
π(µ−x)√

3σ

)

=

∫ 1

0
e
−b

(√
3σ
π

ln( u
1−u

)+µ
)
du

{
u = (1 + e

π(µ−x)√
3σ )−1

}

= e−bµ

∫ 1

0

(
u

1− u

)−b
√
3σ
π

du = e−bµπ(
b
√
3σ

π
) csc(π

b
√
3σ

π
)

= e−bµb
√
3σ csc(b

√
3σ) (4)
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Optimazation portfolio under uncertain condition 3

1.2 optimization

Suppose that there are p-branch assets, S = (s1, s2, ..., sp) whose returns are denoted by r = (r1, r2, ..., rp) ,
with mean µ = (µ1, µ2, ..., µp) and covariance matrix

∑
= (σi,j), In addition, we suppose that an investor

will invest capital C on the p-branch assets S such that person wants to allocate her or his investable wealth
on the assets but obtain any of the following:

1. to maximize return subject to a given level of risk, or

2. to minimize her or his risk for a given level of expected return.

Since the above two problems are equivalent, we only look for a solution to the first problem in this paper.
The target is find wight wi of investment si for 1 ≤ i ≤ p such that the portfolio W = (w1, w2, ..., wp) are
true in one of two condition above, In other words, the return of portfolio are

R =

p∑
i=1

wiri, E(R) =

p∑
i=1

wiµi and V ar(R) = w′
∑

w. (5)

Definition 1.5. Exponential Utility function define

u(x) = 1− e−bx, (6)

where b ∈ R are constant risk aversion.

2 Main results

In theorem (1.4) we have the condition |bσ
√
3

π
| < 1 . hence b <

π

σ
√
3

that’s mean The upper band of
constant risk aversion of person symmetrical of converse volatility environment. hence, when constant risk
aversion is large that’s mean the person like the choice the environment with small volatility, and converse.
In another side. we have σ <

π

b
√
3

, similarity above, if the person is small constant risk aversion can choice

the environment with big volatility such that smaller than π

b
√
3

,

if we put R (9) in utility function (6) ,then we have

u(R) = 1− e−bR (7)

we want find the beat wight W = (w1, w2, ..., wp) such that the expected of utility are maximum (maxE(u(R))),
according to the Theorem 1.4 we have,

E(u(R)) = 1− E(e−bR)

= 1− e−bµb
√
3σ csc(b

√
3σ) (8)

In the equation (9) we suppose the each environment are independent of another environment’s hence

σ2 = V ar(R) = w′
∑

w =

p∑
i=1

w2
i σ

2
i . (9)

hence the maximum of E(u(R)) equal minimum of

f(w1, w2, . . . , wn) =
e−bµb

√
3σ

sin(b
√
3σ)

(10)

for find the answer we use fmincome function in MATLAB application. Result
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4 Sadegh Miri,Dr Erfan Salavati

Figure 1: 1500 points of expected and volatility different with first condition of theorem (2.1) , and 2 times
in 300 points the second condition in (2.1)

Theorem 2.1. suppose that X ∼ N(µ, σ2) is Random Normal Variable, ξ ∼ N(µ, σ2) is Uncertain Normal
Variable and b ≥ 0 are constant risk aversion of a person-environment, also u(x) is exponential utility
function, then we have:

• if bσ
√
3 < π then

E(u(X)) > E(u(ξ)) (11)

• if bσ
√
3 > π then

E(u(X)) < E(u(ξ)) (12)

(In similar condition) The value Expected utility of Return portfolio for uncertain Normal variable is
less than Expected utility with Normal variable. the sample of simulate exist in figure (??).
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Abstract 
 

The aim of this study is to identify the most important liquidity measures using the intraday data of some stocks 
from Tehran Stock Exchange. For this purpose, the distribution features and correlation structure of a number of 
liquidity measures will be examined and then, using the Principal Components Analysis, these components which 
include the largest variances are specified and their intraday patterns will be extracted. The results show that the 
reduction of the number of measures to four final measures (Turnover, Liquidity Ratio2, Near Market Depth and 
Relative Spread with mid quoted prices) is possible. Among them, the Relative Spread explanations the highest 
percentage of dispersion and based on the intraday patterns it is minimized in the middle of the day, so liquidity is 
high at these hours and favorable conditions for trading are available. 

Keywords: Liquidity Measures, Market Microstructure, Intra-day Patterns, Principal Component Analysis 
 
Mathematics Subject Classification [2018]:  D47, G19, E44 
  

 
 
 

 

1 Introduction 
 

One of the most important parameters in deciding whether to invest in financial markets is the liquidity of different 
assets. Liquidity is a qualitative concept which means the ability to absorb buy and sell orders. This concept is 
applicable to all markets, focusing solely on liquidity in the stock market, and in particular the Tehran Stock Exchange.  

In recent years, many researchers have attempted to quantify this concept and have introduced several criteria to 
measure it, but liquidity is a multidimensional concept that cannot be measured by a single criterion [3]. Therefore, 
researchers have defined four different aspects of liquidity: market depth (the effect of high volume orders on price), 
market width (difference between bid and ask prices), resiliency (market's ability to bounce back from temporarily 
incorrect prices) and Time Dimension(the speed of trades) [4].   In the current study, 27 liquidity measures have been 
used to quantify the liquidity of 7 selected stocks from Tehran Stock Exchange. These measures and stocks are listed 
in table1 and table 2 respectively. 

 

The data covers 77 trading days from September 22, 2016 until February 18, 2017 for 7 stocks in table 2 which 
are selected based on statistical reports available on the Tehran Stock Exchange website publishing the list of top 50 
companies every 3 months. The data used in this study includes the intraday data from transaction prices and volumes 
and also the data related to limit orders available on the Limit Order Book (LOB). Over the inhomogeneous time 
series, a 15 second grid was imposed to get homogeneous ones with a regular spacing  from 9:03:30 to 12:30:00 pm 
using the previous tick method. The reason for using the previous tick approach to linear interpolation is that the 
linear interpolation method uses future information, but the previous tick method relies solely on information up to 
the present. 
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Table 1:  Mathematical description of liquidity measures used in this study 

 
 
 

Table 2: List of stocks from Tehran Stock Exchange used in this study 
 

 
 
 
 
 
 
 
 
 
 
 
 

PCA Analysis. This method was developed to investigate the relationship between several variables and reduce 
their complexity. In this method, the variables in a multi-state correlated environment are summarized as a set of 
uncorrelated variables that can explain the dynamics of these variables. The obtained uncorrelated components are 
called principal components, each of which is derived from the linear combination of n main variable of the problem. 
The first principal component (𝑃𝐶1) explains the highest amount of data dispersion in the entire dataset. Also, the 
coefficients 𝑏1𝑗 are the elements of  Eigenvector 𝑏1, which is the Eigenvector with the highest eigenvalue of the 

variance-covariance matrix. 
 

𝑃𝐶1 = 𝑏11 ∙ 𝑚11 + 𝑏12 ∙ 𝑚12 +⋯+ 𝑏1𝑛 ∙ 𝑚1𝑛 

  

2 Main results 

In this section, the results of the descriptive statistics calculations, correlation analysis, principal component 
analysis are presented and finally the intraday patterns are extracted. 

Descriptive Statistics 

In this section, mean, median, maximum, minimum, standard deviation, skewness, kurtosis, and different 
percentiles are calculated for each measure and per stock. General remarks about the summary statistics of the 
different liquidity measures across the 7 stocks are presented below: 

In general, none of the measures have a symmetric distribution and are mostly skewed to the right. They are also 
fat-tailed in comparison to the normal distribution because of their large amounts of kurtosis. 

Among the market depth-related measures, the “Log Depth” showed better distributive properties than “Market 
Depth” and is almost symmetric.  

For measures related to the spread, the “Relative Spread of Log Prices” is better distributed than the other 
measures. In the case of quoted slope measures, “Log Quote Slope” with less kurtosis has a smoother distribution 
shape, and because of less variance, the data distribution has a higher average symmetry than the “Quoted Spread”. 

Formula Liquidity Measures Formula Liquidity Measures 

𝑳𝒐𝒈𝑹𝒆𝒍𝑳𝒐𝒈𝑺𝒑𝒕 = 𝐥𝐧⁡(𝐥𝐧(𝒑𝒕
𝑨 𝒑𝒕

𝑩⁄ )) Relative Spread of Log Prices 𝑻𝑽𝒕 =∑ 𝒒𝒊
𝑵𝒕

𝒊=𝟏
 Trading Volume 

𝑬𝒇𝒇𝑺𝒑𝒕 = |𝒑𝒕 − 𝒑𝒕
𝑴| Effective Spread 

𝑻𝑽𝒑𝒆𝒓𝒕 =
∑ 𝒒𝒊
𝑵𝒕

𝒊=𝟏

𝑵𝒕
 

Trading Volume per Trade 

𝑹𝒆𝒍𝑬𝒇𝒇𝑺𝒑𝒕 = |𝒑𝒕 − 𝒑𝒕
𝑴| 𝒑𝒕⁄  Effective Spread with Last Trade 𝑻𝒖𝒓𝒏𝒐𝒗𝒆𝒓𝒕 =∑ 𝒑𝒊 ∙ 𝒒𝒊

𝑵𝒕

𝒊=𝟏
 Turnover 

𝑹𝒆𝒍𝑬𝒇𝒇𝑺𝒑𝑴𝒊𝒅𝒕 = |𝒑𝒕 − 𝒑𝒕
𝑴| 𝒑𝒕

𝑴⁄  Effective Spread with Mid Price 𝑵𝒕 Number of Trades per Time Unit 

𝑸𝒔𝒍𝒐𝒑𝒆𝒕 = 𝒑𝒕
𝑨 − 𝒑𝒕

𝑩 𝐥𝐧( 𝒒𝒕
𝑨) + 𝐥𝐧( 𝒒𝒕

𝑩)⁄  Quote Slope 𝑽𝒅𝒖𝒓𝒕 = 𝐌𝐢𝐧⁡(𝑽𝒅𝒖𝒓:𝑻𝑽𝒕+𝑽𝒅𝒖𝒓 ≥⁡𝑻𝑽𝒕 + 𝑽) Volume Duration 

𝑳𝒐𝒈𝑸𝒔𝒍𝒐𝒑𝒆𝒕 = 𝐥𝐧⁡(𝒑𝒕
𝑨) − 𝐥𝐧⁡(𝒑𝒕

𝑩) 𝐥𝐧( 𝒒𝒕
𝑨) + 𝐥𝐧( 𝒒𝒕

𝑩)⁄  Log Quote Slope 𝑫𝒆𝒑𝒕𝒉𝒕 = 𝒒𝒕
𝑨 + 𝒒𝒕

𝑩 𝟐⁄  Market Depth 

𝑨𝒅𝒋𝑳𝒐𝒈𝑸𝒔𝒍𝒐𝒑𝒆𝒕 = 𝑳𝒐𝒈𝑸𝒔𝒍𝒐𝒑𝒆𝒕 ∙ (𝟏 + |𝐥𝐧(𝒒𝒕
𝑩) − 𝐥𝐧(𝒒𝒕

𝑨)|) Adjusted Log Quote Slope 𝑳𝒐𝒈𝑫𝒆𝒑𝒕𝒉𝒕 = 𝐥𝐧( 𝒒𝒕
𝑨) + 𝐥𝐧( 𝒒𝒕

𝑩) = 𝐥𝐧⁡( 𝒒𝒕
𝑨⁡. 𝒒𝒕

𝑩⁡) Log Depth 

𝑪𝑳𝒕 =⁡𝑹𝒆𝒍𝑺𝒑 𝑫𝒅𝒆𝒑𝒕𝒉⁄  Composite Liquidity 𝑫𝒅𝒆𝒑𝒕𝒉𝒕 = (𝒒𝒕
𝑨⁡. 𝒑𝒕

𝑨 + 𝒒𝒕
𝑩⁡. 𝒑𝒕

𝑩) 𝟐⁄  Dollar Depth 

𝑳𝑹𝟏𝒕 = 𝑻𝒖𝒓𝒏𝒐𝒗𝒆𝒓𝒕 |𝒓𝒕|⁄  Liquidity Ratio 1 
𝑵𝒅𝒆𝒑𝒕𝒉𝒕 =

(∑ 𝒒𝒕,𝒊
𝑨 ) + (𝟑

𝒊=𝟏 ∑ 𝒒𝒕,𝒊
𝑩 )𝟑

𝒊=𝟏

𝟐
 

Near Depth 

𝑳𝑹𝟐𝒕 =
∑ |𝒓𝒊|
𝑵𝒕

𝒊=𝟏

𝑵𝒕⁡
 

Liquidity Ratio 2 
𝑵𝒅𝒆𝒑𝒕𝒉𝑽𝒕 =

(∑ 𝒑𝒕,𝒊
𝑨 ∙ ⁡𝒒𝒕,𝒊

𝑨 ) + (𝟑
𝒊=𝟏⁡⁡ ∑ 𝒑𝒕,𝒊

𝑩 ⁡ ∙ ⁡𝒒𝒕,𝒊
𝑩 )𝟑

𝒊=𝟏

𝟐
 

Near Depth Value 

𝑭𝑹𝒕 =⁡𝑵𝒕. 𝑻𝒖𝒓𝒏𝒐𝒗𝒆𝒓𝒕 Flow Ratio 𝑨𝒃𝒔𝑺𝒑𝒕 = 𝒑𝒕
𝑨 − 𝒑𝒕

𝑩 Absolute Spread 

𝑶𝑹𝒕 = ⁡|𝒒𝒕
𝑨 − 𝒒𝒕

𝑩| 𝑻𝒖𝒓𝒏𝒐𝒗𝒆𝒓𝒕⁄  Order Ratio 𝑳𝒐𝒈𝑨𝒃𝒔𝑺𝒑𝒕 = 𝐥𝐧⁡(𝒑𝒕
𝑨 − 𝒑𝒕

𝑩) Log Absolute Spread 

* 𝟏𝟎𝟎  %𝑶𝑹𝑰𝒕 =
⁡𝑻𝑽𝒕

𝑺𝒆𝒍𝒍−𝑻𝑽𝒕
𝑩𝒖𝒚

𝑻𝑽𝒕
 Order Imbalance 𝑹𝒆𝒍𝑺𝒑𝒕 = 𝒑𝒕

𝑨 − 𝒑𝒕
𝑩 𝒑𝒕

𝑴⁄  Relative Spread with Mid Price 

  𝑹𝒆𝒍𝑺𝒑𝒕𝒕 = 𝒑𝒕
𝑨 − 𝒑𝒕

𝑩 𝒑𝒕⁄  Relative Spread with Last Trade 

Company Name Persian Symbol English Symbol Industry 

Mobarakeh Steel  فولاد FOLD Base Metals 

I.N.C Ind.  فملی MSMI Base Metals 

Parsian Oil&Gas  پارسان PASN Chemicals 

Iran Khodro  خودرو IKCO Automotive 

Metals and Min ومعادن MADN Metal Ore 

Ir.Inv.Petr پترول IPTR Chemicals 

Saipa Inv  وساپا SSAP Financing 
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Correlation Analysis  

In this section, for each stock, the “Pearson Correlation Coefficient” between each 2 measures is calculated and 
then the average correlation of this pair is calculated over 7 stocks. According to these results the measures that are 
highly correlated with each other (more than 0.995) are as follows: Trading Volume and Turnover, Market Depth 
and Dollar Depth, Near Depth and Near Depth Value, Absolute Spread and Relative Spread with Mid Price, Relative 
Spread with Last Trade and Relative Spread with Mid Price, Effective Spread and Effective Spread with Last Trade,  
Effective Spread with Mid Price and Effective Spread with Last Trade, Log Absolute Spread and Relative Spread of 
Log Prices and finally Log Quote Slope and Adjusted Log Quote Slope. 

Reduction of the number of Liquidity Measures  

According to the results of previous sections the following measures are excluded from the study: 

Trading Volume, which is highly correlated with Turnover, and the latter measure is comparable among different 
stocks with different prices. Number of Trades per Time Unit, which is directly used in the calculation of Volume 
Duration measure. Market Depth which is highly correlated with Dollar Depth, and the latter measure is comparable 
among different stocks with different prices. Near Depth which is highly correlated with Near Depth Value, and the 
latter measure is comparable among different stocks with different prices. Dollar Depth which is highly correlated 
with Near Depth Value, and the latter measure is more precise due to using the information of all three levels. 
Absolute Spread, is highly correlated with many spread measures and because relative Spreads are more comparable 
across stocks due to price considerations. Relative Spread with Last Trade which is perfectly correlated with Relative 
Spread with Mid Price, and the latter is easier to calculate because of not depending on last trade information which 
may not be always available. Effective Spread which is highly correlated with Effective Spread with Last Trade, and 
the latter measure is comparable among different stocks with different prices. Effective Spread with Last Trade which 
is perfectly correlated with Effective Spread with Mid Price, which is easier to calculate. Log Quote Slope which is 
perfectly correlated with Adjusted Log Quote Slope, and the latter is a more comprehensive measure. 

Principal Component Analysis 

 After removing 10 measures in the last section, the principal components analysis will be performed on the 
remaining 17 measures. The output contains the eigenvalues, eigenvector coefficients and percentages of variance 
explained by each component, arranged in descending order. For all the stocks, it was observed that only 5 principal 
components in each stock had eigenvalues greater than one, which explain about 70 to 75 percent of the total variance. 
An example of the results of this analysis for stock SSAP is shown in Table 3.  

 

Table 3: Principal Component Analysis of 17 liquidity measures for SSAP 

 

 

 

 

Based on the principal component analysis method performed on the 7 stocks, the following results are obtained: 

One factor, explains spread-related liquidity measures. This component with the highest percentage of variance 
explaining across all stocks - about 33% - covers the width dimension of liquidity. From this group, the relative 
spread with mid-price is chosen due to the ease of calculation. 

A second factor captures liquidity measures related to volume and the number of transactions. As a result, this 
component explains the volume and timing dimension of liquidity with a variance of about 14%. The turnover 
measure is considered to be representative of this group because of the ease comparability between different stocks. 

The next principal component explains the measures related to the market depth, such as Log Depth. So, this 
factor then describes the depth dimension of liquidity explaining about 10% of variance. From this group, the near 
depth value measure is chosen because of the use of information on all three levels of the Limit order book. 

The fourth component shows the measure related to the market resiliency dimension, such as order imbalance 
and the liquidity ratio2, explaining about 9% of variance. The Liquidity Ratio 2 is considered to represent this group 
because of its simpler interpretation. 

Intraday Patterns 

In this section, the Intraday behavioral pattern is extracted for the 4 selected liquidity measures in the previous 
section, each of which was selected as a representative of one of the liquidity dimensions. 

 
𝒃𝟏  𝒃𝟐  𝒃𝟑  𝒃𝟒  𝒃𝟓  

Eigenvalue 5.61 2.57 1.75 1.58 1.01 

Var. explained (%) 33.01 15.11 10.29 9.30 5.93 

Cum. Var. explained (%) 33.01 48.12 58.41 67.71 73.64 
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Relative Spread with Mid Price 

Various patterns including U-shaped and the inverted S-shaped patterns have been reported in the literature for 
this measure [1]. Here, as can be seen in the Figure 2, this measure has an inverted J-shaped pattern for most stocks, 
especially for IPTR and SSAP. This means that the spread is very high at the beginning of the day, but over time and 
with the increase in market depth, this measure falls and then rises slightly at the end of the day. 

 
Turnover 

  For this measure, in most studies, the U-shaped pattern is obtained. But as can be seen in Figure 3, only IKCO 
partially follow this pattern. Also, the stocks FOLD and MADN are almost J-shaped. In the case of the SSAP stock, 
there was no clear pattern due to the sharp volatility of trading volume over the 15-second intervals. 

 
Near Depth Value 

As shown in Figure 4, various patterns for this measure have been obtained in different stocks, among which the 
FOLD and IPTR stocks have the S-shaped pattern. This means that at the beginning of the day, the market depth is 
low and at the end of the day relatively high. SSAP and IKCO have inverted U-shaped pattern. 

 
Liquidity Ratio 2 

This ratio indicates the average percentage of price changes after each transaction. As can be seen in Figure 5 the 
percentile graphs fluctuate strongly in all stocks, but for the mean, the graph with the lowest fluctuation is slightly 
above zero. No specific pattern is visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

  Figure 1: Intraday patterns for Relative Spread with Mid Price 

 
  Figure 2 : Intraday patterns for Turnover 

 

  Figure 3 : Intraday patterns for Near Depth Value 

 
  Figure 4 : Intraday patterns for Liquidity Ratio 2 
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AbstractAbstractAbstractAbstract    
 

The present paper discusses a practical approach to improve the process of claim assessment and payment 
procedure in Iran insurance industry. We employed factor analysis to design a proper questionnaire addressing 
factors affecting the dissatisfaction of insured. Then we analyzed the reasons behind insured dissatisfaction with 
claim assessment and payment processes. Having identified and analyzed the reasons, we combined the results 
with the insurer’s viewpoints to identify the final factors. Finally, we provided a model suitable for insurance 
damage assessment and payment process. 
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1111 IntroductionIntroductionIntroductionIntroduction    
 
Due to the importance of the loss assessment process, considerable research has been devoted to this area. In 

Nigeria, Tajudin and Adebowale (Tajudeen and Adebowale, 2013) have examined the role of managers in the loss 

process assessment in insurance companies. According to Marquis (2011), insurance claims management includes 

all company policies and insurance industry guidelines that companies use to accept or reject claims. Butler and 

Francis (2010) say that compensation payment is a process that indicates whether the annual premium received by 
insurers may be sufficient to pay the reported damages or not. From a commercial point of view, they believe that 

compensation payment is considered to be the biggest cost to insurers (about 80 percent of the premium).   
This article focuses on the need to pay attention to customer satisfaction in the insurance industry and examines 

the factors affecting this phenomenon. In fact customer's satisfaction and service quality are considered as vital 
affairs in mostly service industry nowadays (Kuo et. al. 2009). 
   

2222    The concept of service quality The concept of service quality The concept of service quality The concept of service quality     
     
Service quality was conceptualized by the consumers as an overall assessment of service. It is believed that 

perceived service quality is the result of comparing the prior customer expectations for the service after actual 
experience with their perceptions. 

The ability of a company to serve the needs of the customer and maintain its competitive advantage also affects 
the perception of the quality of service by the customer (Ganguli 2010). A review of studies in this area shows that 
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the most commonly used model in measuring service quality and determining the gap between the status quo and 
the desired one, is the SERVQUAL model. This model was first proposed by Parasuraman et al. (Parasuraman, 
1988). 

The SERVQUAL model attempts to identify the major activities of the organization that affect the quality of 
service. Recognizing and reinforcing these factors in the insurance companies not only maintain the current insured 
but also attract new insured. The SERVQUAL model measures customer perceptions and expectations of service 
quality based on 31 components (six dimensions). The six dimensions are: Tangibles, Reliability, Responsiveness, 
Assurance, Empathy and Accessibility. 

 

3333    MethodologyMethodologyMethodologyMethodology    
 

The statistical population of the study consisted of customers who faced some loss and are referred to the 

automobile loss assessment and payment unit. To calculate the sample size, an initial sample of 35 was considered 

of which 32% were satisfied with the quality of service. With a 5% error and 95% confidence level, the required 
sample size can be obtained through the Cochran's formula as follows (Hekmatpo, 2012):  
 

 

 
As it is advised, more questionnaires (25% more) were distributed and finally 337 completed ones were 

received. 
The questionnaire was designed into two parts in order to collect relevant information. The first part includes 

questions regarding demographic information and the second part examines the quality of service, which measures 
the perceptions and expectations of customers who have faced losses. For this purpose, the standard questionnaire 
namely; SERVQUAL was used and by means of factor analysis in LISREL and SPSS software, the scale for 
service quality dimensions was designed. The questions are carefully designed to ensure that they are simple and 
clear. The questionnaire consists of 29 questions. Furthermore 6 questions were asked at the end of the 
questionnaire to assess the importance of each dimension of service quality from customers' point of view.  

The validity of questionnaire is verified based on content method and, using Cronbach’s alpha, their reliability 
for expectation, perception and total questionnaire scores was 0.966, 0.921 and 0.949, respectively. Cronbach's 
alpha is a measure of internal consistency, that is, how closely related a set of items are as a group. In other words, 
the higher the α coefficient (close to 1), the more the items have shared covariance and probably measure the same 
underlying concept. 
 

4444    Main results Main results Main results Main results     
 

As mentioned, the purpose of this article is to measure the level of customer satisfaction using the well know 
instrument namely; SERVQUAL model. Basically the model is a standard questionnaire consists of different 
questions assessing customer satisfaction. Questions display different level of importance and some have a greater 
impact on people's content. Weighted average was used to analyze satisfaction weights were calculated through 
running Confirmatory Factor Analysis (CFA) in LISREL. 

The following path diagram in LISREL shows the outcome of CFA for the questionnaire in two modes: T-
values and standard factor loadings. T-values are all greater than 1.96. As a result, all questions play an important 
role in measuring customer satisfaction. The weighted average of codes obtained from questionnaire and factor 
loadings is also used to measure customer satisfaction.  

After collecting the data, we analyzed them with SPSS software using descriptive and inferential statistics such 
as normality test, Spearman correlation coefficients and nonparametric tests.  

The descriptive statistics results table below (Table 1) indicates that insured perceive highest satisfaction in the 
empathy area and lowest in the tangibles area. In order to achieve higher levels of service quality, the insurance 
company managers should redesign their strategies about customer satisfaction with respect to service quality. 

 

Table 1: Insured satisfaction 
 

Dimensions of service quality Insured satisfaction  

Tangibles 0.68 
Reliability 0.74 

Responsiveness 0.69 
Assurance 0.75 
Empathy 

Accessibility 
0.83 
0.76 
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Figure 1: Confirmatory factor analysis 

 
                             Standard factor loadings                                                     T-values 

 
Spearman's correlation coefficients between service quality dimensions (Table 2) also show a high correlation 

between reliability and tangibles of employees, which indicates that the more employees respond to the customer, 
the more they trust the insurance company. There is little correlation between accessibility and responsiveness of 
insurance company employees. Overall, there is no very high correlation between the dimensions of service quality. 

 
Table 2: Spearman correlation coefficients of dimensions  

 

 Tangibles Reliability Responsiveness Assurance Empathy Accessibility 

Tangibles 1 0.618 0.598 0.549 0.479 0.469 
Reliability 0.618 1 0.666 0.514 0.547 0.477 

Responsiveness 0.598 0.666 1 0.577 0.558 0.461 
Assurance 0.549 0.514 0.577 1 0.610 0.572 
Empathy 0.479 0.547 0.558 0.610 1 0.520 
Accessibility 0.469 0.477 0.461 0.572 0.520 1 

 
The results of inferential statistics (hypothesis testing) show that most customers expect that claim assessment 

and payment units to be available and reliable. They were also more satisfied with the tangibles of assessment units 
and the level of responsiveness of employees. This research also pointed out that gender, marital status, age, job, 
and education also had little effect on satisfaction with the assessment. 

 

5555    ConclusionConclusionConclusionConclusion    
    
As discussed in the article, the service quality of insurance companies, especially in the area of loss assessment, is 
very important. The results have shown that insurers in the loss assessment unit should make more efforts to satisfy 
the insured.  

According to the results, the following suggestions are offered to improve the quality of insurance companies' 
services in the claim assessment and payment unit:  

• Upgrading queue management system to save customers time and money,  
• Responding to customer queries on holidays and non-business hours,  
• Identifying the customers’ hidden needs, 
• Training and encouragement of insurance company employees in dealing with customers and solving their 

problems. 
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Abstract 
 

This paper examines the relationship between asset correlation and distance to default (as a proxy 
for probability of default) assumed in the internal ratings-based (IRB) approach of the Basel II accord 
on regulatory capital requirement. Using data of non-financial companies listed in Tehran stock 
exchange during 1388 to 1397, we show that Basel II accord (Basel, 2006) assumption on a negative 
relationship between asset correlation and probability of default is confirmed among TSE listed 
companies. Results also confirm time varying and cyclical nature of the co-variation of these two 
variables. Moreover, the general assumption underlying Basel II that leads to size adjustment and 
different equations for determining asset correlation for corporates, SMEs, and retail debtors is also 
consistent with the general pattern of the relationship between asset correlation and probability of 
default among these three categories in Iranian companies.  

 
Keywords: Asset correlation, Distance to Default, ASRF, SME 

 
Mathematics Subject Classification [2018]:    

 
 
 
1 Introduction 
 
By proposing Internal Rating Based approach in Basel II accord (Basel, 2006), banks were able to determine credit 
risk regulatory capital charge using foundation or advanced Internal Rating Based approaches (FIRB and AIRB 
approaches)3 To apply these two approaches, banks need to provide four components to estimate the risk 
contribution of each asset to regulatory capital. These components are probability of default (PD), loss given 
default (LGD), exposure at default (EAD) and maturity (Basel, 2006, paragraph, 211) . If banks follow foundation 
approach, they need to provide their own estimates of PD and can rely on supervisory general estimates for other 
risk components. But in the case of using advanced approach, banks also need to estimate other variables. In both 
cases, banks have to estimate probability of default, conditional on possible most adverse economy condition. For 
this purpose, the proposed framework relies on Gordy’s (2003) asymptotic single risk factor (ASRF) model. In the 
model, there is one common systematic risk factor that affects all obligors’ asset returns and correlation between an 
obligor’s asset return and the common factor is a key parameter in determining conditional obligor's default 
probability and subsequently its risk contribution to regulatory capital. To be more specific,  
 
1) 
 
                                                                    
1 Corresponding author  
2 speaker 
3 “Subject to certain minimum conditions and disclosure requirements, banks that have received supervisory approval to use 
the IRB approach may rely on their own internal estimates of risk  components in determining the capital requirement for a 
given exposure”(Basel ,2006, paragraph,211) 
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Where CDP is conditional default probability,

ip  is unconditional default probability,   (.) is the standard 

normal cumulative density function and 1 (.) is the inverse of that function. 
 
So banks need to estimate unconditional default probability and also the asset correlation for each asset in order to 
compute the risk contribution of each asset to regulatory capital. So one of the main parameters in determining 
capital requirement is the asset correlation. In this regard, Basel accord also provides a fine-tuned approach for 
estimating asset correlation based on two premises; first, there is a negative relation between asset correlation and 
default probability and second, larger companies are more diversified and more sensitive to common risk factor. 
Based on these two assumptions that rely on some academic studies, Basel accord also differentiates among their 
exposures based on size4 and proposes three different formulas to compute asset correlation as a function of default 
probability. For corporate, sovereign, and bank exposures asset correlation is calculated as following: 
 
 
2) 
 
 
Furthermore, for corporate exposures that have less than €50 million annual sale, firm size adjustment is made in 
paragraph, 273. This adjustment to SME borrowers leads to correlation formula for SME exposures as: 
 
 
 
3) 
 
 
 

Where S is total annual sale. 
 
In paragraphs 328, 329 and 330 Basel committee recommends to use new amounts for retail exposures, for example 
for residential mortgage exposures correlation is constant and equals to 0.15 and for qualifying revolving retail 
exposures it is 0.04. For other retail exposures correlation is computed as: 
 
 
4) 
  
 
Our motivation in this paper is to empirically examine the two premises underlying the above formulas in Iranian 
capital market, namely a negative correlation between asset correlation and default probability and the significant 
difference between asset correlations among different size classifications. To this end we follow Lee et al. (2011) 
and estimate asset correlation for all non-financial companies listed in Tehran Stock Exchange (TSE) assuming the 
market index as a single common systematic factor causing asset correlations and test the correctitude of the above 
mentioned premises. 
 
 To examine these relationships, following Vasallou and Xing (2004), Bharath and Shumway (2008) and Afik et al. 
(2016) among others, we use KMV-Merton distance to default as a proxy for default probability. The relationship 
between asset correlation and default probability is examined both month by month and in aggregate, for sample 
companies. We also divide all listed companies in TSE based on their sale to three categories and examine the 
mentioned relationship separately for these categories and also test whether the difference between asset 
correlations, as well as default probabilities, are significant among these three categories.   
 
Although, the overall results of this study confirm the premises of Basel Accord underlying the formula mentioned 
before, there is not a uniform consensus in the literature. Dullmann & Scheule (2003) assuming a one factor model, 
                                                                    
4 In paragraph 215 committee mentioned that, banks must differentiate among the exposures with dissimilar 
underlying risk types to corporate, sovereign, bank, retail and equity.” A corporate exposure is defined as a debt 
obligation of a corporation, partnership, or proprietorship” (Basel, 2006, paragraph, 218). Also committee detached 
large corporate from SME (Small and Medium Entities) in paragraph 273. 
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estimated constant correlation for corporate obligors of Germany. They showed that aggregate asset correlation 
over all of ratings increases by size, but no explicit relationship between asset correlation and PD is observed. 
Dietsch and Petey (2004) studied the relationship between PD and asset correlation for a large sample of SMEs in 
France and Germany using one factor model. They illustrate that SMEs are riskier but their asset correlations are 
very low. The authors also indicate that the negative relationship of PD and AC (asset correlation) in Basel formula 
is not confirmed among SMEs of France and Germany. The PD and AC relationship in France’s SME firms is U 
shaped and it is positive in Germany. 
 
2 Methodology 

 

2.1. Estimating distance to default as a proxy of default character of firm 

In this paper, following the Naive model proposed by Bharath and Shumway (2008)5, the market value of firm’s 
debt and its volatility are approximated as follows: 
 
 
5) 
 
 
Then the asset value is equal to equity value plus debt value and asset volatility is written as: 
 
6) 
 
 
 
In order to obtain the debt with monthly frequency a linear interpolation has applied to data. Volatility of equity is 
estimated by daily data for past one year in each single month using Newey-West (1987) estimator to control the 
autocorrelation in equity returns. Then distance to default is estimated in KMV model as an approximation of firms 
default character.  
 
 
7) 
 

2.2. Asset correlation 

For the asset correlation, as mentioned above, we followed Lee et al. (2011), in a way that the market factor used as 
a single risk factor and beta of each asset is estimated from beta of equity. In order to estimate equity beta we used 
CAPM model with window length varying from 36 to 60 months according to data availability. Then asset betas 
are estimated by the next equation: 
 
8) 
 
For computing 1( )N d  we used fix risk free rate (0.18) as the mean of asset returns, and one year annual debt as a 
proxy of firm debt.  Finally, the asset correlation is acquired as: 
  
9) 

 

2.3. Firms Classification  

After asset correlations are estimated, firms in TSE are classified to corporate, SME and retail sectors based on past 
years sale. First we estimated yearly sales of each firm in our sample in euro in every month, then we divided our 
sample into 3 categories due to their euro sales. 
 
2.4. Analysis 

To examine correctitude of the Basel premises on negative relationship between asset correlation and default 
probability, two types of regressions and two types of correlation analysis have been applied. Pooled regression and 
Fama-Macbeth (1973) approach regressions are used. While pooled regression ignores the time effects, Fama 
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Macbeth regression shows time varying nature of relation between two variables. Also rank correlation and Pierson 
correlation are used to compute both rank and linear correlations. 

 
 For pooled regression we have following equation:  
 
10) 
 
And for Fama-Macbeth regression we have: 
 
11) 
 
Then the average of coefficients are reported. 
 
3   Results 

 
 Table 1 shows that asset correlations are significantly different in dissimilar firm classes. These calculations are 
done by pooled data in each class. Asset correlation has its highest value in the corporate class and the lowest in 
retail. Besides, the maximum distance to default belongs to corporate category and minimum distance to default 
could be found in retail class. 
 

Table 1.  Asset correlation and distance to default comparison among different firm classifications 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Correlation analysis is reported via table 2. Founding of rank correlation indicates that the highest correlation 
between asset correlation and distance to default is in the SME class, even though, the lowest rank correlation is in 
retail set. Pierson correlation results confirm the founding of rank correlation. 
 
 

Table 2 Correlation analysis 

 
 
 

 
 

 
 
Regression analysis is the subject of table 3. Two types of regressions are reported. Results show the positive 
(negative) relationship between asset correlation and distance to default (probability of default) which is more 
strong in SME class in both Fama-Macbeth approach and pooled regressions6.  
 
 
 
         

                                                                    
6 Reported coefficients in Fama-Macbeth regression are the average of obtained  amounts  

 Panel A: Three level Asset Correlation mean comparison 

Firm class Mean variance Month-firm t-test to compare means t-value (one tail) 
Total 0.16893 0.040371   
Corporate 0.22975 0.066749 4229 Corporate-SME 15.78593 
SME 0.15462 0.040047 4142 SME-Retail 10.46507 
Retail 0.11479 0.032749 3026 Corporate-Retail 25.33759 

 Panel B: Three level Distance to Default mean comparison 

Total 2.474574 0.994078   
Corporate 2.759404 1.224536 4592 Corporate-SME 12.04961 
SME 2.496411 0.904243 4312 SME-Retail 7.370356 
Retail 2.343244 0.705599 3176 Corporate-Retail 18.82265 
      

 Rank correlation coefficient Pierson correlation  coefficient 

Total 0.4130 0.4353 
Corporate 0.4594 0.4806 

SME 0.4756 0.5180 
Retail 0.3772 0.4164 

.i iAC DD  

.it it it itAC DD  
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Table 3 Regression Analysis 

 

4. Conclusion  
Using market and accounting data from 1388-1397 this study examined the relation between asset correlations and 
distance to default among Tehran stock exchange non-financial companies. Our findings confirm a negative 
relation between default probabilities and asset correlations in Iranian firms. Moreover we found that asset 
correlation increases by firm size. These two outcomes confirm Basel II assumption in capital requirement. 
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Abstract 
 

Mutual funds are the most important investment companies in the financial markets that invest the 

collected money in various markets. Although mutual funds do not have interconnection together, 

they are correlated through their portfolios and their investment strategies, which may cause 

systemic risk. In this article, we try to model and evaluate Iran mutual funds systemic risk by 

Conditional Value at Risk (CoVaR) approach. Results indicate share funds are riskier than other 

funds, say fixed-income and mixed funds. ANOVA shows a significant correlation between the 

funds' systemic risk and funds’ portfolio beta coefficient.  

 
Keywords: Systemic Risk, Mutual Funds, CoVaR, Quantile Regression.  

 
Mathematics Subject Classification [2018]:  13D45, 39B42  

 
 
 

 

1 Introduction 
 
According to the most presented definitions, systemic risk refers to the possibility of financial system failure due to 

a crisis or big shock in a segment or some parts of the financial market. When a company defaults and is unable to 

achieve its goal a shock will occur in the system and other companies may default as well. This paper’s aim is to 

research and identify systematically important mutual funds, which have a significant proportion of systemic risk, 

particularly. Regulators and market authorities reduce the effect of systemic risk by enacting roles and macro-

prudential policies like capital requirements and liquidity restrictions.  

Mutual funds are the most important investment companies in the financial markets that invest the collected money 

in various markets. There are three types of securities funds in Iran capital market, including share, fixed-income, 

and mixed funds. Although mutual funds do not have interconnection together, they are correlated through their 

portfolios and their investment strategies, which may cause systemic risk.  
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In recent years, the importance of funds’ role in financial markets is obvious for all market participants and 

regulators. A shock can impact on target markets and other parts will be influenced by this shock.  In this article, 

we try to model and evaluate Iran mutual funds systemic risk by Conditional Value at Risk (CovaR) approach.  

We use Conditional Value at Risk (CoVaR) introduced by Adrian and Brunnermeier in 2016, as a systemic risk 

measure, which has become popular after the 2007-2008 global crisis. VaR concentrates on the individual company 

and shows the maximum amount of loss in a company with the q% of confidence level, which mathematically is:  

 

Where  is the fund’s total return: 

 

 and  are net asset value of the fund  in time  and , respectively and  is interest income of 

the fund  in time .  

CoVaR is defined as the system’s Value of Risk so that fund  is in risk: 

 

Where  is the value-weighted of funds total returns.  

Quantile regression  

Quantile regression is a method to calculate VaR and CoVaR. Using this approach, we can estimate the maximum 

loss of system in q% percentile.  

 

Where  is a q%-quantile estimation of the system on observed returns of the fund . By definition, the 

VaR is calculated by: 

 

In practice, the system loss on fund  estimated by quantile regression is a VaR on  condition because 

 is a conditional quantile. Using , we can estimate .  

 

sois:   

 

 indicates the system’s loss when the fund  is in  loss and  shows the deterioration of the 

funds' system while moves from a normal state to the worst scenario.   

  

2 Main results 
 

The data used in this article contains total return and net asset value of 152 exchange-traded and mutual funds 

(shares, fixed-income and mixed) in the period between March 2016 to the end of September 2019, which has been 

active for 75% of the period in a weekly basis. 
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The result shows that Bourseiran and Goharnafis were systematically important funds at the end of Sep. 2019. 

Table (1) indicates the five top funds that were systemically important.  

Table 1: Five top funds that were systemically important 
 

Rank Name Type 

1 Bourseiran Share 

2 Goharnafis Mixed 

3 Ofogh Mellat Share 

4 Bank Dey Share 

5 Tajrobe Iranian Mixed 

 

 In the next step, in order to analyze the results more precisely, the funds are classified into 5 classes. This means 

that the funds in the first category are more important than the other categories in terms of systemic risk and the 

funds in the fifth class are the least important. This classification is performed weekly and includes variables such 

as return, net asset value, VAR, beta, CoVaR, and Delta CoVaR. 

Since the categorization is based on the funds ranks that are based on Delta CoVaR, it is evident that the first-class 

funds have higher CoVaR and Delta CoVaR. Figure (1) shows the diagrams of these variables in each of the five 

categories. 

  

Figure 1

 : 

CoVaR and Delta CoVaR in five distinct clasess
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Figure 2: scatter plot beta coefficients and the risk value of the first, third and fifth classes relative to the Delta 

CoVaR 

 

Given the above result, it is expected that the behavior of the parameters in each class will depend on the funds' 

behavior in that class. For example, the beta coefficient and the Value at Risk of funds that are in the higher classes 

are higher than those of the lower classes. Figure (2) shows the scatter plot beta coefficients and the risk value of 

the first, third and fifth classes relative to the Delta CoVaR. 

ANOVA test approves the previous result and shows there are at least two classes that are different beta on 

average. Table (2) summarizes the result of ANOVA. 

 

Table 2: ANOVA results 

Prob>F F MS df SS Changes 

4.40E-25 38.10454 1.703207 4 6.812827 Cullum 

  0.044698 260 11.62155 Error 

   264 18.43438 SUM 
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Abstract

One of the most important risks, which banks, financial institutions and corporations face with, is
counterparty credit risk. The counterparty credit risk is a combination of market and credit risks. One
of the key tools to measure the risk of the counterparty credit is credit valuation adjustment. In this
paper, under the assumption of non-arbitrag , we deal with bilateral counterparty risk valuation with
stochastic dynamical models and application to credit default swaps. To do this, we utilize intensity
models for default times. Then, we calculate the credit valuation adjustment using trivariate copula
functions regarding the correlation between the default times and credit spread volatilities.

Keywords: Bilateral Counterparty Risk, Credit Valuation Adjustment, Credit Default Swap.

Introduction

The credit default swap (CDS) agreement transfers the default risk to the insurer. A credit default swap
is a contract between the protection buyer and the protection seller that is closed on the reference credit,
where the protection buyer pays periodic payments to the protection seller as a premium. In contrast, if
the reference credit fails, the seller pays the fixed payment protection to the protection buyer. This type
of swap contract is one of the most applicable credit derivatives, however, we can not claim that a CDS is
a contract insurance but we can call the CDS by default protection [3]. An important tool for measuring
counterparty credit risk is credit valuation adjustment (CVA). From the investor’s point of view, unilateral
credit valuation adjustment is the difference between the value of the portfolio when there is no probability
of default for the counterparty with that there is a probability of default for the counterparty. The same is
true for bilateral credit valuation adjustment, the difference is that a probability of default on both sides of
the contract.

1 Arbitrage-Free Valuation of Bilateral Counterparty Risk

We denote by ”A1” and ”A2” the investor and counterparty involved in the swap financial contract where
the portfolio exchanged by the two parties is default sensitive. Also we refer to the reference credit of the
portfolio as ”A3” and denote by τA1 , τA3 and τA2 respectively the default times of the investor, the reference
credit and counterparty. We place ourselves in a probability space (Ω,G,Gt,Q) where filtration Gt models
the flow of information of the whole market, including credit and Q is the risk neutral measure [1].

1speaker
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1.1 CDS Payoff

In a CDS contract, if A3, the reference credit, defaults at time τ = τA3 with Ta < τ < Tb, then A2, protection
seller, pays protection leg to A1 that is protection buyer. The protection leg is a certain deterministic or
stochastic amount LGDA3 (Loss Given Default of the reference credit ”A3”) of the notional. In return,
”A1” pays ”A2” premium leg times Ta+1, ..., Tb. The premium leg, which is a rate or a spread, is stopped
as A3 defaults. Note that the spread S is the rate of which the present value of the contract cashflows from
the protection and the premium leg are equal. So protection buyer receive following cashflow at time Tj for
Ta < Tj < Tb :

CDSa,b(Tj , S, LGDA3) = Premiuma,b(Tj , S, LGDA3)− Protectiona,b(Tj , S, LGDA3)

= 1τ>TjCDSa,b(Tj , S, LGDA3)

= 1τ>Tj{S[−
∫ Tb

max{Ta,Tj}
D(Tj , t)(t− Tγ(T )−1)dQ(τ > t| GTj )

+
b∑

i=max{a,j}+1

D(Tj , Ti)αiQ( τ > Ti| GTj )]

+ LGDA3 [

∫ Tb

max{Ta,Tj}
D(Tj , t)dQ(τ > t| GTj )]},

(1)

where t ∈ [Tγ(t)−1, Tγ(t)), γ(t) is the first premium payment date after t (γ(t) is the first payment period Tj
following time t), and αi is the year fraction between Ti−1 and Ti. Here, we have denoted by D(t, T ) the
price of a zero coupon bond at t with maturity T .

Theorem 1.1. Bilateral Risk Credit Valuation Adjustment for Receiver CDS
The BR-CVA at time t for a receiver CDS contract (protection buyer) running from time Ta to time Tb with
premium S is given by

BR−CVA−CDSa,b(t, S, LGD1,2,3) =

LGDA1 · Et{1τA2
≤min{τA1

,T} ·D(t, τA1) · [−1τ>τA1
CDSa,b(τA1 , S, LGDA3)]+}

− LGDA2 · Et{1τA1
≤min{τA2

,T} ·D(t, τA2).[1τ>τA2
CDSa,b(τA2 , S, LGDA3)]+},

(2)

where LGD1,2,3 = (LGDA1 , LGDA2 , LGDA3).

1.2 Default Correlation

The default intensities of the three names Ai are denoted by λi(t) for i = 1, 2, 3 where λi(t) are independent
CIR processes with cumulative intensities Λi(t) =

∫ t
0 λi(s)ds. Thus default stopping times are defined by

τi = Λi
−1(ξi) where ξi are standard (unit-mean) exponential random variables. Define unit uniform random

variables Ui with Ui = 1 − exp(−ξi). In the case of bilateral CVA, we impose a dependence structure on
τA1 , τA3 and τA2 via a trivariate Gaussian copula CΣ on U1, U2 and U3,

CΣ(u1, u1, u3) = Q(U1 < u1, U2 < u2, U3 < u3), (3)

where Σ = [rij ]i,j=1,2,3 is a 3-dimensional correlation matrix that parametrizes the trivariate Gaussian
distribution. Consider the following stochastic intensity model for the three names A1, A2, A3

λj(t) = yj(t) + ψj(t;βj), t ≥ 0, j = 1, 2, 3, (4)

where ψ is a deterministic function, depending on the parameter vector βj = (κj , µj , υj , yj(0)) with κj , µj ,
υj and yj(0) positive deterministic constants. We assume that each yj to be a Cox Ingersoll Ross (CIR)
process given by

dyj(t) = κj(µj − yj(t))dt+ υj

√
yj(t)dZj(t), j = 1, 2, 3, (5)
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with assumption that 2κjµj > υ2
j . We assume that Zj to be a standard Brownian motion processes under

the risk neutral measure. The following integrated quantities will be extensively used in the remainder of
the paper

Yj(t) =

∫ t

0
yj(s)ds, Ψj(t) =

∫ t

0
ψj(s;βj)ds. (6)

1.3 Calculation of Survival Probability

We recall that the survival probabilities associated with a CIR intensity process are given by

Q(τAi > t) = E[exp(−Yi(t))] = PCIR(0, t, βi), i = 1, 2, 3, (7)

where PCIR(0, t, βi) is the price at time 0 of a zero coupon bond maturing at time t under a stochastic interest
rate dynamics given by the CIR process, with βi = (yi(0), κi, µi, υi), being the vector of CIR parameters,
i = 1, 2, 3. The market survival probability from the definition of the integrated process Ψi(t;βi) are given
by

Ψi(t;βi) = log

(
E[exp(−Yi(t))]
Q(τi > t)market

)
= log

(
PCIR(0, t, βi)

Q(τAi > t)market

)
, i = 1, 2, 3. (8)

We set U i,j = 1− exp(Λi(τAj )) and denote by FΛi(t) the cumulative distribution function of the cumulative
(shifted) intensity of the CIR process associated to name i. The credit reference survival probability at the
default time of the counterparty is given by

1C∪D1τA3
>τA2

Q(τA3 > t| GτA2
) =

1τA2
≤T 1τA2

≤τA1
(1E + 1τA2

<t1τA3
≥τA2

∫ 1

U3,2

FΛ3(t)−Λ3(τA2
)(− log(1− u3)− Λ3(τA2))dCA3|A1,A2

(u3;U2)),
(9)

and the credit reference survival probability at the defualt time of the investor is given by

1E∪B1τA3
>τA1

Q(τA3 > t| GτA1
) =

1τA1
≤T 1τA1

≤τA2
(1B + 1τA1

<t1τA3
≥τA1

∫ 1

U3,1

FΛ3(t)−Λ3(τA1
)(− log(1− u3)− Λ3(τA1))dCA3|A2,A1

(u3;U1)),

(10)

where E = {τA1 ≤ τA3 ≤ T}, B = {τA1 ≤ T ≤ τA3}, C = {τA3 ≤ τA1 ≤ T} D = {τA3 ≤ T ≤ τA1},
E = {t ≤ τA2 ≤ τA3}, B = {t ≤ τA1 ≤ τA3}, CA3|A1,A2

and CA3|A2,A1
are associated Gaussian conditional

copula functions.

2 Example

We consider an investor (A1) trading a five-years CDS contract on a reference credit (A3) with a counterparty
(A2). Both the investor and the counterparty are subject to default risk. We experiment on different levels of
credit risk and credit risk volatility of A1, A2, A3 which are specified by the parameters of the CIR processes
in Table 1. We assume that the spreads in Table 2 are the spreads quoted in the markets for A1, A2, A3

under consideration.
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Credit Risk Levels y0 κ µ Credit Risk Volatilities ν

Low 0.00001 0.9 0.001 Low 0.01

Middle 0.01 0.8 0.02 Low 0.01

High 0.03 0.5 0.05 High 0.5

Table 1: The credit risk levels and credit risk volatilities parameterizing the CIR processes

Maturity Low Risk Middle Risk High Risk

1 y 0 92 234

2 y 0 112 248

3 y 1 120 251

4 y 1 124 253

5 y 1 126 254

Table 2: Spreads in basis points generated using the parameters of the CIR processes.

Figure 1: Bilataral Risk Counterparty Value Adjustment Payer Investor

Figure 2: Bilataral Risk Counterparty Value Adjustment Receiver Investor
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Abstract

We propose an efficient pricing method for catastrophe bonds based on Fourier cosine expansions.
The bond is based on the PCS index which posts quarterly estimates of industry-wide hurricane losses.
The aggregate PCS index is analogous to losses claimed under traditional reinsurance in that it is used
to specify a reinsurance layer.
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1 Introduction

Earthquakes, hurricanes, tornadoes and hailstorms consist of the four most costly types of insured catas-

trophic perils in the United States. Of these, earthquakes and hurricanes pose the greatest catastrophic

risk generating on average $9.7 billion in claims annually from 1989 through 2001. Focusing specifically on

hurricanes; Hurricanes Katrina, Wilma, Rita, Ophelia and Dennis caused $52.7 billion in insured losses in

2005 amounting to nearly 93 percent of all losses from catastrophic perils that year. In addition, Hurricanes

Charley, Ivan, Frances and Jeanne produced $23 billion in insured losses in 2004. In contrast, Hurricane An-

drew alone caused $15.5 billion in insured damages in 1992. Insurance companies often require reinsurance

to limit their liabilities given the large capital requirements needed to cover these damages. Unfortunately,

capital in the reinsurance industry is also limited relative to the magnitude of these damages, creating large

fluctuations in the price and availability of reinsurance during years when catastrophic losses are exces-

sive. In response, reinsurance companies have recently turned to the capital markets by issuing risk-linked

securities in the form of CAT bonds 2 to provide the collateral necessary for reinsurance. If a specified

1speaker
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catastrophe does not occur (or if aggregate damages are less than a trigger level) before the maturity date

of the bond, the investors get the full face value of the bond plus very generous coupon payments. If the

specified catastrophe does occur (or if aggregate damages exceed the trigger level) before the maturity date,

the bond defaults resulting in either a partial or no payment to investors. Fortunately, the capital markets

are extremely large (approximately $31 trillion) relative to the scale of the property damage and can readily

absorb this risk.

Pricing models for catastrophic risk-linked securities have followed two main financial methodologies: the

theory of equilibrium pricing and the no-arbitrage valuation framework. Aase (1999), Cox and Pedersen

(2000) and Cox et al. (2000) used the theory of equilibrium pricing while Sonderman (1991), Cox and

Schwebach (1992), Cummins and Geman (1995), Geman and Yor (1997), Louberge et al. (1999), Lee and

Yu (2002), Dassios and Jang (2003), Romaniuk (2003), Burnecki and Kukla (2003), Cox et al. (2004),

and Hardle and Lopez Cabrera (2007) used the no-arbitrage framework. The primary inspiration for this

research follows from Cummins and Geman (1995) who focused on pricing catastrophe insurance futures

and call spreads which were traded on the Chicago Board of Trade between 1992 and 1999.

Frequency, magnitude and reinsurance layers

The frequency and magnitude of catastrophic events are arguably the two most important parameters when

engineering a CAT bond contract. The focus of this work is restricted to hurricane damages along the Gulf

and Atlantic coasts of the US. The frequency of landfalling hurricanes (and other catastrophic events) is

generally modeled using a discrete probability density function (PDF). Typically, this PDF is characterized

using a Poisson distribution where l denotes the event frequency. Cummins and Geman (1995) state that

the actuarial data indicate the event frequency of landfalling hurricanes along the Gulf and Atlantic coasts

of the US is λP = 0.5 per year. The superscript P denotes the probability measure. This value is adopted in

the base-scenario CAT bond model presented here. The potential damage caused by a landfalling hurricane

is estimated using a continuous PDF such as a lognormal or Pareto distribution. This means that there is

uncertainty in predicting the damage due to variability in wind speeds, response of insured property to the

wind load, and whether the hurricane strikes a developed area containing insured properties or not. Pielke

and Landsea (1998) used a lognormal distribution to fit historical insured and uninsured hurricane damages

after normalizing these data to 1995 values by adjusting for inflation, wealth and population. Accounting

for the latter two factors is particularly important as development along the Gulf and Atlantic coasts has

rapidly increased in recent years. The resulting annual hurricane distribution shows no trend, and Pielke

(2005) concludes that the escalating cost of hurricane damages is due only to increased societal vulnerability.

The base-scenario CAT bond model presented in this work utilizes, but is not restricted to, a lognormal

PDF. The formula for this PDF is:

g(η) =
e−(1/2)((ln η−µ)/γ)2

γη
√
2π

, (1)

where for the base-scenario, γP = 1.11 and µP = −2.54. This creates a distribution with a heavy tail, which

is typical of damages caused by catastrophic events. The uncertainty in damages is converted to risk by

multiplying η by the catastrophic claim amount C. For the base-scenario, CP = $40 billion, with the scaled

PDF for risk given as:

gP(ηCP) =
1

CP g
P(η). (2)
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Therefore, the mean damage is $3.15 billion with a 1% probability that damages will exceed $40 billion,

and a 0.4% probability that damages will exceed $60 billion. Collateral provided through the issue of CAT

bonds is typically targeted to provide reinsurance capacity against aggregate damages from catastrophic

events between 1-in-100 (1%per annum) and 1-in-250 (0.4%per annum) year recurrence intervals. This layer

is often not covered by traditional reinsurance because at this high severity low frequency level, buyers of

reinsurance become concerned about the credit risk of the reinsurer. In addition, reinsurance premiums at

this level are often uneconomical. The above definition denotes that information regarding both frequency

and magnitude are needed to specify a reinsurance layer.

Formulation of the CAT bond S − r component: According to [5], the formulation of the CAT bond

S − r component of the proposed CAT bond model is based on two stochastic processes: the PCS 3 index

S and the three-month LIBOR interest rater. To begin the derivation, the three-month LIBOR interest

rateris assumed to be constant. Therefore, the only stochastic variable is the PCS index S which is assumed

to follow a geometric Brownian motion (GBM) process with drift and jump diffusion (JD) as:

dS|GBM = αSdt+ σsSdW
Q,

dS|JD = ηCQdqQ, (3)

where α is the rate of damage appreciation as measured by the PCS index over time, and includes the effects

of inflation, population, wealth, and CAT coverage, σs represents volatility in the PCS index due to small

catastrophes and randomness in reporting claims to PCS between quarters, ηCQ denotes the jump in the

PCS index due to a large catastrophe, and dqQ is an increment of a Poisson process where in the interval

[t, t+ dt] :

dqQ =

{
1 with probabilityλQdt,
0 with probability1− λQdt.

(4)

Now, the total change in the PCS index variable S can be represented as:

dS|total = dS|GBM + dS|JD.

payoff structure: The proposed index-based CAT bond is a function of the augmented-state variable

A which represents the aggregate PCS index. A denotes the running sum of the stochastic variable S in

ananalogous manner to a discrete Asian option.

An =

M∑
n=1

Sn,

where An is the discrete running sum obtained by sampling S at n observation times t1, t2, ..., tM so that

Sn = S(tn). Following the earlier notation, the lower and upper reinsurance layers are given as Ll and Lu,

respectively. Now, the payoff condition is:
β = 1 A < Ll,

β = Lu−A
Lu−Ll

Ll < A < Lu,

β = 0 A > Lu,

(5)

where

B(A, T ) = β × Face Value, (6)

let Face Value = $1. (more information can be found in [6]).

3Property Claim Services
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2 Main results

Pricing of zero-coupon CAT bond:

Fourier integrals and cosine series: The point of departure for pricing of zero-coupon CAT bonds with

numerical integration techniques is the risk-neutral valuation formula:

B(x, t0) = e−r∆tEQ[B(A, T )|x] (7)

= e−r∆t

∫
R
B(A, T )f(A|x)dA,

where f(A|x) is the probability density of A given x, and r is the risk-neutral interest rate, and EQ is the

expectation operator under risk-neutral measure Q.

Inverse Fourier integral via cosine expansion. Since the density rapidly decays to zero as A −→ ∞
in (7), we truncate the infinite integration range without losing significant accuracy to [a, b] ⊂ R (more

information can be found in [2]), we obtain approximation B1:

B1(x, t0) = e−r∆tEQ[B(A, T )|x] (8)

= e−r∆t

∫ b

a
B(A, T )f(A|x)dA.

In the second step, since f(A|x) is usually not known whereas the characteristic function is, we replace the

density by its cosine expansion in A, so we have:

f(A|x) =
∞∑
k=0

Dk(x) cos(kπ
A− a

b− a
), (9)

Dk(x) =
2

b− a

∫ b

a
f(A|x) cos(kπA− a

b− a
)dA, (10)

B1(x, t0) = e−r∆t

∫ b

a
B(A, T )

∞∑
k=0

Dk(x) cos(kπ
A− a

b− a
)dA. (11)

We interchange the summation and integration, and insert the definition

Bk =
2

b− a

∫ b

a
B(A, T ) cos(kπ

A− a

b− a
)dA. (12)

Therefore, we have

B(x, t0) = e−r∆t
N−1∑
k=0

Re{ϕ( kπ

b− a
, x)e−ikπ a

b−a }Bk, (13)

with characteristic function ϕ.

We first explain the recursion procedure for recovering the characteristic function of the

Rj = log(
Sj

Sj−1
), j = 1, ..,M,

a stochastic process, Yj , is introduced, where Y1 = RM and for j = 2, ...,M we have

Yj := RM+1−j + log(1 + exp(Yj−1)),
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and we have that
M∑
j=0

Sj = (1 + exp(YM ))S0.

Here, however, we will recover the characteristic function of YM instead, by a forward recursion procedure,

which is then used in turn to recover the transitional density of the European-style arithmetic mean of the

underlying process in the risk-neutral formula (14). The CAT bond price is now defined as:

B(x0, t0) = e−r∆t

∫ +∞

−∞
B(y, T )fYM

(y)dy. (14)

Recovery of characteristic function. We apply the Fourier cosine expansion to approximate fYj−1(x),

giving

ϕ̂Zj−1 =
2

b− a

N−1∑
l=0

Re(ϕ̂Yj−1(
lπ

b− a
) exp(−ia

lπ

b− a
).

∫ b

a
(ex + 1)iu cos((x− a)

lπ

b− a
)dx, (15)

ϕ̂Yj−1 is an approximation of ϕYj−1 .

Φj−1 = MDj−1,

using

Φj−1 = (Φj−1(k))
N−1
k=0 , Φj−1(k) = ϕ̂Zj−1(uk), uk =

kπ

b− a
, k = 0, ..., N − 1

M = (M(k, l))N−1
k,l=0, M(k, l) =

∫ b

a
(ex + 1)iuk cos((x− a)ul)dx,

Dj =
2

b− a
(Dj(l))

N−1
l=0 , Dj(l) = Re(ϕ̂Yj−1(ul) exp(−iaul)).

Pricing of CAT bond:

B̂(x, t0) = e−r∆t
N−1∑
k=0

Re(ϕ̂YM
(

kπ

b− a
)e−ikπ a

b−a )Bk. (16)

Clenshaw-Curtis quadrature. In this section, we denote by nq the number of terms in the Clenshaw-

Curtis quadrature (q stands for quadrature). We discuss the efficient computation of matrix M in (15). An

important feature is that matrix M remains constant for all time steps tj , j = 1, ...,M − 1, so that we need

to calculate it only once. Its elements are given by:

M(k, l) =

∫ b

a
(ex + 1)iuk cos((x− a)ul)dx, k, l = 0, ..., N − 1, (17)

Here (17) is approximated numerically by the Clenshaw-Curtis quadrature rule, which is based on an ex-

pansion of the integrand in terms of Chebyshev polynomials (as proposed in [1]). The Clenshaw-Curtis as

well as the Gaussian quadrature rules exhibit an exponential convergence for the integration in (17), but

the Clenshaw-Curtis quadrature is preferred here, since it is computationally cheaper. In [1], it is shown

when using the Clenshaw-Curtis quadrature rule to compute matrix M (only once, used for all time steps),

the total computational complexity is thus O(nq log2 nq) + O(nqN
2). Furthermore, at each time step tj ,

we need O(N2) computations for the matrix-vector multiplication (15) and O(N) computations to obtain

ϕ̂Yj . The computational complexity for this task is thus O(MN2). The overall computational complexity of
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pricing methode for CAT bond is then O(nq log2 nq) +O(nqN
2) +O(MN2). The number N2 is in practice

much larger than log2 nq. The overall complexity is then of order O((nq +M)N2). In [7], it is proved that

for most exponential Levy processes, the Fourier cosine expansion exhibits an exponential convergence rate

with respect to N. For the integrand in (17) the Clenshaw-Curtis quadrature converges exponentially with

respect to nq. Therefore, the pricing method is an efficient alternative to the method proposed in [3], which

requires O(MN̄2) computations (N̄ being the number of points used in the quadrature in [3]), with N̄ > nq,

as well as N̄ > N , for the same level of accuracy.
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Abstract

The present paper addresses the issue of the stochastic control of the optimal dynamic reinsurance
policy and dynamic dividend strategy, which are state-dependent, for an insurance company that operates
under multiple insurance business lines. The aggregate claims model with a thinning-dependence structure
is adopted for the risk process. In the optimization method, the maximum of the cumulative expected
discounted dividend payouts with respect to the dividend and reinsurance strategies are considered as value
function. This value function is characterized as the smallest super Viscosity solution of the associated
Hamilton-Jacobi-      Bellman (HJB) equation.

Keywords: Thinning dependence; Hamilton-Jacobi-Bellman equation; Viscosity solution; Dynamic pro-
gramming principle
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1 Introduction

Suppose a insurance company based on a dynamic strategy distributes a ratio of its dividend amongst the
shareholders and transfers a part of its risk to a secondary insurance company by a dynamic reinsurance
strategy. The dividend and reinsurance strategies are shown as {Dt}t≥0 and {Rt}t≥0, respectively. A
paramount issue for an insurance company is the optimization of these strategies. For this reason, first an
objective function should be considered and then {Dt}t≥0 and {Rt}t≥0 strategies should be found as such
that the objective function is optimized. A very common function in literature is the cumulative expected
discounted dividends which is displayed as V (.). In the following, we will outline some research on thinning-
dependence structure and optimization V (.) with respect to the dividend and reinsurance. Some studies
have addressed this issue(e.g. [2] and [3]).
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2 Khaled Masoumifard, Mohammad   Zokaei

2 Problem formation

A control strategy is a process π = (R, D) where R is a vector of reinsurance strategies and Dt is a dividend
strategy. Reinsurance can be an effective way to manage risk by transferring risk from an insurer to a
second insurer (referred to as the reinsurer). A reinsurance contract is an agreement between an insurer
and a reinsurer under which, claims that arise are shared between the insurer and reinsurer. Let a Borel
measurable function R : [0,∞) −→ [0,∞), be called retained loss function, describing the part of the claim
that the company pays and satisfies 0 ≤ R(α) ≤ α. The reinsurance company covers α − R(α), where the
size of the claim is α. Now assume that in order to reduce the risk exposure of the portfolio, the insurer
can take reinsurances in a dynamic way for some insurance lines, each of these reinsurances is indexed by
{1, · · · , n}. We denote by F the vector (F1, · · · ,Fn), in which Fi is the family of retained loss functions
associated to the reinsurance policy in i’th line. Thus, the reinsurances control strategy is a collection
R = (Rt)t≥0 = (R1t, · · · , Rnt)t≥0 of the vector functions Rt : Ω → F for any t ≥ 0.

Well-known reinsurance types are:

(1) Proportional reinsurance with RP (α) = bα,

(2) Excess of loss reinsurance (XL) with RXL(α,M) = min{α,M}, 0 ≤ M ≤ ∞.

(3) Limited XL reinsurance (LXL) with RLXL(α,M) = min{α,M}+ (α−M − L)+, 0 ≤ M,L ≤ ∞.

The numbers M and L are named priority and limit, respectively.
A dividend strategy is a process D = (Dt)t≥0 where Dt is the cumulative amount of dividends paid out

by the reinsurance. Denote by Πx the set of all control strategies with initial surplus x ≥ 0. Now, for any
π ∈ Πx, the surplus process can be written as

Xπ(t)
st
= x+

∫ t

0
pRsds−

N ′
t∑

i=1

Zi −Dt (1)

where N ′
t is a Poisson process with calim arrival intensity β =

∑m
i=1 βi and the Zi are i.i.d random variable

with distribution

GR(α) =
n∑

j=1

(
n
j

)∑
k=1

[ m∑
i=1

βi∑m
i=1 βi

∏
z∈An

jk

piz
∏

z∈Sn−An
jk

(1− piz)

]
FRAn

jk
(α) (2)

where FRAn
jk
(α) = p(

∑
z∈An

jk
Rz(Uz) ≤ α). The time of ruin for this process is defined by

τπ = inf {t ≥ 0 : Xπ(t) < 0} . (3)

In this paper, we assume that the reinsurance calculates its premium using the expected value principle
with reinsurance safety loading factor η1 ≥ η > 0:

qR = (1 + η1)(
m∑
i=1

βi)E(Y − Z) = (1 + η1)(

m∑
i=1

βi)

(∫ ∞

0
αdG(α)−

∫ ∞

0
αdGR(α)

)
and so pR = p− qR, where

p = (1 + η)(

m∑
i=1

βi)E(Y ) = (1 + η)(

m∑
i=1

βi)

∫ ∞

0
αdG(α).
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Stochastic optimization of the reinsurance and dividend in correlated multiple insurance business lines 3

A limitation of the existing in this model is the implicit or explicit assumption that the insurers produce
only one type of insurance, even though most insurers produce multiple types of coverage (e.g., automobile
insurance, general liability insurance, fire insurance, workers’ compensation insurance, etc.). The depen-
dency can be introduced between the processes through thinning: suppose that an insurance company has
n (n ≥ 2) lines of business and stochastic sources that may cause a claim in at least one of the n lines are
classified into m class. It is assumed that each event in the kth class may cause a claim in the jth line with
probability pkj for k = 1, 2, · · · ,m and j = 1, 2, · · · , n. Regarding an admissible control strategy (πt)t≥0

and an initial reserve x ≥ 0, we define the following value function:

V π(x) = Ex

[ ∫ τπ

0
e−δsdDs

]
.

Our aim in this paper is to extend this result for the model described earlier, in other words, we are looking
for

V (x) = sup
π∈Πx

V π(x). (4)

To obtain the Hamilton-Jacobi-Bellman (HJB) equation associated with the value function (4), we need to
state the so-called Dynamic Programming Principle (DPP). So, the HJB equation can be written as

max{1− V ′(x), sup
F

LR(V )(x)} = 0. (5)

where

LR(V )(x) = pRV ′(x)− (δ +
m∑
i=1

βi)V (x) + (
m∑
i=1

βi)

∫ x

0
V (x− α)dGR(α). (6)

2.1 Dividend band strategy with reinsurance

Let A, B, and C are disjoint sets with A ∪ B ∪ C = R+, we say P = (A,B, C) is a band partition if A is
closed, bounded, and nonempty; C is open from the right; B is open from the left, the lower limit of any
connected component of B belongs to A, and there exists b ≥ 0 such that (b,∞) ∈ B.

Definition 2.1. Consider an initial surplus x ≥ 0, a stationary reinsurance control rx = (rx1 , · · · , rxn), and
a band partition P = (A,B, C). An admissible control strategy πx = (Rx, Dx) = (Rx

t , D
x
t )t≥0 ∈ Ππ

x is define
as follows,

• if x ∈ A, we set Dx
t = prt =

∑n
i=1 prxi t and Rx

t = rx. Afterward, follow the strategy corresponding to
initial surplus x − rx(U1) where U1 is the size of first claim and rx(U1) =

∑n
i=1 r

x
i (U1)IU1∈Li , where

U1 ∈ Li indicates that U1 is a claim from the line i.

• if x ∈ B, there exists x0 ∈ A such that (x0, x) ⊂ B, then we set Lx
0 = x− x0 and Rx

0 = rx. Afterward,
follow the strategy corresponding initial surplus x0.

• if x ∈ C, there exists x1 ∈ A such that (x1, x) ⊂ B. Then Dx
t = 0 and Rx

t = rXt− up to τ ′ = inf{t :
Xt /∈ C}. Afterward, follow the strategy corresponding initial surplus Xτ ′ .

The family π(P, r) = {(Rx, Dx) ∈ Ππ
x, x ≥ 0} is called the reinsurance band strategy associated with P and

r.
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3 Main results

In this section, we state a comparison result between viscosity subsolutions and supersolutions of (5) with
a suitable boundary condition that gives us the uniqueness of viscosity solution. Also, we characterize the
optimal value function as the smallest supersolution of the HJB equation.

Definition 3.1. We say that a function u : [0,∞) → R belongs class L if satisfies

(i) u is locally Lipschitz,

(ii) if 0 ≤ x < y, then u(y)− u(x) ≥ y − x, and

(iii) there exists a constant k > 0 such that u(x) ≤ x+ k for all x ∈ [0,∞).

We also define; L∗ ={ u : u is viscosity solution of (5) and belongs to L}.

It is interesting to note that if u is of class L, then u is strictly positive, linearly bounded, nondecreasing
and absolutely continuous.

Proposition 3.2. The optimal value function V (x) = sup
π∈Πx

V π(x) is the smallest viscosity supersolution of

(5) that belongs to L.

These results allows us to characterize V as the unique viscosity solution of (5) with boundary condition
V (0) = infu∈L∗ u(0). From the previous proposition we can deduce the usual viscosity verification result: If
we can find a stationary reinsurance strategy π = (Rx, Dx) ∈ Πx such that V π is a viscosity supersolution
of (5), then V (x) = V π(x); because V (x) ≥ V π(x) and by above proposition V (x) is the smallest viscosity
supersolution of (5). Now we can show that the optimal control strategy is a reinsurance band strategy.

Theorem 3.3. Let the vector F = (F1, · · · ,Fn), where Fi is one of the reinsurance families; proportional
reinsurance family (FP ), excess of loss reinsurance family (FXL) and limited excess of loss reinsurance
family (FLXL). Then, there exists an admissible reinsurance control R∗ ∈ F such that π(P∗,R∗), the
reinsurance band strategy associated to P∗ and R∗, is optimal.

4 Numerical results

Now, we obtain numerically some examples by using the above algorithm.

Example 4.1. Let insurance company has three lines of business such that it’s risk process has the Thinning-
dependence structure, Fi(x) = 1 − e−λix, i = 1, 2, 3, and λ1 = 0.5, λ2 = 3, λ3 = 2, β1 = 8, β2 = 4, β3 =

5, η = 3, η1 = 3.5, p11 = 1, p12 = 0.06, p13 = 0.05, p21 = 0.03, p22 = 1, p23 = 0.01, p31 = 0.007, p32 =

0.005, p33 = 1.0 and δ = 0.3. The reinsurance strategy in ith line is depicted by Ri. As was mentioned
before, if Ri ∈ Fp then Ri(y) = bi(.)y and if Ri ∈ FXL then Ri(y) = min(y,Mi(.)), where bi(.) and Mi(.)

are functions of the company’s capital. If the insurance company considers a reinsurance contract for three
lines, the optimization issue will be equal with the uni-dimensional model scrutinized by [?]. Using the
recently explained numerical method, the following results are gleaned,

(i) if Ri ∈ Fp, i = 1, 2, 3, then, P =
(
{12.26}, (12.26,∞), [0, 12.26)

)
,
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(a) (b)

(c) (d)

Figure 1: The numerical solution of the optimal reinsurances with h = 0.02, (a) The optimal results when
three proportional reinsurances are used for three lines, (b) The optimal results when three XL reinsurances
are used for three lines, (c) The optimal result when one proportional reinsurances is used for three lines,
(d) The optimal results when one XL reinsurance is used for three lines

Figure 2: Survival functions
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(ii) if Ri ∈ FXL, i = 1, 2, 3, then, P =
(
{10.44}, (10.44,∞), [0, 10.44)

)
,

(iii) if R1 = R2 = R3 ∈ Fp, then, P =
(
{12.3}, (12.3,∞), [0, 12.3)

)
,

(iv) if R1 = R2 = R3 ∈ FXL, then, P =
(
{10.64}, (10.64,∞), [0, 10.64)

)
.

Also, optimization results for the value functions and reinsurance strategy are reported in Figures 1 and
2.
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Abstract 
 

Artificial Intelligence and Machine Learning techniques have always been popular for use in Automated 
Trading systems. This study aims to Design an Automated Trading system using image processing by a 2D 
Convolutional Neural Network. To do this, at first 28 technical analysis indicators are selected and the values of 
each are calculated. These values convert to 2D images, as a result, we have a 28×28-dimension image for each 
point in the time series of price data. Then, each image is labeled with buy, sell or hold. These data are entered to 
the convolutional neural network. The results show that in 80% of cases, the return of this method is higher than 
the Buy & Hold strategy. Also, in terms of standard deviation and maximum Drawdown, performed better. 

 
Keywords: Algorithmic Trading, Artificial Intelligence, Deep Learning, Convolutional Neural Network, Technical 
Analysis   

 
 
 
 
1 Introduction 
 

Recent years can be called the years of increasing use of algorithmic trading systems in financial markets 
around the world. Currently, a large number of trades in financial markets are executed by algorithms. The growing 
presence of algorithmic trading systems and the need for new systems and algorithms with different functions, have 
increased the demand of various institutions for the feasibility, design and development of automated trading 
systems in various countries, and recently in Iran. The main advantage of such systems for investors is the speed 
and accuracy of information analysis and decision making without interfering with emotions. 

In literature, different machine learning models have been used to predict future values. Traditional machine 
learning models are very popular to predict the stock markets. Some research has directly implemented timeseries 
predictions on financial data, while others have used technical analysis data and fundamental analysis to improve 
prediction performance. Artificial neural network models, genetic algorithms, fuzzy rule systems, and hybrid 
models were among the best choices. 

In recent years, deep learning-based prediction/classification models started emerging as the best performance 
achievers in various applications, outperforming classical computational intelligence methods like SVM. However, 
image processing and vision-based problems dominate the type of applications that these deep learning models 
outperform the other techniques [1]. Some researchers have used deep learning techniques such as Recurrent 
Neural Network (RNN), Convolutional Neural Network (CNN), and Long-Short Term Memory (LSTM). But the 
use of deep neural techniques in financial forecasting models has been very limited. 
 

Gudelek et al. [2] used 28 technical analysis indicators to create images for each day of the price timeseries 
data of 17 index funds. Then they labeled these images, once with buy and sell labels, and once again with the buy, 
sell and hold labels. They imported these images to the CNN model to predict the test data labels. They considered 
the train data from 2000 to 2014, and the results on the test data from 2015 to 2017 showed that the return of this 
method is higher than the Buy & Hold method. Sezer and Ozbayoglu [3] also used 15 technical analysis indicators 
on Dow Jones stocks and a number of ETFs to create images. They labeled these images with buy, sell and hold 
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labels and entered them to the CNN model. like the research by Goodluck et al. [2], the results of this research 
showed that in many cases, the return of this method is higher than other methods. In another research, in order to 
predict buy, sell and hold labels, Sezer and Ozbayoglu [4] used a different approach to creating images than their 
previous research. As in previous research, they found that their method was more profitable than the Buy and 
Hold method. 

 
The model presented in this study is designed for trading in the stock market. For this purpose, a number of 

Tehran Stock Exchange stocks are selected as samples from the entire market. According to the proposed model of 
this research, to select from all the market stocks, the following items are considered as criteria for stock selection: 
Number of data (trading days), Lack of price gap in price data history and Distribution in selected industries. This 
data was provided by Noavarane Amin Financial Information Processing Company. 
 
 

Table 1: Selected stocks  

Thicker Industry Start date End date Number 
of data 

Average 
Annual 
Return 

StdDev Skewness Kurtosis 

         
Cefars Cement 1380/01/05 1398/05/30 3866 0.45920 0.02572 0.66276 57.1232 

Felooleh Basic metals 1380/01/06 1398/05/30 3424 0.49078 0.02764 -0.39341 24.8828 
Kerooy Metallic ores 1380/01/20 1398/05/30 3732 0.43775 0.03019 1.93337 42.6031 
Khodro Auto manufacturer 1380/01/05 1398/05/30 3827 0.441308 0.02456 -1.75556 59.1761 

Shebehran Petroleum 1380/01/27 1398/05/30 3691 0.533963 0.01931 1.83715 18.1807 
 
 

After receiving the data, the label of each data is determined. In this study, the local minimum and local 
maximum points are determined through an 11-day trailing window. local minimum points receive buy labels and 
the local maximum points receive sell labels. The rest of the points that are neither local maximum nor local 
minimum, receive hold labels. 
 

The CNN model receives images as input. To create these images, we use the following technical analysis 
indicators. These indicators have been selected based on previous researches. 
 
 

Table 2: Technical analysis indicators and their parameters for creating images  
Name Parameters Number 

   
tanh ((second differential(close))) - 1 

Volume - 1 
RSI 15-20-25-30 4 

SMA 15-20-25-30 4 
MACD 26،12 - 28،14 - 30،16 3 

MACD trigger 9،26،12 - 10،28،14 - 11،30،16 3 
William %R 14-18-22 3 

Stochastic Oscillator 14-18-22 3 
Ultimate Oscillator 7،14،28 – 8،16،22 – 9،18،36 3 

MFI 14-18-22 3 
 
 

after calculating the above table values for all trading days of selected stocks, we normalize each of these 28 
features between -1 and 1. 

Now, we can create images. To do this, we create a 28×28 matrix for each day of the stock price. First, we 
consider the twenty-eighth days ago. We put all 28 features listed in the table above for this day in the first column 
of the matrix. Now we go one day ahead, the twenty-seventh day, and we put the values of all these 28 features for 
this day in the second column of the matrix. We go ahead until the 28th column of the matrix that shows the current 
day and do the same. Now we have a 28x28 matrix.  
 

The approach of this research for splitting data into train and test sets is adopted by Cross Validation method. 
To this end, we split each timeseries data into a number of batches with 250 Data. For example, we divide the 
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Khodro time series data into 12 subsets with 250 Data. Now we consider the first five batches as the training set 
and the next batch as the testing set. In the next step we will move 1 batch forward and repeat the same thing again. 

 
Another important point is the data imbalance. The number of buy and sell labels is much lower than the 

number of hold labels. So, we need to increase the number of buy and sell labels. There is no specific formula to 
determining the best ratio of each labels number to total labels number, but generally the closer the ratios are to 
each other, the better. To increase these ratios, we duplicated the data labeled buy and sell. 

 
Finally, we create the model. In this study, a CNN model was used. A Convolutional Neural Network (CNN) is 

a Deep Learning algorithm which can take in an input image, assign importance (learnable weights and biases) to 
various aspects/objects in the image and be able to differentiate one from the other. The pre-processing required in 
a CNN is much lower as compared to other classification algorithms. While in primitive methods, filters are hand-
engineered, with enough training, CNN have the ability to learn these filters/characteristics. 

In general, the four main layers that make up a CNN network are: Convolution layer, Pooling layer, Dropout 
layer and fully connected layer. Each layer has its own different task. Model training in each convolutional neural 
network, like other neural networks, consists of two steps, feed forward and backpropagation. In the first step, or 
feed forward, the input images are imported into the network. This is actually is a point multiplication between the 
input image data and the parameters of each neuron. Next, the convolution operation applies to each layer and then 
the network output calculates. Now to adjust the network parameters, the error rate is calculated using the result of 
the computational output. To do this, the output of the network compared with the correct response using an error 
function. in the next step, according to the calculated error rate, the backpropagation phase begins. During this step, 
according to the chain rule, the gradient of each parameter is calculated, and then all the parameters are changed 
according to the effect that each parameter has on the error in the network. Finally, after updating the parameters, 
the next step of feed-forward begins. After a good number of these steps have been repeated, the network training 
will end. The proposed model of this research is as follows: 
 
 

 
Figure 1: The proposed CNN model 

 
  
2 Main results 
 

After 75 epochs, account Balance and Recall ratio will decrease. So, we consider 75 epochs as the optimal 
number of epochs and examine the model and results with this number of epochs. 
 
 

Table 3: Confusion Matrix and Related ratios for Khodro stock  
   Predicted  
  Hold Buy Sell 
     
 Hold 1269 135 148 

Actual Buy 18 78 0 
 Sell 8 0 94 
     
 Recall 0.8176 0.8125 0.9215 
 Precision 0.9799 0.3661 0.3884 
 F1 Score 0.8914 0.5048 0.5465 
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In all stocks, Recall shows a high percentage, but Precision is low. This can be for two reasons. The first reason 
is over-fitting of the model. As the epochs increases, the model identifies other data with hold labels as buy and 
sell. Because the number of buy and sell labels in the test set is 10% of the total label numbers. This shows the 
imbalance in the data. The second reason is the similarity of hold labels points with near points that have buy and 
sell labels. The value of technical analysis indicators at these points is approximately close to the points with buy 
and sell labels, and the model classify them as buy and sell. 

 
Table 4: Financial Results  

  CNN without 
Commission 

CNN with 
Commission Buy & Hold 

     
Average Annual Return Cefars 0.2331 0.0389 0.1568 

 Felooleh 0.2249 0.0396 0.1982 
 Kerooy 0.2886 0.0939 0.2559 
 Khodro 0.3047 0.1261 0.1621 
 Shebehran 0.3108 0.1014 0.4274 
     

StdDev Cefars 0.0712 0.0702 0.1376 
 Felooleh 0.0780 0.0768 0.1775 
 Kerooy 0.0834 0.0821 0.1450 
 Khodro 0.0962 0.0948 0.1725 
 Shebehran 0.0750 0.0739 0.1456 
     

Maximum Drawdown Cefars 0.3068 0.7911 2.1466 
 Felooleh 0.2067 0.6187 1.2003 
 Kerooy 0.4722 0.5402 0.5478 
 Khodro 0.4711 0.6091 1.2874 
 Shebehran 0.2494 0.8407 0.6762 

 
 

 
Figure 2: Account balance for Khodro (left) and Kerooy (right) stocks. It can be seen that the account balance 

without commission (green) is much higher than it with commission (orange). Account balance for Buy and Hold 
strategy shown in blue. 

 
 
It can be seen that the return of the CNN model without commission for Cefars, Felooleh, Kerooy and Khodro 

stocks is higher than other methods. because of the commission, the return of the CNN model with commission in 
every 5 stocks, is the lowest compared to other methods. The reason of this, is in the average return of each trade. 
The average return of each trade, for example on Cefars, is 2.3%. Given the 1.4% commission, much of the return 
is spent on commission. In the case of the risk, the maximum drawdown of the CNN model without commission in 
all stocks, is lower than other methods. 

On the other hand, the results show that the CNN methods have been idle for more than 50% of the test period. 
That's mean, in some periods there is no stock in the portfolio. This also indicates that the model does not utilize 
the maximum available resources. Improvements in this area can increase the return of the CNN methods. 

 

182



 
Designing an Automated Trading System Using Image Processing by a Convolutional Neural Network                     

 
 

 
 

References 
 
[1] Canziani A, Paszke A, Culurciello E. An analysis of deep neural network models for practical applications. 

arXiv preprint arXiv:1605.07678. 2016 May 24. 
 

[2] Gudelek MU, Boluk SA, Ozbayoglu AM. A deep learning-based stock trading model with 2-D CNN trend 
detection. In2017 IEEE Symposium Series on Computational Intelligence (SSCI) 2017 Nov 27 (pp. 1-8). IEEE. 

 
[3] Sezer OB, Ozbayoglu AM. Algorithmic financial trading with deep convolutional neural networks: Time series 

to image conversion approach. Applied Soft Computing. 2018 Sep 1; 70:525-38. 
 

[4] Sezer OB, Ozbayoglu AM. Financial Trading Model with Stock Bar Chart Image Time Series with Deep 
Convolutional Neural Networks. arXiv preprint arXiv:1903.04610. 2019 Mar 11. 

 
 
Email: amirhoseinyaftian@modares.ac.ir  
Email:  ma_rastegar@modares.ac.ir 
 
 
  
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

183

mailto:second@university.ac.ir


Model Selection for Value at Risk with Machine Learning Methods

MohammadTaha Hoveizavi1

Kharazmi University, Tehran, Iran

Hirbod Assa

Institute for financial and actuarial mathematics University of Liverpool, UK

Seyed-Mohammad-Mahdi Kazemi

Department of Financial Mathematics, Faculty of Financial Science, Kharazmi University, Tehran, Iran

Abstract

Risk measurement plays an important role in quantifying risk and risk management. Value at risk is
one of the most popular measures that is used in risk management. Various methods have been developed
to calculate Value at Risk of a risk capital according to different economic conditions. So it is important
to find the best calculation method for different. In this Paper The main idea is to use Machine Learning
Methods for forecasting backtesting on the S&P 500 index VaR models.

Keywords: Value at Risk, Machine Learning, Backtesting.

1 Introduction

Risk measurement plays an important role in quantifying risk and risk management. Value at Risk is the
maximum amount of loss over a given horizon of time at a certain confidence level[1]. According to the
definition of VaR, a variety of methods have been developed for calculating VaR, that can be categorized
into three separate groups, parametric methods, semi-parametric methods, and non-parametric methods[2].
Parametric methods represent a group of methods that consider a specific distribution to calculate Value at
Risk. By assuming a normal distribution for return data VaR can be simply calculated as follow[2], formula
(1):

VaRt = −Pt−1(µt − σZα). (1)

Where here V aRt is value at risk at Time t, −Pt−1 is the stock price at time t − 1, µt is the return
average for period t, σ is the standard deviation for the period t and Zα is the normal standard amount in
1−α percent of confidence level. Hereinafter, called the Value at Risk with the normal distribution at 95%
confidence level NormalV aRα.

Semi-parametric methods have been proposed to estimate VaR, such as application of Extreme Value
Theory [3], Historical and Monte Carlo simulation. They are two models based on non-parametric methods
that do not assume any distribution for data[2]. Various statistical tests have been developed to validate VaR
methods, Binomial test(Bin)[4], Proportion of failures test(pof)[5], Conditional coverage mixed test(CC)[6],
Conditional coverage independence test(CCI)[6], Time between failures mixed test(TBF)[7], Time between
failures independence test(TBFI)[7], and Time until first failure test(TUFF)[8] are Seven of the most impor-
tant of these tests. These statistical tests are the major backtesting methods and are based on last failures.
Figure 3.
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Figure 1: Value at Risk Parametric methods calculated for S&P500 Index from Jan 2000 to Jan 2003.

Machine learning is a statistical tool endowed with computer programming techniques to optimize a
performance criterion using example data or past experience[9]. With the advancement of science, the usage
of machine learning techniques has increased with the goals of data processing and pattern recognition.
There are a lot of problems in finance that have been solved with machine learning techniques, Robert
Culkin Sanjiv R. Das (2017) have been used machine Learning to solve high dimensional Black and Scholes
(1973) option pricing formula[10], Chongda Liu, Jihua Wang, Di Xiao, Qi Liang (2016) have been tried to
forecast S&P500 Movement, they achieved 63 percent accuracy[11]. In this paper, we aim to select the best
VaR method in various economic situations and different times. As we said there are some statistical tests
that are known as backtesting methods where we can use them to evaluate VaR performance, in Figure2 we
can see the results of the backtesting method for NormalV aR95 . Our idea to choose the most appropriate
VaR method is to use Machine Learning Classification to predict backtesting Tests for Value at Risk methods
in the next 5 days horizon. In this prediction, the method that has been succeeded to be accepted from
each of these seven tests is selected as the appropriate method for calculating VaR on the desired day.

Figure 2: Backtesting results on S&P500 NormalV aR95 for eleven consecutive days using a 250-day moving
window.

2 Main results

In this paper, we have tried to find the best VaR method at different times via forecasting the Backtesting
tests with Machine Learning methods. So we have to assess the performance of the classification methods.
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The data used are related to the SP500 index. Features are the p-value of Backtesting methods. The
target is zero when the VaR method is accepted and is one if the Backtesting method rejects VaR method.
Table 1 shows the quality measures for the test set for each classication technique. We use classification

Figure 3: General flowchart of the proposed methodology.

for forecasting POF test with setting 75% of data as train set and 25% of data as test set. Metrics such as
Accuracy, Precision, Recall, and F1-Score are key factors for choosing an algorithm, therefore we use the
Multiplication of these factors to select the best classifier.

Table 1: Train results for prediction with some of machine learning methods, in this table we set Normal-
VaR95’s POF test as the target
Classification Method Train Test TN FN TP FP Acc F1 precision Recall

KNN 187 63 59 0 1 3 0.9523 0.4 0.25 1
SVM 187 63 59 0 0 4 0.9365 0 0 0
Gaussian naive bayes 187 63 55 4 4 0 0.9365 0.66 1 0.5
Decision Tree 187 63 59 0 4 0 1 1 1 1
Logistic regression 187 63 59 0 0 4 0.9365 0 0 0
Random Forest 187 63 59 0 3 1 0.9841 0.8571 0.75 1
AdaBoost 187 63 59 0 4 0 1 1 1 1
Balanced Random Forest 187 63 52 7 4 0 0.8888 0.5333 1 0.3636

Table 2: Metrics results for predicting Backtesting tests with the best classifier selected in Table 1

Target Train Test TN FN TP FP Acc F1 precision Recall

Bin 187 63 34 0 29 0 1 1 1 1
POF 187 63 59 0 4 0 1 1 1 1
TUFF 187 63 59 0 3 1 0.9841 0.8571 1 0.75
CC 187 63 38 0 25 0 1 1 1 1
CCI 187 63 35 0 28 0 1 1 1 1
TBF 187 63 42 3 18 0 0.9523 0.9655 0.9333 1
TBFI 187 63 39 1 23 0 0.9841 0.9873 0.975 1

After picking the best classifier for each NormalV aR95 target in Table 2 we can predict these targets
for the 7 coming days. If the predicted Backtesting methods accepted the NormalV aR95 our machine will
offer to use NoemalV aR95 for calculation Value at Risk. Otherwise, the machine will run this algorithm on
another VaR calculation method. we have used a moving window for training the machine from historical
data to choosing the best VaR calculation method, utilizing a moving window and regarding the methodology
suggested in Figure 3 we calculated VaR for 28 days And we’ve only been violated (we define violation as the
time when the return is less than the Value at Risk) for 4 days this means that we achieved approximately
85% accuracy.
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According to the importance of risk managementand and the vast usage of VaR methods to quantifying
Risk has made it important to select the best VaR method, the methodology proposed in this paper improved
this cited selection problem.
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