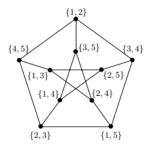
Differential Topology

Project The Chromatic Number of Kneser Graphs

Let $k \leq n$ be two positive integers. We define the *Kneser Graph* associated to these parameters, which is denoted by K(n,k) as follows. Consider all the k-element subsets of $\{1,2,\ldots,n\}$ as the vertices and connect two vertices corresponding to two subsets A and B with an edge if and only if $A \cap B = \emptyset$. Verify that there are exactly $\binom{n}{k}$ vertices. For example, the graph below is the Kneser graph for n=5 and k=2.



Obviously if 2k > n the graph has no edges, and so we assume $n \ge 2k$.

By a (vertex) coloring of a graph G, we mean associating colors to its vertices so that any two adjacent vertices have different colors and *chromatic* number of G, denoted by $\chi(G)$, is the minimum number of colors so that such coloring exists.

- a) Show that vertices of K(n,k) can not be colored with less than $\frac{n}{k}$ number of colors $(n \ge 2k)$.
- b) Show that if n = 2k + d for some integer $d \ge 0$, K(n,k) has a coloring with d + 2 colors and so $\chi(K(n,k)) \le d + 2$.

Now our goal is to show the reverse inequality $\chi(K(n,k)) \geq d+2$ (where $n=2k+d\geq 2k$). For this purpose, suppose that the vertices of K(n,k) are colored in d+1 colors $c_1, c_2, \ldots, c_{d+1}$ and we want to show that there are two adjacect vertices of the same color (two disjoint k-element subsets of the same color).

Take n=2k+d points on the unit sphere $\mathbb{S}^{d+1}\subseteq\mathbb{R}^{d+2}$ in general position (i.e. no d+2 points of them lie on a proper linear subspace of \mathbb{R}^{d+2}). Label these points with $1,2,\ldots,n$ arbitrarily. For any point $x\in\mathbb{S}^{d+1}$ let H_x be

the open hemishpere with pole x.

For any color c_i $(1 \le i \le d+1)$ define O_i to be the set of all points $x \in \mathbb{S}^{d+1}$ such that H_x contains k points with labels t_1, \ldots, t_k so that $\{t_1, \ldots, t_k\}$ is colored by c_i .

- c) Show that each O_i $(1 \le i \le d+1)$ is an open set of \mathbb{S}^{d+1} .
- d) Show that $\mathbb{S}^{d+1}\setminus (O_1\cup\cdots\cup O_{d+1})$ can not contain two antipodal points.
- e) Use Borsuk-Ulam theorem to show that at least one of O_i 's contains two antipodal points and show that this is in contradiction with the assumption of coloring with d+1 colors. This finishes the proof $\chi(K(n,k)) = n-2k+2$.

References

[AZ] Martin Aigner, Günter M Ziegler, and Alfio Quarteroni. Proofs from the Book, volume 274. Springer, 2010.