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Basic topological notion

Definition

Let (X ,T ) be a topological dynamical system, X a compact metric

space. An automorphism � : X ! X is an homeomorphsim s.t.

� � T = T � �.

Aut(X ,T ) = {� automorphism of (X ,T )}.

hT i ⇢ Aut(X ,T )
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Basic topological notion

Let A be a finite alphabet.
Let X ⇢ A

Z be a subshift invariant by the shift

� : X ! X

(xn)n2Z 7! (xn+1)n2Z

Theorem (Curtis-Hedlund-Lyndon)

Let � be an automorphism of (X ,�)
There exists a local map �̂ : A2r+1 ! A s.t.

�(x)n = �̂(xn�r . . . xn+r ) for any n 2 Z.

� is a cellular automata.
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Main theorem

The complexity pX : N ! N, pX (n) = ] words of length n in X .

(X ,�) is minimal if any orbit is dense in X .

Theorem (DDMP)

Let (X ,�) be a minimal subshift. If

lim inf
n

pX (n)

n

< +1,

then Aut(X ,T )/hT i is finite.
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Main theorem

Theorem (DDMP)

Let (X ,�) be an aperiodic minimal subshift. If

lim inf
n

pX (n)

n

< +1,

then Aut(X ,T )/hT i is finite.

Example. Primitive substitutive subshifts:
e.g. Tribonacci substitution

⌧(1) 7! 12, ⌧(2) 7! 13, and ⌧(3) 7! 1.
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Main theorem

Theorem (DDMP)

Let (X ,�) be an aperiodic minimal subshift. If

lim inf
n

pX (n)

n

< +1,

then Aut(X ,T )/hT i is finite.

Example. Primitive substitutive subshifts:
Generalizes results of V. Salo-I. Törmä.
Similar result by V. Cyr-B. Kra

This includes also

Subshifts of polynomial complexity of arbitrarily high degree.

Subshifts with subexponential complexity
pX (n) � g(n) i.o. where limn g(n)/↵n = 0 for any ↵ 2 R.
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Previous results: in the measurable setting

Centralizer group: for a measurable dynamical system (X ,B, µ,T ),

C (T ) = {� : X ! X ; bi-measurable, � � T = T � �}

D. Ornstein (72): mixing rank one system C (T ) = hT i.
A. Del Junco (78): same is true for the Chacon subshift.

J. King, J.-P. Thouvenot (91): mixing system of finite rank

C (T )/hT i is finite.
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Previous results: in the topological setting

G. A. Hedlund (69): For the Thue-Morse subshift, Aut(X ,T )
is generated by T and a flip map.

M. Boyle, D. Lind, R. Rudolph (88): mixing subshift of finite
type contains various subgroup.

M. Hochman (2010): any SFT with positive entropy admits
any finite group in Aut(X ,T ).
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From the measurable to the topological setting

For zero-entropy system:

B. Host, F. Parreau (89): for a family of substitutive systems

C (T ) = Aut(X ,T ) and C (T )/hT i is finite.

M. Lemánczyk, M. Mentzen (89): any finite group can be
realized as C (T )/hT i.
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Main Ideas

Lemma

Let (X ,T ) be a minimal aperiodic dynamical system. The action

of Aut(X ,T ) on X

Aut(X ,T )⇥ X ! X

(�, x) 7! �(x),

is free.

Proof. For any automorphism �, the set

{x ;�(x) = x}

is closed and T invariant.
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Main Ideas

Two points x , y 2 (X ,T ) are asymptotic if

lim
n!+1

dist(T n(x),T n(y)) = 0.

Any infinite subshift admits an asymptotic pair.

Any automorphism � maps an asymptotic pair to an asymptotic
pair
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Main Ideas

Corollary

For an infinite t.d.s. (X ,T ), with an asymptotic pair, we have

{1} �! hT i �! Aut(X ,T )
j�! PerA/⇠,

where :

A denote the collection of asymptotic unordered pairs

{x , y} ⇠ {x 0, y 0} if x and x

0
are in the same T-orbit.

PerA/⇠ denotes the set of permutations on this set.

If lim infn PX (n)/n < 1 then ]A/⇠ < +1.
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Main Ideas

Corollary

For an infinite subshift (X ,�), we have

{1} �! h�i �! Aut(X ,�)
j�! PerA/⇠,

where :

A denote the collection of asymptotic unordered pairs

{x , y} ⇠ {x 0, y 0} if x and x

0
are in the same T-orbit.

PerA/⇠ denotes the set of permutations on this set.

If ]A/⇠ = 1, then Aut(X ,T ) = hT i.
e.g. for Sturmian sequences
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More generally

In the same way: x , y 2 X are proximal if

lim inf
n

dist(T n
x ,T n

y) = 0.

� 2 Aut(X ,T ) maps proximal points to proximal points.

Theorem (DDMP)

If (X ,T ) is a proximal extension of a minimal d-step nil system,

then Aut(X ,T ) is a d-step nilpotent group.

Example. Toeplitz subshifts are proximal extension of their
maximal equicontinuous factor (d = 1). Their automorphism
group is Abelian.
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Open questions

Question

Given a countable group G . Does it exists a minimal subshift such
that Aut(X ,�)/h�i is isomorphic to G ?

True for G = Zd

Salo: example Aut(X ,�) is Abelian not finitely generated

Question

Relation with the complexity ?

Cyr and Kra: if pX (n)/n2 ! 0 then Aut(X ,�) is periodic
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