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Introduction

Minimal systems: Natural generalizations of periodic orbits and
topological analogous of ergodic systems, defined by [G. D.
Birkhof, 1912].

Extension to Cantor set:

Theorem. (P. Alexandroff, 1927)
Every compact metric space is a continuous image of the Cantor
set.

Let (X, T ) be a minimal system on a compact metric space.

∃ F : C → X, C is the Cantor set

which is continuous and onto. Set

K := {(xn)n∈Z; xn ∈ C, F (xn+1) = T (F (xn))}.



...

K = {(xn)n∈Z; xn ∈ C, F (xn+1) = T (F (xn))} ⊆ CZ

and is σ-invariant. Let Z be a minimal subset of (K, σ). Then

ψ : (Z, σ)→ (X, T )

ψ((zn)n∈Z)) = z0

makes the factoring.

Remark. Note that Z is a closed subset of the CZ and so is a
Cantor set.



1. Odometers (adding Machines)

Let J = (j1, j2, · · · ) be a sequence of natural numbers and

X = {(xn)n∈N0 : 0 ≤ xi ≤ ji − 1}.

The adding machine is defined by the map T : X → X with

T (x0, x1, · · · ) = (x0, x1, · · · ) + (1, 0, 0, · · · ).

The addition is component-wise with carrying to the right. This
system is minimal and distal, means that

∀x, y ∈ X, ∃δ > 0; d(Tnx, Tny) > δ, ∀n ≥ 0.

In fact, δx,y = d(x, y). In fact, it is equicontinuous, means that
{Tn}n is an equicontinuous family.



...

Theorem. (See [P. kurka 2003])
Every minimal equicontinuous system on Cantor set is conjugate
to an odometer.

proof.
It suffices to consider the equivalent metric

d(x, y) = sup
n
d(Tnx, Tny).

Corollary.
The maximal equicontinuous factor of a minimal distal system
on Cantor set is conjugate to an odometer.



...

Let ni := jiji−1 · · · j1. It’s pretty clear that Tni → id, or

∀x ∈ X, Tnix→ x.

This property is called rigidity along the sequence {ni}i.

Proposition. (E. Glasner, D. Maon, 1975)

Any (infinite) minimal rigid system on Cantor set is conjugate
to an odometer.

Proof. Exercise (Hint: show that it is equicontinuous).

Odometers are also called rotations or Kronecker system on
Cantor set as they are isometries.



Odometers from algebraic point of view

Let (pi)i≥1 be a sequence of natural numbers that

∀i ≥ 1, pi ≥ 2, pi|pi+1.

Consider the following inverse limit system:

(Zp1 , ı1)
φ1←− (Zp2 , ı2)

φ2←− · · · ←− (Z, ı)

where ıi(z) = z + 1 (mod pi) and

Z = {(zn)n∈N; zn ∈ Zpn , φi(zi) = zi (mod pi−1)}

and
ı(z1, z2, · · · ) = (z1, z2, z3, · · · ) + (1, 1, 1, · · · ).

Exercise. Show that (Z, ı) is conjugate to the odometer based
on the sequence (pi/pi−1)i.



2. Substitutions

Let A be a set of alphabets, like A = {1, 2, . . . , k} and A+ be
the set of words with letters in A.
A substitution on A is a map τ : A→ A+ that

∀a ∈ A, |τn(a)| → ∞.

By concatenation, one can extend such a map to A+:

∀w = w1w2 . . . wk ∈ A+, τ(w) = τ(w1)τ(w2) . . . τ(wk).

So τn : A→ A+ is also a substitution,

∀a ∈ A, τn(a) = τn−1(τ(a)) = · · · =
n times︷ ︸︸ ︷

τ(τ(· · · (τ (a) · · · ).

A substitution is primitive if

∀a, b ∈ A, ∃p > 0; a appears in τp(b).

Fixed points of a substitution: {x ∈ Xτ : τ(x) = x}.



...

Example i) Let A = {0, 1} and τ(0) = 001, τ(1) = 01. Then

0
τ7−→ 001

τ7−→ 00100101
τ7−→ 001001010010010100101

τ7−→ · · · ;

1
τ7−→ 01

τ7−→ 00101
τ7−→ 0010010100101

τ7−→ · · · .

Example ii)(Thue-Morse) Let A = {0, 1} and τ(0) = 01,
τ(1) = 10. Then

0
τ7−→ 01

τ7−→ 0110
τ7−→ 01101001

τ7−→ · · · ,

1
τ7−→ 10

τ7−→ 1001
τ7−→ 10010110

τ7−→ · · · .
Example iii) Let A = {0, 1, 2}. Then

0 7−→ 01, 1 7−→ 2, 2 7−→ 012

Example iv) Let A = {0, 1}. Then

0 7−→ 010, 1 7−→ 111.



...

If there exists at least one letter a ∈ A so that τ(a) begins with
a, then we have at least one fixed point.

Definition.

∀x ∈ AZ, L(x) = {u ∈ A+; ∃p > 0, u ≺ τp(x)}.

It is easy to see that for a primitive τ ,

x, y ∈ A, τ(x) = x, τ(y) = y ⇒ L(x) = L(y).

Definition.
A primitive substitution is proper if it has a unique fixed point.

Remark.
If ∃r, ` ∈ A such that ∀a ∈ A, τ(a) starts with r and ends with
` and r` is admissible then τ is proper.



Substitution dynamical systems

Definition.

Let Xτ be a subset of AZ associated to the language of the fixed
points of a primitive τ , i.e.

Xτ = {x ∈ AZ : ∀i < j, xixi+1 · · ·xj ∈ L(a); a = τ(a)}.

Xτ together with the restriction of the shift map σ is called a
Substitution dynamical system, (Xτ , σ).

In other words, a subshift (X, σ) with the alphabet A, is a
substitution if

∃ a primitive τ : A→ A+, w = τ(w); Xτ = {σn(w)}n,

Proposition. (F. Durand, B. Host, C. Skau, 1999)
Every substitution dynamical system is conjugate to the closure
orbit of the fixed point of a proper substitution.



Systems associated to sequences

Let u = (un)n be a sequence in a shift space and set

X = {σn(u)}n.

Proposition. (See [M. Queffelece ’87] )

(X, σ) is minimal iff u is uniformly recurrent.

Recall that uniform recurrence means that for any words w the
set of gaps between any two consecutive occurrences of w is
bounded.

Corollary.
Every substitution dynamical system, (X, σ) is minimal.



...

Let u = (un)n be a sequence in a shift space and `B(C) be the
number of occurrence of B in C, where B and C are two
admissible words.
We say that u has uniform word frequencies if

∀ B : lim
n→∞

`B(uk . . . uk+n)

n+ 1

exists uniformly in k (independent from k).

Proposition. (See [M. Queffelec ’87])

(X, σ) associated to the sequence u is uniquely ergodic iff u has
uniform word frequencies.

Hint. Use point-wise ergodic theorem.



The invariant measure

Corollary.
Every substitution dynamical system, (X, σ) is uniquely ergodic.

In fact, for the substitution system (Xτ , σ) with alphabet A, for
every a ∈ A the map µ defined by

µ := lim
j→∞

1

|τ j(a)|
∑

n<|τ j(a)|

δTnu

is an invariant Borel measure for the system which is unique.



Linear complexity

Proposition. (See [M. Queffelec ’87])
Every substitution dynamical system has zero entropy.

Proof. Consider the incidence matrix of the substitution. Using
Perron-Frobenius Theorem, for the fixed point u, there exists
r > 0 such that

pu(n) ≤ rn ⇒ lim
n→∞

1

n
log(pu(n)) = 0.

Example i) Sturmian systems are substitutions or generated by
finitely many substitutions. These are almost one to one
extensions of irrational rotations on the unit circle with
pu(n) = n+ 1.



(weakly) mixing substitution

Example ii) Chacon’s minimal weakly mixing and non-mixing
substitution system (X, σ), where X is the orbit closure of the
first fixed point of the following substitution:

0 7−→ 0010, 1 7−→ 1,

which is non-primitive. But there exists a primitive substitution
with 3 symbols that makes a conjugate system. Example iii)

Dekking’s and Kean’s topologically mixing substitution system
coming from:

0 7−→ 001, 1 7−→ 11100.

Remark. (Dekking, Kean, 1978)
A substitution can never be strongly mixing with respect to its
unique invariant measure.



3. Toeplitz sequence, See [P. Kurka 2003]

A point x in dynamical system (X, T ) is quasi-periodic if

∀U open set ; x ∈ U, ∃p > 0; Tnp(x) ∈ U, ∀n ≥ 1.

Recall that in odometers all points are quasi-periodic.

Definition.

A point x ∈ AN is Toeplitz if there exists an increasing sequence
(pi)i≥0, pi ∈ N such that

pi|pi+1,

for every n ≥ 0 there exists some i so that n ∈ perpi(x),
where

perpi(x) = {k ∈ N : ∀n xk+pn = xk}.

So any Toeplitz sequence is quasi-periodic (w.r.t. shift map).



...

The p-skeleton of x, Sp(x), is defined by

Sp(x) =

{
xi if i ∈ perp(x)
* if i /∈ perp(x).

So to construct the toeplitz sequence we need the

(pi)i≥0, ri := min{k : k ∈ perpi(x)}.
to find Spi(x).
Example. Let A = {0, 1} and construct the toeplitz sequence
with the periodic structure (pn)n = (2n)n≥1 and
r2 = 0, r4 = 1 r8 = 3, r16 = 7, · · · . Then

S1(x) = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
S2(x) = 1 ∗ 1 ∗ 1 ∗ 1 ∗ · · ·
S4(x) = 1 0 1 ∗ 1 0 1 ∗ · · ·
S8(x) = 1 0 1 1 1 0 1 ∗ · · ·
S16(x) = 1 0 1 1 1 0 1 0 · · ·



Toeplitz dynamical systems, See [P. Kurka 2003]

Definition.

A subshift (X, σ) is Toeplitz system if X = {σn(x)}n≥0 where x
is a Topelitz sequence.

Remark.
It is clear that a Toeplitz sequence is uniformly recurrent and so
any Toeplitz system is minimal.

regular Toeplitz : lim
i→∞

|(Spi(x))∗|
pi

= 0.

Toeplitz

{
regular  is uniquely ergodic
non-regular  is not necessarily uniquely ergodic.

Toeplitz

{
regular  has zero entropy
non-regular  entropy might be positive.



Toeplitz and odometers

Proposition.
Any Toeplitz system is an almost one to one extension of an
odometer.

Proof. Consider the periodic structure p = (pi)i≥0 of the
system and let

Ain := {σn+pimx : m ∈ N}, i > 0, 0 ≤ n < pi.

These are clopen subsets of X and

y ∈ Ain ⇐⇒ Spi(y) = Spi(σ
nx).

Now define the map π : X → Zp by

(π(x))i = n iff x ∈ Ain.

It is not hard to see that π is continuous and |π−1(x)| = 1 if x is
Toeplitz. So π is almost one to one. �



Topological characterization

Definition. ((Jacob- Kean, 1969), (Eberlien1970), (Downarowisz-
Lacorix 1998))
A dynamical system on a Cantor set is Toeplitz if it is

minimal;
expansive;
and almost one to one extension of an odometer.

Note that the second condition can be replaced by being subshift.

Theorem. (P. Kurka 2003)
A Cantor system is conjugate to a subshift iff it is expansive.



Toeplitz and substitutions

A substitution with constant length and common prefix for all
letters will make a Toeplitz sequence.

Example. Let A = {0, 1} and define

τ =

{
0 7−→ 11 7−→ 1010 7−→ 10111011 7−→ · · ·
1 7−→ 10 7−→ 1011 7−→ 10111010 7−→ · · · .

The unique fixed point, x, of this substitution has 1 at all x2n.
Because τ(0) and τ(1) have common prefix 1. Similarly, satrting
from x1 and with period 4 there are 0’s at all x4n+1 and so on.
Therefore, x is a Toeplitz sequence.



A Tower for a Cantor minimal systems, [I. Putnam 1989]

Let (X, T ) be a minimal Cantor system, P a finite (clopen)
partition and Y be a non-empty clopen subset of X. Define
λ : Y → Z by

λ(y) := inf{n ≥ 1 : Tn(y) ∈ Y }, y ∈ Y.

Suppose that
λ(Y ) = {J1, J2, · · · , JK}.

For each 1 ≤ k ≤ K, set Y (k, j) := T j(λ−1(Jk)). Then⋃K
k=1 Y (k, 1) = T (Y );

T (Y (k, j)) = Y (k, j + 1), for 1 ≤ j ≤ Jk;⋃K
k=1 Y (k, Jk) = Y.⋃

k,j Y (k, j) is closed and T -invariant; so it covers X. Moreover,
we can break the columns of T to have a refinement of P. This
is called a Kakutani-Rokhlin tower T for (X, T ).



Nested Kakutani-Rokhlin towers.

Theorem.
For any Cantor minimal system (X, T ) and x0 ∈ X, there exists
a nested sequence of Kakutani-Rokhlin towers {T }n≥0 whose
intersection is {x0} and

⋃
n≥0 Tn generates the topology of X.

Proof. Let {Pi}i≥0, Pi � Pi−1, be a sequence of finite clopen
partitions of X whose union generates the topology on it.
Choose a decreasing sequence of clopen subsets

Y0 ⊃ Y1 ⊃ Y2 ⊃ · · ·

converging to {x0}. By induction, there exists a sequence of
towers

Tn =

K⋃
k=1

Jk⋃
j=1

(Yn, j), n ∈ N

such that Tn ≺ Pn. �



Example 1. Odometer

Consider Zp with p = (2n)n≥1 with alphabet A = {0, 1}. Let
x = (0, 1, x2, · · · ) and Y1 = [01].Then H1 = {4} and

T1 := [01] 7−→ [11] 7−→ [00] 7−→ [10].

Similarly, let Y2 = [01x2] ⊂ Y1. Then H2 = 8 and

T2 := [01x2] 7−→ · · · 7−→ [00(x2 + 1)], · · · 7−→ [10x2] ≺ T1.

Therefore, at each step n the hight of the tower Tn is 2n with
the base Yn := [01x2 · · ·x2n−1 ] which converge to x.

For general case, if the odometer is Zp with p = (ji)i≥1, for any
arbitrary point x, there exists a sequence of towers with
intersection equal to {x} and at each step n the tower is a single
column of height

Hn = jnjn−1 · · · j1.



Example 2. primitive proper substitutions

Let A = {0, 1} and τ(0) = 001, τ(1) = 01. Clearly

T0 = {X} = {[0] ∪ [1]}.

So T0 has two columns each one with a single cell. Then

0
τ7−→ 001

τ7−→ 00100101
τ7−→ 001001010010010100101

τ7−→ · · · .

If a point x belongs to [0] then two cases might be happened
x ∈ [00], then the first return time to [0] for x is 3 because
of 0010;
or x ∈ [01] which implies that the first return time to [0] for
x is 2 because of 010.

Consider [0] = V1 ∪ V2 ∪ V3 and [1] = W1 ∪W2, we will have a
tower T1 with two columns:

V1 7−→ V2 7−→W1,

V3 7−→W2

that covers X.



...

To make a finer partition than T1, it is enough to consider two
clopen sets:

U := V1 7−→ V2 7−→W1, Z := V3 7−→W2

from T1.Since we had substitution map, again we have

U = U1 ∪ U2 ∪ U3, Z = Z1 ∪ Z2.

And the movements between the cells are similarly repeated:

U1 7−→ U2 7−→ Z1,

U3 7−→ Z2

which makes us a tower T2 with two columns that refines T1. An
inductive argument will make the nested sequence of towers.



..., [F. Durand, B. Host, C. Skau ’99]

In general, the Kakutani-Rokhlin towers for a substitution
dynamical system (Xτ , σ), with alphabet A,

have (at all the steps n), |A| columns and for each a ∈ A
there exists a column of the height the height |τ(a)|;

the order of the appearance of the columns of each tower
Tn−1 as the sub-columns of the next tower Tn, is the same
as T0’s appearing in T1.

Note that at each step n the given finite clopen partition which
is refined by Tn is the usual cylinder sets of the shift space with
length 2n.



Example 3. Toeplitz

Let (X, T ) be a Toeplitz system which is the closure orbit of the
Toeplitz sequence x with periodic structure (pi)i≥1. Recall that
the clopen sets

Ain := {σn+pimx : m ∈ N}, n < pi, i > 0

have the following properties:
y ∈ Ain ⇐⇒ Spi(y) = Spi(σ

nx);

{Ain : 0 ≤ n < pi} is a clopen partition of X;
Ajm ⊆ Ain for j > i and n = m mod pi;
σ(Ain) = Ai(n+1)mod pi

.



..., [R. Gjerde, R. Johansen, 2000]

Let W1 be the collection of all words of length p1, beginning
with x(0), we can make a Kakutani-Rokhlin tower T1 with
columns based on the

B1
w := {x ∈ A1

0 : x[0, p1 − 1] = w}, w ∈W1.

So all the columns have the same heights p1. Similarly, Tn will
be a tower with columns bases

B1
w := {x ∈ An0 : x[0, pn − 1] = w}, w ∈Wn

which implies that all the columns have the height pn. In other
words,

Tn = {T jB1
w : w ∈Wn, j = 0, 1, · · · , pn − 1}.



From CMS to a Bratteli diagram

Let (X, T ) be a Cantor minimal system and consider a nested
sequence of Kakutani-Rokhlin towers {Tn}n≥0 for that. We can
realize this towers in the form of an infinite partially ordered
graph such that

at each level n associated to the tower Tn, there are Kn

vertices regarding the Kn columns of Tn. The set of
vertices of level n is denoted by Vn;
for each two vertices in two consecutive levels, u ∈ Vn,
v ∈ Vn+1, there are m edges connecting them regarding the
m times of appearance of the column u as a sub-column of
the column v;
the edges terminated at each vertex in level n+ 1 are
ordered and the ordering is related to the ordering of the
columns of tower Tn as sub-columns of tower Tn+1.



Bratteli diagram

A Bratteli diagram is a couple B = (V, E) where

V = V1ṫV2ṫ · · ·Vn · · · , E = E1ṫE2ṫ · · ·En · · · ,

and En is determined by an incidence matrix |Vn| × |Vn−1|.

1 2 1 2 3 1

1 2 3 4
1 2 3

M(1) =

 2
3
1



M(2) =

[
1 1 2
1 1 1

]



Example 1. odometer

As the Kakutani-Rokhlin towers have one columns at each level
with Hn = jnjn−1 · · · j1, the Bratteli diagram associated to the
odometer Zp, p = (jn)n≥1 have one vertex at each level with jn
edges between the vertices of two consecutive levels.



Example 2. substitutions

When τ : A→ A+, A = {a1, a2, . . . , a`} is the substitution map,
the Bratteli diagarm associated to (Xτ , σ) will have

` vertices at each level, |Vn| = `;
For the number of edges between the levels, consider the
incidence matrix associated to τ . Let M be an `× ` matrix
such that

Mij shows that how many times the letter aj appears in
τ(ai).
The ordering of the edges terminated at vertex vi ∈ V1 is
the same as the order of letters in τ(ai).

Since "the order of the appearance of the columns of each
tower Tn−1 as the sub-columns of the next tower Tn, is the
same as T0’s appear in T1," the Bratteli diagram
associated to a substitution is stationary means that for all
n, Mn = M .



...

The above construction was in fact based on the following
theorem.

Theorem. (F. Durand, B. Host, C. Skau, 1999)
The family of substitution systems is in one to one
correspondence with the family of stationary ordered Bratteli
diagrams.

1 1

1 2 3

1 2

M(1) =

[
1
1

]

M(n) =

[
2 1
1 1

]



Example 3. Toeplitz

The Bratteli diagram associated to a Toeplitz system is an ERS
diagram, means that each incidence matrix have equal row
sums. This is because of the heights of the columns of each
Kakutani-Rokhlin tower which are all the same.

1 2 3 4

1 3
2 4

M(1) =

 2
2
2



M(2) =

[
1 1 2
2 1 1

]
...

...



From Bratteli diagram to CMS

Vershik map: Let (B, ≤) be an ordered Bratteli diagram
and

x = (a1, a2, · · · , ai0 , · · · )

be an infinite path on it. Suppose that i0 is the first i that
ai is not the max edge. Then

T (a1, a2, · · · , ai0 , · · · ) = (0, 0, · · · , 0, ai0 + 1, · · · )
T (xmax) = xmin.

So the map sends each infinite path to its successor.

An Odometer:
{0, 1, 2}N → {0, 1, 2}N

(2, 2, 2, 0, a, · · · ) 7→ (0, 0, 0, 0 + 1, a, · · · ).



...

1 2 1 2 3 1

1 2 3 4
1 2 3

M(1) =

 2
3
1



M(2) =

[
1 1 2
1 1 1

]

If the incidence matrices have all entries positive then the
Vershik system is minimal.



...

Theorem. (T. Downarowicz, A. Maass, 2008)
Any Vershik system on a finite rank Bratteli diagram is
conjugate to an odometer or to a subshift (expansive).

If the width of the diagram is infinite, this may not be true.

Theorem. ( F. Sugisaki 2001)
A Vershik system on an ERS Bratteli diagram is strong orbit
equivalent to a Toeplitz.

Gjerdeh and Johansen made example of a Vershik system on an
ERS diagram which is neither subshift (expansive) nor an
odometer.



Continuous spectrum and Bratteli diagram

Let (X, T ) be a Cantor minimal system and consider the so
called Koopman operator, UT , on C(X) defined by

UT : C(X)→ C(X)

UT (f) = f ◦ T.

Definition.
A complex number λ = exp(2πit) is called an eigenvalue for
(X, T ) if it is an eigenvalue for the Koopman linear operator;

∃ f ∈ C(X); UT (f) = λf.

Then the function f : X → R is called an eigenfunction.

SP (T ) := {t; exp(2πit) is eigenvalue for (X, T )} 6= ∅

is a countable additive subgroup of R.



...

Recall that the measurable spectrum for a dynamical system
(X, T, µ) is defined similarly with Koopman operator on
L2(µ).
The continuous spectrum is contained in the measurable
spectrum.
An invariant measure (even with full support) may have
trivial continuous spectrum and non-trivial measurable
spectrum.
A (minimal) system is weakly mixing iff it has trivial
(continuous) spectrum.



spectrum and Bratteli diagram

Let (XB, TB) be a Vershik map on an ordered Bratteli diagram.

Proposition. (Exercise)

The rational number 1/p belongs to SP (T ) iff there exists some
level n such that

p|hi, 1 ≤ i ≤ |Vn|,

where hi is the number of paths from v0 ∈ V0 to vi ∈ Vn.

This means that the rational spectrum , Q(SP (T )), is
independent of the ordering of the Bratteli diagram.

The above proposition is indeed a corollary of [T, Giordano, I.
Putnam, C. Skau, ’95]



Examples.

1 2 3 4

1 3
2 4

1 1

1 2 3

1 2



...

For an ordered Bratteli diagram (XB, TB), having irrational
spectrum is a non-invariant property under change of the
ordering;

Proposition. (A direct corollary of Theorem 6.1, N. Ormes ’95)

Let (Ŝ1, Rθ, `) be the sturmian system with rotation number θ
and invariant measure `. Consider any (measure theoretically)
weakly mixing system (Y, S, ν). There exists a system (Ŝ1, g)
preserving λ and isomorphic to (Y, S, ν) such that (Ŝ1, Rθ) and
(Ŝ1, g) are realized as two different orderings on the same
(telescoped) Bratteli diagram.

Proposition. (T. Giordano, D. Handelman, H., 2017)
Any Cantor minimal system with trivial rational spectrum is
strongly orbit equivalent to a weakly mixing system.



Entropy and Bratteli diagram

Recall that for a subshift (X, σ), the entropy of σ is equal to

h(σ) = lim sup
n

log |Wn(σ)|
n

,

where Wn(σ) = {y1y2 . . . yn : ∃ y = (yi)i∈Z ∈ X}.

Note that any Vershik map T on an ordered Bratteli diagram
(B, V, ≤) is an inverse limit of subshifts:

T = lim←−
n

(σk),

where σk is the subshift on the quotient of the space XB

obtained by restricting all the paths to the level k. Therefore,

h(T ) = lim
k→∞

h(σk).



Proposition. (M. Boyle, D. Handelman, ’94)

Let (XB, TB) be a Vershik system on (B, V, ≤) which is
consecutively ordered. Set nk to be the minimum number of
edges from a vertex at level k − 1 to a vertex at level k and mk

be the number of vertices of level k. Suppose that

lim
k→∞

log(nk ·mk)

nk
= 0.

Then the entropy of TB is zero.

Corollary.
Any Cantor minimal system is strongly orbit equivalent to a
system with zero entropy.

Proof. For any Bratteli diagram (B, V ), there exists a relevant
telescoping with the desired property of the proposition. Then
any consecutive ordering will make the result.



Theorem. (M. Boyle, D. Handelman, ’94)
Suppose 0 ≤ logα ≤ ∞. There exists a homeomorphism T
strongly orbit equivalent to the odometer such that h(T ) = logα.

Theorem. (Downarowicz, Lacorix, 1998)

Let (X, T, µ) be an ergodic system with countably many rational
(measurable) spectrum. There exists a uniquely ergodic Toeplitz
system (X, T ) with an invariant measure ν which is measure
theoretically isomorphic to (X, T, µ).



Theorem. (Siri Malen, 2015)
For any 0 ≤ t ≤ ∞, any Choqute simplex K and any odometer
Zp, there exists Toeplitz flow (X, T ) with entropy equal to t,
maximal equicontinuous factor Zp and with the set of invariant
measures affinely homeomorphic to K.
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